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DIMENSIONS OF PRYM VARIETIES

AMY E. KSIR
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Abstract. Given a tame Galois branched cover of curves π : X → Y with any finite Galois
group G whose representations are rational, we compute the dimension of the (general-
ized) Prym variety Prymρ(X) corresponding to any irreducible representation ρ of G. This
formula can be applied to the study of algebraic integrable systems using Lax pairs, in
particular systems associated with Seiberg-Witten theory. However, the formula is much
more general and its computation and proof are entirely algebraic.
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1. Introduction. The most familiar Prym variety arises from a (possibly branched)

double cover π : X → Y of curves. In this situation, there is a surjective norm map

Nm : Jac(X)→ Jac(Y), and the Prym (another Abelian variety) is a connected compo-

nent of its kernel. Another way to think of this is that the involution σ of the double

cover induces an action of Z/2Z on the vector space H0(X,ωX), which can then be

decomposed as a representation of Z/2Z. The Jacobian of the base curve Y and the

Prym correspond to the trivial and sign representations, respectively. The Prym vari-

ety can be defined as the component containing the identity of (Jac(X)⊗Z ε)σ , where
ε denotes the sign representation of Z/2Z.
The generalization of this construction that we study in this paper is as follows.

Let G be a finite group, and π : X → Y be a tame Galois branched cover, with Galois

group G, of smooth projective curves over an algebraically closed field. The action

of G on X induces an action on the vector space of differentials H0(X,ωX), and on

the Jacobian Jac(X). For any representation ρ of G, we define Prymρ(X) to be the

connected component containing the identity of (Jac(X)⊗Z ρ∗)G. The vector space

H0(X,ωX) decomposes as a Z[G]-module into a direct sum of isotypic pieces

H0(X,ωX
)=

N⊕
j=1

ρj⊗Vj, (1.1)

where ρ1, . . . ,ρN are the irreducible representations of G. If G is such that all of its

representations are rational, then the Jacobian also decomposes, up to isogeny, into

a direct sum of Pryms [5]:

Jac(X)∼
N⊕
j=1

ρj⊗Prymρj (X). (1.2)

In particular, if G is the Weyl group of a semisimple Lie algebra, then it satisfies this

property.
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The goal of this paper is to compute the dimension of such a Prym variety. This for-

mula is given in Section 2, with a proof that uses only the Riemann-Hurwitz theorem

and some character theory. Special cases of this formula relevant to integrable systems

have appeared previously [2, 11, 12, 13].

One motivation for this work comes from the study of algebraically integrable sys-

tems. An algebraically integrable system is a Hamiltonian system of ordinary dif-

ferential equations, where the phase space is an algebraic variety with an algebraic

(holomorphic, over C) symplectic structure. The complete integrability of the system

means that there are n commuting Hamiltonian functions on the 2n-dimensional

phase space. For an algebraically integrable system, these functions should be alge-

braic, in which case they define a morphism to an n-dimensional space of states for

the system. The flow of the system will be linearized on the fibers of this morphism,

which, if they are compact, will be n-dimensional Abelian varieties.

Many such systems can be solved by expressing the system as a Lax pair depending

on a parameter z. The equations can be written in the form (d/dt)A= [A,B], where A
and B are elements of a Lie algebra g, and depend both on time t and on a parameter z,
which is thought of as a coordinate on a curve Y . In this case, the flow of the system

is linearized on a subtorus of the Jacobian of a Galois cover of Y . If it can be shown

that this subtorus is isogenous to a Prym of the correct dimension, then the system

is completely integrable.

In Section 3, we briefly discuss two examples of such systems, the periodic Toda

lattice and Hitchin systems. Both of these are important in Seiberg-Witten theory, pro-

viding solutions to �= 2 supersymmetric Yang-Mills gauge theory in four dimensions.

2. Dimensions. We can start by using the Riemann-Hurwitz formula to find the

genus gX of X, which will be the dimension of the whole space H0(X,ωX) and of

Jac(X). Since π :X → Y is a cover of degree |G|, we get

gX = 1+|G|(g−1)+ degR
2

, (2.1)

where g is the genus of the base curve Y and R is the ramification divisor.

The first isotypic piece whose dimension we can find is V1, corresponding to the

trivial representation. The subspace where G acts trivially is the subspace of differ-

entials which are pullbacks by π of differentials on Y . This tells us that dimV1 =
dimH0(Y ,ωY )= g.
In the case of classical Pryms, where G = Z/2, there is only one other isotypic piece,

Vε corresponding to the sign representation ε. Thus we have

dimVε = gX−g = g−1+ degR
2

. (2.2)

For larger groups G, there are more isotypic pieces, but we also have more informa-

tion: we can look at intermediate curves, that is, quotients of X by subgroups H of G.
Differentials on X/H pull back to differentials on X, where H acts trivially. Thus

H0(X/H,ωX/H
)=

N⊕
j=1

(
ρj
)H⊗Vj. (2.3)
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The map πH : X/H → Y will be a cover of degree |G|/|H|, so Riemann-Hurwitz gives

us the following formula for the genus gH of X/H, which is the dimension of

H0(X/H,ωX/H):

gH = 1+ |G||H| (g−1)+
degRH

2
, (2.4)

where again RH is the ramification divisor.

We can further analyze the ramification divisor, by classifying the branch points

according to their inertial groups. Since π : X → Y is a Galois cover of curves over C,
all of the inertial groups must be cyclic.

Lemma 2.1. Let G be a finite group all of whose characters are defined over Q. If
two elements x,y ∈G generate conjugate cyclic subgroups, then they are conjugate.

Proof (adapted from [3]). We want to show that for any character χ of G, χ(x)=
χ(y). Then the properties of characters will tell us that x and y must be in the same

conjugacy class.

We may assume that x and y generate the same subgroup H. Then y = xk for

some integer k relatively prime to |H|. Let χ be a character ofG, and ρ :G→ GL(n,C) a
representation with character χ. Then ρ(x)will be amatrix with eigenvalues λ1, . . . ,λn,
and ρ(y) will have eigenvalues λk1, . . . ,λkn. Since x|H| = 1, we have λ|H|1 = ··· = λ|H|n = 1.

Let ξ be a primitive |H|th root of unity. Then we can write λ1 = ξν1 , . . . ,λn = ξνn

for some integers νi. Now χ(x) = Trace(ρ(x)) = λ1+···+λn, and χ(y) = χ(xk) =
λk1+···+λkn. Thus χ(y) will be the image of χ(x) under the element of Gal(Q(ξ)/Q)
which sends ξ � ξk. Since the values of χ are rational, this element will act trivially,

so χ(y)= χ(x).

From now on, we suppose that G is such that all of its characters are rational. (This

is true, for instance, if G is a Weyl group.) Pick representative elements h1, . . . ,hN for

each conjugacy class in G, and let H1, . . . ,HN be the cyclic groups that each of them

generates. By Lemma 2.1, this is the whole set (up to conjugacy) of cyclic subgroups

of G. We can partially order this set of cyclic subgroups by their size, so that H1 is

the trivial subgroup. Now we can classify the branch points: let Rk, k= 2, . . . ,N be the

degree of the branch locus with inertial group conjugate to Hk (ignoring the trivial

group). Over each point of the branch locus, where the inertial group is conjugate to

Hk, there are |G|/|Hk| points in the fiber. Thus the degree of the ramification divisor

R of π :X → Y is

degR =
N∑
k=1

(
|G|− |G|∣∣Hk

∣∣
)
Rk. (2.5)

For each quotient curve X/H, each point in the fiber of πH : X/H → Y over a point

with inertial group Hk corresponds to a double coset Hk\G/H. Thus the degree of the
ramification divisor RH is

degRH =
N∑
k=1

( |G|
|H| −#

(
Hk\G/H

))
Rk. (2.6)
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Combining (2.5) and (2.6) with the earlier Riemann-Hurwitz computations ((2.1) and

(2.4)), we get

gX = 1+|G|(g−1)+
∑
k

(
|G|− |G||H|

)
Rk
2
,

gH = 1+ |G||H| (g−1)+
∑
k

( |G|
|H| −#

(
Hk\G/H

))Rk
2
.

(2.7)

Since the genera gH are exactly the dimensions dimH0(X/H,ωX/H), we also have

gH =
N∑
j=1

dimρHj dimVj. (2.8)

For each subgroup H, this is a linear equation for the unknown dimensions dimVj
in terms of the genus gH . Thus by taking quotients by the set of all cyclic subgroups
H1 ···HN , we get a system of N equations. We wish to invert the matrix dimρHij and

find the N unknowns dimVj .

Lemma 2.2. The matrix dimρHij is invertible.

Proof. We show that the rows of the matrix are linearly independent, using the

fact that rows of the character table are linearly independent. First, note that dimρHij ,

the dimension of the subspace of ρj invariant under Hi, is equal to the inner product

of characters 〈ResGHi ρj,1〉, which we can read off from the character table of G as

dimρHij = 1∣∣Hi
∣∣
∑

ai∈Hi
χρj
(
ai
)
. (2.9)

Compare this matrix to the matrix of the character table χρj (ai). From (2.9) we see

that each row is a sum of multiples of rows of the character table. Since each element

of a subgroup has order less than or equal to the order of the subgroup, the rows of the

character table being added to get row i appear at or below row i in the character table.
Thus if we write the matrix dimρHij in terms of the basis of the character table, we

get a lower triangular matrix with nonzero entries on the diagonal. By row reduction,

we see that the linear independence of the rows of dimρHij is equivalent to the linear

independence of the rows of the character table.

Theorem 2.3. For each nontrivial irreducible representation ρj of G, Vj has dimen-
sion

(
dimρj

)
(g−1)+

N∑
k=1

((
dimρj

)−(dimρHkj
))RHk

2
. (2.10)

Proof. Since the matrix dimρHij is invertible, there is a unique solution to the

system of (2.8), so we only need to show that this is a solution. Namely, given this

formula for dimVj and combining (2.7) and (2.8), we wish to show that for each cyclic

subgroup Hi,

N∑
j=1

dimρHij dimVj = 1+ |G|∣∣Hi
∣∣ (g−1)+

∑
k

( |G|∣∣Hi
∣∣ −#

(
Hk\G/Hi

))Rk
2
. (2.11)
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Note that on the left-hand side we are summing over all representations, not just

the nontrivial ones, so our notation will be simpler if we write dimV1 = g in a similar

form to (2.8). For the trivial representation ρ1, (dimρ1)− (dimρHk1 ) = 0 (since ρ1 is

fixed by any subgroup Hk), so

dimV1 = 1+(dimρ1
)
(g−1)+

N∑
k=1

((
dimρ1

)−(dimρHk1

))RHk
2

. (2.12)

The sum on the left-hand side of (2.11) will be

1+
N∑
j=1

dimρHij
((

dimρj
)
(g−1)+

N∑
k=1

((
dimρj

)−(dimρHkj
))RHk

2

)
. (2.13)

We look at the (g−1) term and the RHk terms separately. For the (g−1) coefficient,

we can write both dimρHij , and dimρj in terms of characters of G (as in (2.9)) and

exchange the order of summation to get

N∑
j=1

dimρHij dimρj = 1∣∣Hi
∣∣
∑

ai∈Hi

N∑
j=1

χρj
(
ai
)
χρj (e), (2.14)

where e is the identity element of G. The inner sum amounts to take the inner product

of two columns of the character table of G. The orthogonality of characters tells us

that this inner product will be zero unless the two columns are the same, in this case

if ai = e. Thus the sum over elements in Hi disappears, and we get the sum of the

squares of the dimensions of the characters

1∣∣Hi
∣∣

N∑
j=1

χρj (e)
2 = |G|∣∣Hi

∣∣ , (2.15)

which is what we want.

The RHk term looks like

N∑
j=1

dimρHij
N∑
k=1

((
dimρj

)−(dimρHkj
))RHk

2
. (2.16)

We can distribute and rearrange the sums to get

N∑
k=1


 N∑
j=1

dimρHij dimρj−
N∑
j=1

dimρHij dimρHkj


RHk

2
. (2.17)

As in (2.14) and (2.15), the first term becomes |G|/|Hi|. The second term is also the

inner product of columns of the character table:

N∑
j=1

dimρHij dimρHkj = 1∣∣Hi
∣∣

1∣∣Hk
∣∣
∑

ai∈Hi

∑
ak∈Hk

N∑
j=1

χρj
(
ai
)
χρj
(
ak
)
. (2.18)
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This will be zero unless ai and ak are conjugate, in which case χρj (ai)= χρj (ak) and
character theory tells us (cf. [8, page 18]) that

N∑
j=1

χρj
(
ai
)2 = |G|

c
(
ai
) , (2.19)

where c(ai) is the number of elements in the conjugacy class of ai. Now the second

term has become
|G|∣∣Hi
∣∣∣∣Hk

∣∣
∑

{ai,ak}

1
c
(
ai
) , (2.20)

where the sum is taken over pairs of elements ai ∈ Hi, ak ∈ Hk such that ai and ak
are conjugate. This is exactly the number of double cosets #(Hk\G/Hi).
Adding up all of the terms, the sum on the left-hand side becomes

1+ |G|∣∣Hi
∣∣ (g−1)+

( |G|∣∣Hi
∣∣ −#

(
Hk\G/Hi

))RHk
2

, (2.21)

which is exactly the right-hand side.

Corollary 2.4. For each nontrivial irreducible representation ρj of G, Prymρj (X)
has dimension

(
dimρj

)
(g−1)+

N∑
k=1

((
dimρj

)−(dimρHkj
))RHk

2
. (2.22)

3. Integrable systems

3.1. Periodic Toda lattice. The periodic Toda system is a Hamiltonian system of

differential equations with Hamiltonian

H(p,q)= |p|
2

2
+
∑
α
eα(q), (3.1)

where p and q are elements of the Cartan subalgebra t of a semisimple Lie algebra g,
and the sum is over the simple roots of g plus the highest root. This system can be

expressed in Lax form [1] (d/dt)A = [A,B], where A and B are elements of the loop

algebra g(1), and can be thought of as elements of g which depend on a parameter

z ∈ P1. For sl (n), A is of the form




y1 1 x0z

x1 y2
. . .

. . .
. . . 1

z xn−1 yn



. (3.2)

For any representation + of g, the spectral curve S+ defined by the equation

det+(A(z)−λI) = 0 is independent of time (i.e., is a conserved quantity of the sys-

tem). The spectral curve is a finite cover of P1 which for generic z parameterizes the
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eigenvalues of +(A(z)). While the eigenvalues are conserved by the system, the eigen-

vectors are not. The eigenvectors of +(A) determine a line bundle on the spectral

cover, so an element of Jac(S+). The flow of the system is linearized on this Jacobean.

Since the original system of equations did not depend on a choice of representation +,
the flow is actually linearized on an Abelian variety which is a subvariety of Jac(S+)
for every +.
In fact, instead of considering each spectral cover we can look at the cameral cover

X → P1. This is constructed as a pullback toP1 of the cover t→ t/G, whereG is theWeyl

group of g. This cover is pulled back by the rational map P1⇢t/G defined by the class

of A(z) under the adjoint action of the corresponding Lie group. (For A(z) a regular
semisimple element of sl (n), this map sends z to the unordered set of eigenvalues

of A(z).) Thus, the cameral cover is a finite Galois cover of P1 whose Galois group

G is the Weyl group of g. The flow of the Toda system is linearized on the Prym of

this cover corresponding to the representation of G on t∗. This is an r -dimensional

representation, where r is the rank, so the dimension of this Prym is

r(−1)+
N∑
k=1

(
r −(dimtHk

))RHk
2

. (3.3)

The ramification of this cover has been analyzed in [6, 11]. There are 2r branch

points where the inertial group H is Z/2Z generated by one reflection, so for each of

these dimtH is r−1. There are also two points (z = 0 and ∞) where the inertial group
H is generated by the Coxeter element, the product of the reflections corresponding

to the simple roots. This element of G does not fix any element of t, so for these two

points dimtH = 0. Thus the dimension of the Prym is

−r +(r −(r −1))2r
2
+(r −0)2

2
= r . (3.4)

Since the original system of equations had a 2r -dimensional phase space, this is the

answer that we want.

3.2. Hitchin systems. Hitchin [9] showed that the cotangent bundle to the moduli

space of semistable vector bundles on a curve Y has the structure of an algebraically

completely integrable system. His proof, later extended to principal � bundles with

any reductive Lie group � [7, 13], uses the fact that this moduli space is equivalent

(by deformation theory) to the space of Higgs pairs, pairs (P,φ) of a principal bundle,
and an endomorphism φ ∈ H0(Y ,ad(P)⊗ωY). As in the case of the Toda system,

the key construction is of a cameral cover of Y . The eigenvalues of φ, which are

sections of the line bundle ωY , determine a spectral cover of Y in the total space

of the bundle. The eigenvectors determine a line bundle on this spectral cover. The

Hitchin map sends a Higgs pair (P,φ) to the set of coefficients of the characteristic

polynomial. Each coefficient is a section of a power ofωY , so the image of the Hitchin

map is B := ⊕r
i=1H0

(
Y ,ω⊗di

Y
)
, where the di are the degrees of the basic invariant

polynomials of the Lie algebra g.
Again, we can consider instead the cameral cover Xb → Y , which is obtained as a

pullback to Y via φ of t⊗ωY → t⊗ωY/G. The generic fiber of the Hitchin map is
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isogenous to Prymt(X), which has dimension

r(g−1)+
N∑
k=1

(
r −(dimtHk

))RHk
2

. (3.5)

By looking at the generic fiber, we can restrict our attention to cameral covers where

the only ramification is of order two, with inertial groupH generated by one reflection.

The last piece of information we need to compute the dimension is the degree of the

branch divisor of X → Y .
The cover t⊗ωY → t⊗ωY/G is ramified where any of the roots, or their prod-

uct, is equal to zero. There are (dim�− r) roots, so this defines a hypersurface of

degree (dim�− r) in the total space of ωY . The ramification divisor of X → Y is

the intersection of this hypersurface with the section φ, which is the divisor corre-

sponding to the line bundleω⊗(dim�−r)
Y . Thus the degree of the branch divisor will be

(dim�−r)(2g−2).
Combining all of this information, we see that the dimension of the Prym is

dimPrymt(X)= r(g−1)+(r −(r −1)) (dim�−r)(2g−2)
2

= r(g−1)+(dim�−r)(g−1)
= dim�(g−1).

(3.6)

By comparison, the dimension of the base space is

r∑
i=1

h0
(
Y ,ωdi

Y

)
. (3.7)

The sum of the degrees di of the basic invariant polynomials of g is the dimension

of a Borel subalgebra, (dim�+r)/2. For g > 1, Riemann-Roch gives

r∑
i=1

h0
(
Y ,ωdi

Y

)
=

r∑
i=1

(
2di−1

)
(g−1)= (dim�+r −r)(g−1)= dim�(g−1). (3.8)

Which, as Hitchin said, “somewhat miraculously” turns out to be the same thing.

Markman [10] and Bottacin [4] generalized the Hitchin system by twisting the line

bundleωY by an effective divisorD. The effect of this is to create a family of integrable

systems, parameterized by the residue of the Higgs field φ at D. The base space of
each system is a fiber of the map

B :=
r⊕
i=1

H0
(
Y ,ωY (D)⊗di

)

��
B̄ := the space of possible residues at D,

(3.9)

which sends the set of r sections in B to its set of residues at D. At each point of D,
there are r independent coefficients, so the dimension of B̄ is r(degD). Thus the base
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space of each system has dimension

dimB−dim B̄ =
r∑
i=1

h0(Y ,ωY (D)⊗di
)−r(degD)

=
r∑
i=1

(
di(2g−2+degD)−(g−1)

)−r(degD)

= 1
2
(dim�+r)(2g−2+degD)−r(g−1)−r(degD)

= (dim�)(g−1)+ dim�−r
2

degD.

(3.10)

Markman [10] showed that the generic fiber of this system is again isogenous to

Prymt(X), where X is a cameral cover of the base curve Y . The construction of the

cameral cover is similar to the case of the Hitchin system, except that φ is a sec-

tion of ad(P)⊗ωY(D). Thus the ramification divisor is (ωY (D))⊗(dim�−r), and the

dimension is

dimPrymt(X)= r(g−1)+ (dim�−r)(2g−2+degD)
2

= dim�(g−1)+ (dim�−r)
2

degD.
(3.11)

Again, this is the same dimension as the base of the system.
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