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LATTICE MODULES HAVING SMALL COFINITE IRREDUCIBLES
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Abstract. We introduce the concept of small cofinite irreducibles in Noetherian lattice
modules and obtain several characterizations of this property.
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Let L be a multiplicative lattice and let M be an L-module with greatest element M .
Recall from [5] that for an elementa of L, Rad(a)=∨{x ∈ L | xn ≤ a for some positive
integer n}. For an element B ofM, we define Rad(B) to be Rad(B :M), that is, Rad(B)=∨{x ∈ L | xnM ≤ B for some positive integer n}. An element Q of M is defined to be

primary if for all b ∈ L and C ∈M, bC ≤Q implies either b ≤ Rad(Q) or C ≤Q.
Lemma 1. Let L be an r -lattice, let M be an L-module with greatest element M , and

let A and B be elements of M. Then Rad(A∧B)= Rad(A)∧Rad(B).
Proof. We have

Rad(A∧B)= Rad((A∧B) :M)= Rad(A :M∧B :M)
= Rad(A :M)∧Rad(B :M)= Rad(A)∧Rad(B), (1)

where the third equality follows from [5, Lemma 2.2].

Lemma 2. Let L be a totally quasi-local lattice with maximal elementm, let M be an

L-module, and let Q be an element of M. If Rad(Q)=m, then Q is primary.

Proof. Suppose Rad(Q)=m. Also suppose that b ∈ L and C ∈M such that bC ≤
Q and C � Q. Then b ≠ I, and since L is totally quasi-local, it follows that b ≤m =
Rad(Q). Thus, Q is primary.

Let L be a totally quasi-local lattice with maximal element m and let M be an L-
module. For an element Q of M, Q is said to bem-primary if Rad(Q)=m.

Lemma 3. Let L be a local Noether lattice with maximal element m, let M be an L-
module with greatest element M , and let Q be an element of M different from M . Then

Q ism-primary if and only if there exists a positive integer n such thatmnM ≤Q.
Proof. Suppose Q is m-primary. Since Rad(Q : M) = m, there exists a positive

integer n such that mn ≤ Q : M . Thus, mnM ≤ Q. Conversely, suppose that there
exists a positive integer n such thatmnM ≤Q. Thenm= Rad(mnM) ≤ Rad(Q)≤m,
and so Q ism-primary.

http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com


162 E. W. JOHNSON ET AL.

Let L be a local Noether lattice withmaximal elementm and letM be a Noetherian L-
module with greatest elementM . Define ametricd (them-adicmetric) onM as follows:

d(A,B) = 0 if A∨mnM = B ∨mnM for all nonnegative integers n, and otherwise,
d(A,B) = 2−s(A,B), where s(A,B) = sup{n | A∨mnM = B∨mnM}. This metric gives
rise to them-adic completions of L and M (see [4]).

Lemma 4. Let L be a local Noether lattice with maximal element m, let M be a

Noetherian L-module with greatest element M , and let Q be an element of M. Then Q
ism-primary if and only if M/Q is finite dimensional.

Proof. Suppose that Q is m-primary. Then by Lemma 3, there exists a positive
integer n such thatmnM ≤Q. Since M/mnM is finite dimensional [1, Corollary 5.2],

if follows that M/Q is finite dimensional.
On the other hand, suppose that Q is notm-primary. Then by Lemma 3,mnM �Q

for all positive integers n. It follows that {Q∨mnM} is a strictly decreasing sequence
of elements of M with meet Q, so M/Q is not finite dimensional.

Let L be a local Noether lattice with maximal element m, let M be a Noetherian

L-module with greatest element M . We say that M has small cofinite irreducibles if

for every positive integer n, there exists a meet-irreducible element Q of M such that

Q≤mnM and M/Q is finite dimensional.

Theorem 5. Let L be a local Noether lattice with maximal elementm and let M be

a Noetherian L-module with greatest element M . Then the following are equivalent:

(1) M has small cofinite irreducibles.

(2) For every positive integer n, there exists a meet-irreducible m-primary element

Q of M such that Q≤mnM .

(3) For everym-primary elementQ′ of M, there exists a meet irreduciblem-primary

element Q of M such that Q≤Q′.
(4) 0 is a closure point in the set of all meet-irreduciblem-primary elements of M in

them-adic topology on M.

Proof. We begin by showing that (1) implies (2). SupposeM has small cofinite irre-

ducibles. Suppose also thatn is a positive integer. Then there exists a meet-irreducible
element Q of M such that Q≤mnM and M/Q is finite dimensional. By Lemma 4, we
have that Q ism-primary, so (2) holds.
We next show that (2) implies (4). Suppose that (2) holds and that ε > 0. Choose n

to be a positive integer satisfying 2−n < ε. Using (2), there exists a meet-irreducible
m-primary element Q of M such that Q ≤ mnM . Thus Q∨mnM = mnM, and so
d(Q,0) ≤ 2−n < ε. Therefore, 0 is a closure point in the set of meet-irreducible m-
primary elements of M in them-adic topology on M.
Nowwe show that (4) implies (3). Suppose that (4) holds and thatQ′ is anm-primary

element ofM. By Lemma 3, there exists a positive integern such thatmnM ≤Q′. Since
0 is a closure point in the set of meet-irreduciblem-primary elements of M in them-
adic topology on M, there exists a meet-irreduciblem-primary element Q of M such

that d(Q,0) ≤ 2−n. Hence, Q∨mnM =mnM , and so it follows that Q ≤mnM . Thus
the meet-irreduciblem-primary element Q satisfies Q≤Q′.
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Finally, we show that (3) implies (1). Suppose that (3) holds and that n is a pos-
itive integer. Since mnM is m-primary, then by (3), there exists a meet-irreducible
m-primary element Q of M such that Q ≤ mnM . Also, by Lemma 4, M/Q is finite

dimensional. Thus, M has small cofinite irreducibles.

Theorem 6. Let L be a local Noether lattice with maximal elementm and let M be a

Noetherian L-module with greatest element M . Then M has small cofinite irreducibles

if and only if there exists a decreasing sequence {Qn} of meet-irreducible m-primary

elements of M such that for each m-primary element Q′ of M, there exists a positive

integer n such that Qn ≤Q′.

Proof. Suppose thatm has small cofinite irreducibles. SincemM is anm-primary
element ofM, use (2) to pickQ1 to be ameet-irreduciblem-primary element ofM such

that Q1 ≤mM . For n > 1, recursively define Qn as follows: choose Qn to be a meet-
irreducible m-primary element of M such that Qn ≤Qn−1∧mnM , which is possible
by Lemma 1 since

Rad
(
Qn−1∧mnM

)= Rad(Qn−1
)∧Rad(mnM

)=m, (2)

and so Qn−1∧mnM is an m-primary element of Ṁ. By construction, {Qn} is a de-
creasing sequence of meet-irreducible m-primary elements of M. Moreover, if Q′ is
an m-primary element of M, then by Lemma 3 there exists a positive integer n such
thatmnM ≤Q′, and so Qn ≤Q′.
Conversely, suppose that there exists a decreasing sequence {Qn} of meet-

irreducible m-primary elements of M such that for all m-primary elements Q′ of
M, there exists a positive integer n such that Qn ≤Q′. We immediately have that (2)
holds since for each positive integer n,mnM is anm-primary element ofM. Thus, by
Theorem 5, M has small cofinite irreducibles, which completes the proof.

Let L be a local Noether lattice with maximal elementm and let M be a Noetherian

L-module with greatest elementM . Following [2], L∗ denotes the set of all formal sums∑∞
i=1ai of elements of L such that

ai = ai+1∨mi (3)

for all positive integers i. On L∗, define

∞∑

i=1
ai ≤

∞∑

i=1
bi if and only if ai ≤ bi ∀i,




∞∑

i=1
ai






∞∑

i=1
bi


=

∞∑

i=1

(
aibi∨mi).

(4)

For an element a of L, a∗ denotes the element
∑∞
i=1(a∨mi) of L∗. Then L∗ is

a local Noether lattice with maximal element m∗ = ∑∞
i=1m. It can be seen that L∗

is a collection of representatives of equivalence classes of Cauchy sequences of L
with them-adic metric and in fact is the completion of L with this metric. Additional
properties can be found in [2]. Similarly,M∗ denotes the set of all formal sums

∑∞
i=1Bi
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of elements of M such that

Bi = Bi+1∨miM (5)

for all positive integers i. On M∗, define

∞∑

i=1
Bi ≤

∞∑

i=1
Ci if and only if Bi ≤ Ci ∀i,




∞∑

i=1
ai






∞∑

i=1
Bi


=

∞∑

i=1
aiBi∨miM.

(6)

It is known [1] thatM∗ is a Noetherian L∗-module with greatest elementM∗ =∑∞
i=1M .

For an element B ofM, B∗ denotes the element
∑∞
i=1B∨miM ofM∗. Also, if B =∑∞

i=1Bi
is an element of M∗, then C(B) denotes the element

∧∞
i=1Bi of M.

Theorem 7. Let L be a local Noether lattice with maximal elementm and let M be a

Noetherian L-module with greatest elementM . Then the L-module M has small cofinite

irreducibles if and only if the L∗-module M ∗ has small cofinite irreducibles.

Proof. For any positive integer i, M/miM � M∗/(m∗)iM∗. If for every positive
integer n,mnM contains an irreduciblem-primary element Q, then choose i so that
miM ≤Q. Then the element of M∗/(m∗)iM∗ corresponding to Q is irreducible and
m∗-primary. The argument is reversible.

Let R be a local Noetherian ring with maximal ideal m and let M be a Noetherian

R-module. Then the R-moduleM is said to have small cofinite irreducibles if for every
positive integer n, there exists an irreducible submodule Q of M such that Q⊆mnM
and M/Q has finite length. Let L(R) denote the lattice of ideals of R and let L(M)
denote the lattice of R-submodules of M . Since the set of irreducible submodules of
M is precisely the set of meet-irreducible elements of the L(R)-submodule L(M), we
immediately have the following theorem.

Theorem 8. Let R be a local Noetherian ring with maximal element m and let M
be a Noetherian R-module. Then the R-module M has small cofinite irreducibles if and

only if the L(R)-module L(M) has small cofinite irreducibles.

For a Noetherian module M over a local ring R with maximal ideal m, we let M∗

and R∗ denote the completions of M and R, respectively, in them-adic topology.

Theorem 9. Let R be a local Noetherian ring with maximal element m and letM be

a Noetherian R-module. Then the following statements are equivalent:
(i) The R-module M has small cofinite irreducibles.

(ii) The R∗-module M∗ has small cofinite irreducibles.
(iii) The L(R)-module L(M) has small cofinite irreducibles.
(iv) The L(R∗)-module L(M∗) has small cofinite irreducibles.
(v) The L(R)∗-module L(M)∗ has small cofinite irreducibles.

Proof. The equivalence of (i) and (iii) follows from Theorem 8. So does the equiv-

alence of (ii) and (iv). The equivalence of (iii) and (v) follows from Theorem 7. The

equivalence of (iv) and (v) is established in [3].
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In Theorem 8, we showed that the lattice of submodules of a module having small

cofinite irreducibles is a lattice module having small cofinite irreducibles. We conclude

this paper by giving an example of a module having small cofinite irreducibles which

is not the lattice of submodules of any module.

Let L be the local Noether lattice with maximal element m in which the quotient

m/m2 has exactly two points, e and h. Further, assume each quotientmn/mn+1 has
exactly two points for each n, with eihj = erhs if i+ j = r + s and j and s are both
even or j and s are both odd.

I

m

e h

m2

e2 = h2 eh

m3

e3 = eh2 h3 = e2h

m4

e4 = e2h2 = h4 eh3 = e3h

m5

0

(7)

It is clear that every power ofm contains an irreduciblem-primary element. If L is the
lattice of submodules of any module, then every cyclic submodule ≠m, I is contained
in e or h. Thenm= e∪h is a submodule, with e� h and h� e, which is impossible.
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