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Abstract. Two sufficient conditions are presented, in terms of the values taken by a holo-
morphic function f(z) on a pair of smooth paths intersecting at a point z0 in its domain,
implying that f ′(z0)= 0.
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In the present paper, we present two sufficient conditions expressed in terms of

the values taken by a holomorphic function f on a pair of smooth paths intersecting

at a point z0 in the domain of f , with tangent vectors at z0 linearly independent over

R, implying that f ′(z0)= 0.

Theorem 1. Let f :D ⊂ C→ C be a holomorphic function, where D ⊂ C is a domain
and let γ, Γ : (0,1)→D be two smooth (C1) paths. Assume the following:

(i) for a certain z0 ∈D and some t1, t2 ∈ (0,1) we have z0 = γ(t1)= Γ(t2);
(ii) γ′(t1) and Γ ′(t2) linearly independent over R (i.e., non-collinear),

(iii) |f(z)| takes a constant value on the subset γ((0,1))∪ Γ((0,1)) of D. Then
f ′(z0)= 0.

Proof. Let f = u+ iv , γ = γ1+ iγ2, and Γ = Γ1+ iΓ2, where u,v are real-valued

functions while γ1, γ2, Γ1, Γ2 are real-valued smooth paths. The assumption (iii) can

be written as

u2(γ(t))+v2(γ(t))=u2(Γ(t))+v2(Γ(t))= c (1)

for any t ∈ (0,1), where c is some constant. Note first that if c = 0, from (1) together

with the identity theorem of the holomorphic functions it follows that f(z) = 0 for

any z ∈ D. This being the case, we assume c ≠ 0 from now on. We differentiate (1)

with respect to t. We then have, for any t ∈ (0,1),
d
dt
(
u2(γ(t))+v2(γ(t)))= 0, (2)

that is, by using the chain rule,

2u
(
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)
ux
(
γ(t)

)
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(
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)
uy
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)
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+2v
(
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)
vx
(
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)
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(
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)
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(3)

together with the similar relation for Γ :

2u
(
Γ(t)

)
ux
(
Γ(t)

)
Γ ′1(t)+2u

(
Γ(t)

)
uy
(
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)
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+2v
(
Γ(t)

)
vx
(
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(
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(
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)
Γ ′2(t)= 0

(4)
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holding also for any t ∈ (0,1). By using the Cauchy-Riemann equations in (3) and (4),

respectively, we get, after a convenient grouping of terms,

u
(
γ(t)

)[
ux
(
γ(t)

)
γ′1(t)−vx

(
γ(t)

)
γ′2(t)

]+v(γ(t))[ux(γ(t))γ′2(t)+vx(γ(t))γ′1(t)]=0,
(5)

u
(
Γ(t)

)[
ux
(
Γ(t)

)
Γ ′1(t)−vx

(
Γ(t)

)
Γ ′2(t)

]+v(Γ(t))[ux(Γ(t))Γ ′2(t)+vx(Γ(t))Γ ′1(t)]=0,
(6)

for any t ∈ (0,1). By specializing t = t1 in (5) and t = t2 in (6), we obtain

u
(
z0
)[
ux
(
z0
)
γ′1
(
t1
)−vx(z0)γ′2(t1)]+v(z0)[ux(z0)γ′2(t1)+vx(z0)γ′1(t1)]=0,

u
(
z0
)[
ux
(
z0
)
Γ ′1
(
t2
)−vx(z0)Γ ′2(t2)]+v(z0)[ux(z0)Γ ′2(t2)+vx(z0)γ′1(t2)]=0.

(7)

Since u2(z0)+v2(z0)= c ≠ 0, it follows from (7) that

(
u
(
z0
)
,v
(
z0
))
≠ (0,0) (8)

is a nontrivial solution of the linear homogeneous system

X
[
ux
(
z0
)
γ′1
(
t1
)−vx(z0)γ′2(t1)]+Y [ux(z0)γ′2(t1)+vx(z0)γ′1(t1)]= 0,

X
[
ux
(
z0
)
Γ ′1
(
t2
)−vx(z0)Γ ′2(t2)]+Y [ux(z0)Γ ′2(t2)+vx(z0)γ′1(t2)]= 0,

(9)

and so ∣∣∣∣∣∣
ux
(
z0
)
γ′1
(
t1
)−vx(z0)γ′2(t1) ux

(
z0
)
γ′2
(
t1
)+vx(z0)γ′1(t1)

ux
(
z0
)
Γ ′1
(
t2
)−vx(z0)Γ ′2(t2) ux

(
z0
)
Γ ′2
(
t2
)+vx(z0)γ′1(t2)

∣∣∣∣∣∣= 0. (10)

By expanding the determinant, equation (10) can be rewritten as

(
u2
x
(
z0
)+v2

x
(
z0
))(
γ′1
(
t1
)
Γ ′2
(
t2
)−Γ ′1(t2)γ′2(t1))= 0. (11)

On the other hand, the assumption (iii) can be rewritten as
∣∣∣∣∣∣
γ′1
(
t1
)

γ′2
(
t1
)

Γ ′1
(
t2
)

Γ ′2
(
t2
)
∣∣∣∣∣∣≠ 0. (12)

Finally, from (11) and (12) it follows that

u2
x
(
z0
)+v2

x
(
z0
)= 0, (13)

that is, ux(z0)= vx(z0)= 0. This, together with the Cauchy-Riemann relations [1] im-

plies uy(z0)= vx(z0)= 0 and so f ′(z0)= 0. This concludes the proof of Theorem 1.

The following exercise represents an interesting corollary of Theorem 1.

Corollary 2. Let D ⊂ C be a domain which contains the square [−1,1]×[−1,1].
Assume that f : D → C is a holomorphic function with the property that there exists

c ∈R∗+ such that ∣∣f(x+i0)∣∣= c =
∣∣∣∣f
(
x+isin

(
1
x

))∣∣∣∣ (14)

for any x ∈ (0,1). Then f is a constant function.
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Proof. Let γ, Γ : (0,1)→ C defined by

γ(t)= (t,0), Γ(t)=
(
t,sin

(
1
t

))
, (15)

respectively. We have

γ′(t)= (1,0), Γ ′(t)=
(
1,− 1

t2
cos

(
1
t

))
, (16)

for any t ∈ (0,1). Consider the sequence

tk = 1
kπ

∈ (0,1) (17)

convergent to 0. This choice of the sequence makes sure that

γ
(
tk
)= Γ(tk)= (tk,0) (18)

for any k≥ 1. We also have γ′(tk)= (1,0) and Γ ′(tk)= (1,−k2(−1)kπ2) which implies

immediately that γ(tk) and Γ(tk) are linearly independent over R for any k ≥ 1. By

Theorem 1,

f ′
(
tk+i0

)= 0 (19)

holds true for any k ≥ 1. Since f ′ is holomorphic and tk → 0 ∈ D (z = 0 ∈ D is an

accumulation point for the zeros of f ′), it follows that f ′(z) = 0 for any z ∈ D, that

is, f is a constant on D.

Another result of similar flavour is the following theorem.

Theorem 3. Let f : C→ C be holomorphic on an open neighborhood V of z0, and
let γ1, γ2 : (0,1)→ V be a pair of C1 paths such that for some t1, t2 ∈ (0,1), we have
γ1(t1) = γ2(t2) = z0 and γ′1(t1), γ′2(t2) are linearly independent over R. We also as-
sume that f(γk(t))∈R, k= 1,2 for any t ∈ (0,1). Then, under the above assumptions,
f ′(z0) = 0. If, in addition, arg(γ′1), arg(γ

′
2) are constant functions, then there exists a

nonnegative integer n and a holomorphic function h defined on some open neighbor-

hood of 0 such that f(z)= h((z−z0)n) for z ∈ V .
Proof. Let φ be the angle between γ′1(t1) and γ′2(t2). Consider two sequences

{xn},{yn} of numbers from (0,1) such that limn→∞xn=t1 while limn→∞yn=t2. Then

f ′
(
z0
)= lim

n→∞
f
(
γ1
(
xn
))−f (γ1

(
t1
))

γ1
(
xn
)−γ1

(
t1
)

= lim
n→∞

(
f
(
γ1
(
xn
))−f (γ1

(
t1
)))
/
(
xn−t1

)
(
γ1
(
xn
)−γ1

(
t1
))
/
(
xn−t1

) ∈Re−iarg(γ′1(t1)).
(20)

In a similar way, it is shown that

f ′
(
z0
)∈Re−iarg(γ′2(t2)). (21)

From (20) and (21), together with the assumption that γ′1(t1) and γ
′
2(t2) are linearly in-

dependent overR, it follows that f ′(z0) has to be zero. This concludes the proof of the
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first part of the theorem. We assume now that arg(γ′1), arg(γ
′
2) are constant functions,

say arg(γ′k) = ck, k = 1,2, where c1 ≠ c2. Then, keeping in mind that f(γk(t)) ∈ R,
k= 1,2 for any t ∈ (0,1), we see that

f ′
(
γk(t)

)∈Re−ick (22)

for k= 1,2 and t ∈ (0,1). By induction on r , we can show that

f (r)
(
γk(t)

)∈Re−irck (23)

holds true for any nonnegative integer r where k= 1,2 and t ∈ (0,1). Indeed, for r = 0

and r = 1, equation (23) is already shown. Assuming that (23) is true, by differentiation

we get

f (r+1)
(
γk(t)

)
γ′k(t)∈Re−irck . (24)

From (24) and the fact that arg(γ′k(t))= ck, it follows that

f (r+1)
(
γk(t)

)∈Re−i(r+1)ck (25)

which concludes the inductive proof of (23). By specializing t = t1 and then t = t2 in

(23), it follows that

f (r)
(
z0
)∈Re−irc1∩Re−irc2 (26)

for any r = 0,1,2, . . . . From (26) it follows that, for any given r , either f (r)(z0)= 0 or

eirφ ∈ R (i.e., rφ ∈ 2πZ). At this moment we distinguish two cases. First, if φ/π ∈
R \Q, it follows that f (r)(z0) = 0 for any r = 0,1,2, . . . which implies that f(z) is

constant on a neighborhood of z0 and this being the case the choice h= constant= c
would work. We consider now the second case, when φ =mπ/n, where 0 <m < n,
m,n ∈ Z>0, (m,n) = 1. From (26) it follows that f (r)(z0) = 0 for any r which is not

divisible by n, since in this case eirφ = eirmπ/n ∉R. Therefore, on some neighborhood

of z0 the power series expansion of f has the form

f(z)=
∑
l≤0
aln
(
z−z0

)ln =∑
l≥0
aln
[(
z−z0

)n]l. (27)

If we denote

h(z) :=
∑
l≥0
alnzl, (28)

it follows that h is holomorphic on some neighborhood of 0 and satisfies f(z) =
h((z−z0)n). This concludes the proof of Theorem 3.
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