
IJMMS 26:3 (2001) 129–160
PII. S0161171201020038
http://ijmms.hindawi.com
© Hindawi Publishing Corp.

HIGHER ORBITAL INTEGRALS, SHALIKA GERMS,
AND THE HOCHSCHILD HOMOLOGY

OF HECKE ALGEBRAS

VICTOR NISTOR

(Received 1 March 2001)

Abstract. We give a detailed calculation of the Hochschild and cyclic homology of the
algebra �∞c (G) of locally constant, compactly supported functions on a reductive p-adic
group G. We use these calculations to extend to arbitrary elements the definition of the
higher orbital integrals introduced by Blanc and Brylinski (1992) for regular semi-simple
elements. Then we extend to higher orbital integrals some results of Shalika (1972). We
also investigate the effect of the “induction morphism” on Hochschild homology.
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1. Introduction. Orbital integrals play a central role in the harmonic analysis of

reductive p-adic groups; they are, for instance, one of the main ingredients in the

Arthur-Selberg trace formula. An orbital integral on a unimodular group G is an im-

portant particular case of an invariant distribution on G. Invariant distributions have
been used in [3] to prove the irreducibility of certain induced representations of GLn
over a p-adic field.
Let G be a locally compact, totally disconnected topological group. We denote by

�∞c (G) the space of compactly supported, locally constant, and complex valued func-

tions on G. The choice of a Haar measure on G makes �∞c (G) an algebra with respect

to the convolution product. We refer to �∞c (G) with the convolution product as the

(full) Hecke algebra of G. If G is unimodular, then any invariant distribution on G
defines a trace on �∞c (G), and conversely, any trace on �∞c (G) is obtained in this way

(this well-known fact follows also from Lemma 3.1). Since the space of traces on an

algebra A identifies naturally with the first (i.e., 0th) Hochschild cohomology group

of that algebra A, it is natural to ask what are all the Hochschild cohomology groups

of �∞c (G). The Hochschild cohomology and homology groups of an algebra A are de-

noted in this paper by HHq(A) and, respectively, by HHq(A). Since HHq(�∞c (G)) is the
algebraic dual of HHq(�∞c (G)), it is enough to determine the Hochschild homology

groups of �∞c (G).
In this paper, G is typically a p-adic group, which, we recall, means that G is the

set of F-rational points of a linear algebraic group G defined over a finite extension F
of the field Qp of p-adic numbers, p being a fixed prime number. The group G does

not have to be reductive, although this is certainly the most interesting case. When

we assume G (or G, by abuse of language) to be reductive, we state this explicitly.

For us, the most important topology to consider on G is the locally compact, totally
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disconnected topology induced from an embedding of G ⊂ GLn(F). Nevertheless, the
Zariski topology on G, which is induced from the Zariski topology of G, also plays a

role in our study.

To state the main result of this paper on the Hochschild homology of the algebra

�∞c (G), we need to introduce first the concepts of a “standard subgroup” and of a

“relatively regular element” of a standard subgroup. For any group G and any subset

A⊂G, we denote

CG(A) :=
{
g ∈G, ga= ag, ∀a∈A}, NG(A) :=

{
g ∈G, gA=Ag}, (1.1)

WG(A) := NG(A)/CG(A), and Z(A) := A∩ CG(A). This latter notation is used only

when A is a subgroup of G. The subscript G is dropped from the notation whenever

the group G is understood. A commutative subgroup S of G is called standard if S is
the group of semi-simple elements of the center of C(s) for some semi-simple element

s ∈G. An element s ∈ S with this property is called regular relative to S, or S-regular.
The set of S-regular elements is denoted by Sreg.
We fix from now on a p-adic group G. Our results are stated in terms of standard

subgroups of G. We denote by Hu the set of unipotent elements of a subgroup H.
Sometimes, the set C(S)u is also denoted by �S , in order to avoid having too many

parentheses in our formulae. Let ∆C(S) denote the modular function of the group C(S)
and let

�∞c
(
�S
)
δ :=�∞c

(
C(S)u

)⊗∆C(S) (1.2)

be �∞c (�S) as a vector space, but with the product C(S)-module structure, that is,

γ(f)(u)=∆C(S)(γ)f(γ−1uγ), for all γ ∈ C(S), f ∈�∞c (�S)δ, and u∈�S .

One of the main results of this paper, namely Theorem 3.6, identifies the groups

HH∗(�∞c (G)) in terms of the following data:

(1) the set Σ of conjugacy classes of standard subgroups S of G;
(2) the subsets Sreg ⊂ S of S-regular elements;

(3) the actions of the Weyl groups W(S) on �∞c (S); and
(4) the continuous cohomology of the C(S)-modules �∞c (�S)δ;

where S ranges through a set of representatives of Σ. More precisely, if G is a p-adic
group defined over a field of characteristic zero, as before, then Theorem 3.6 states

the existence of an isomorphism

HHq
(
�∞c (G)

)
⊕
S∈Σ

�∞c
(
Sreg

)W(S)⊗Hq (C(S),�∞c (�S)δ). (1.3)

This isomorphism is obtained by identifying the E∞-term of an implicit, convergent

spectral sequence, and hence it is not natural. This isomorphism can be made natural

by using a generalization of the Shalika germs. The isomorphism (1.3) is in the spirit

of the results of Karoubi [13] and Burghelea [8]. See also [10].

It is important to relate the determination of the Hochschild homology in (1.3) with

the periodic cyclic homology groups of �∞c (G). Let HH[q] := ⊕k∈ZHHq+2k. Recall that
an element γ ∈G is called compact, by definition, if it belongs to a compact subgroup

of G. The set of compact elements of G is open and closed and is clearly G-invariant
for the action of G on itself by conjugation. Also, we denote by HH[q](�∞c (G))comp the
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localization of the homology group HH[q](�∞c (G)) to the set of compact elements of

G (see [5] or [18]). Then, the periodic cyclic homology of the Hecke algebra �∞c (G) is
related to its Hochschild homology by

HPq
(
�∞c (G)

)
HH[q]
(
�∞c (G)

)
comp. (1.4)

This relation is implicit in [12]. Consequently, the results of this paper complement

the results on the cyclic homology ofp-adic groups in [12, 23]. More precisely, let Scomp

be the set of compact elements of a standard subgroup S and let H[q] := ⊕k∈ZHq+2k,
then

HPq
(
�∞c (G)

)
⊕
S∈Σ

�∞c
(
Sregcomp

)W(S)⊗H[q] (C(S),�∞c (�S)δ). (1.5)

It is interesting to remark that HP∗(�∞c (G)) can also be related to the admissible

dual (or spectrum) of G, see [15], and hence our results have significance for the

representation theory of p-adic groups. (See also [18] for similar results on the groups

of real points of algebraic groups defined over R.) These periodic cyclic cohomology

groups are seen to be isomorphic to K∗(C∗r (G))⊗C, by combining results from [1, 16]

to those of [12]. See also [15].

Assume for the moment that G is reductive. Then, in order to better understand

the role played by the groups HH∗(�∞c (G)) and H∗(G,�∞c (Gu)) in the representa-

tion theory of G, we relate H∗(G,�∞c (Gu)) to the analogous cohomology groups,

H∗(P,�∞c (Pu)δ) andH∗(M,�∞c (Mu)δ), associated to parabolic subgroups P ofG and to

their Levi components M . In particular, we define morphisms between these

Hochschild homology groups that are analogous to the induction and inflation mor-

phisms that play such a prominent role in the representation theory of p-adic groups.
These morphisms are induced by morphisms of algebras.

In [5], Blanc and Brylinski have introduced higher orbital integrals associated to

regular semi-simple elements by proving first that

HHq
(
�∞c (G)

)
Hq
(
G,�∞c (G)δ

)
, (1.6)

a result which they called “the MacLane isomorphism.” (Actually, they did not have to

twist with the modular function, because they worked only with unimodular groups

G, see Lemma 3.1 for the slightly more general version needed in this paper.) Our

approach also starts from the MacLane isomorphism, but after that we rely more on

filtrations of theG-module �∞c (G) than on localization. This allows us to define higher
orbital integrals at arbitrary elements. Then, we study the properties of these orbital

integrals and we obtain, in particular, a proof of the existence of abstract Shalika

germs for the higher orbital integrals. Actually, the existence of Shalika germs turns

out to be a consequence of some general homological properties of the ring R∞(G)
of (conjugacy) invariant, locally constant functions on the group G. We also use the

techniques developed in [18] in the framework of real algebraic groups. It would be

interesting to relate the results of this paper to those of [2] on the periodic cyclic

homology of Iwahori-Hecke algebras and those of [14] on invariant distributions.

This paper is the revised version of a preprint that was first circulated in February

1999.
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2. Standard subgroups. Our description of the Hochschild homology of Hecke al-

gebras is in terms of “standard” subgroups, a class of commutative groups that we

define and study below. The main role of the standard subgroups is to define a strat-

ification of G by sets invariant with respect to inner automorphisms. This section is

devoted to establishing the basic facts about standard subgroups. We begin by fixing

notation.

IfG is a group andA⊂G is a subset, we denote by CG(A) the centralizer ofA, that is,
the set of elements ofG that commute with every element ofA. WhenG is understood,

we omit it from notation. Also, we denote by NG(A) the normalizer of A in G, that is,
the set of elements g ∈ G such that gAg−1 = A. We then set WG(A) :=NG(A)/CG(A)
and Z(A) := A∩CG(A). By Z = Z(G) = CG(G), we denote the center of G. Again, we
omit G if the group is understood.

LetG be a linear algebraic group defined over a totally disconnected, locally compact

field F of characteristic zero. Thus F is a finite algebraic extension of Qp , the field of

p-adic numbers. The set G(F) of F-rational points of G is called a p-adic group and is

denoted simply by G. It is known [6] that G =G(F) identifies with a closed subgroup

of GLn(F), and hence it has a natural locally compact topology that makes it a totally

disconnected space.

Definition 2.1. A commutative subgroup S ⊂ G is called standard if and only if,

there exists a semi-simple element s0 ∈ G such that S is the group of semi-simple

elements of the center of C(s0), the centralizer of s0 in G. A semi-simple element

s0 ∈ S with this property will be called regular relative to S or, simply, S-regular. The
set of S-regular elements s ∈ S is denoted by Sreg.

Clearly, every standard subgroup is commutative. More properties of standard sub-

groups are summarized in Proposition 2.2.

We denote by Hss the subset of semi-simple elements of a group H.

Proposition 2.2. Let S be a standard subgroup and s0 ∈ Sreg.
(i) The group S is the set of F-rational points of a subgroup S⊂G defined over the

field F.
(ii) We have that C(S)= C(s0), so S = Z(C(s0))ss and N(C(S))=N(S).
(iii) Every semi-simple element γ ∈ G is S-regular for one, and only one, standard

subgroup S.
(iv) The set Sreg is a Zariski open subset of S.

Proof. (i) We identify the group G with its set of F̄-rational points, for some al-

gebraically closed extension of F. Let Γ be the Galois group of F̄ over F. Then Γ acts
on G and G can be identified with the set of fixed points of this action because F is a
perfect field.

Let s0 be a semi-simple element ofG. From the above identification, we easily obtain

that CG(s0), the centralizer of s0 inG, is invariant with respect to Γ . From this it follows

that CG(s0) is defined over F and C(s0) := CG(s0) is the set of F-rational points of

CG(s0). Let S be the center of CG(s0). Then we see, using the same reasoning, that S
is defined over F and that S is the set of its F-rational points.
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(ii) We have C(s0) ⊃ C(S) because s0 ∈ S. But, S ⊂ Z(C(s0)), so C(S) ⊂ C(s0), too.
By definition, S = Z(C(s0)), so S = Z(C(S)). The last part follows because N(H) ⊂
N(Z(H)) and N(H)⊂N(C(H)), for any group H.
(iii) Let γ ∈ G be a semi-simple element. Define S(γ) := Z(C(γ))ss . Then S(γ) is

a standard subgroup, by definition, and γ is regular relative to S(γ). Clearly, if γ is

S-regular, then S = S(γ).
(iv) Let S ⊂ G. We may assume that G ⊂ GLn(F̄) and that G = G∩ GLn(F). The

statement is obvious if G = GLn(F). In general, the result follows because CG(s) =
CGLn(F)(s)∩G.
For any p-adic group H, we denote by Hu the set of unipotent elements of H, and

call it the unipotent variety of H. In the particular case of H = C(S), where S ⊂G is a

standard subgroup, we also denote C(S)u =�S .

We now define a natural AdG-invariant stratification of G, called the standard strat-

ification of G.
Let g be the Lie algebra of G in the sense of linear algebraic groups. Denote by ai(g)

the coefficients of the polynomial det(t+1−Adg),

det
(
t+1−Adg

)= m∑
i=0
ai(g)ti ∈ F[t]. (2.1)

Let ar be the first nonzero coefficient ai, and define

Vk =
{
g ∈G, ar (g)= ar+1(g)= ··· = ar+k−1(g)= 0

}
. (2.2)

Thus V0 = G, by convention, and G&V1 = G′, the set of regular elements of G if G is

reductive. Also, Vm+1 = ∅ because am = 1. We observe that the functions ai(g) are
G-invariant polynomial functions on G, and that they depend only on the semi-simple

part of g.
In order to proceed further, recall that the Jordan decomposition of an element

g ∈ G is g = gsgu, where gs is semi-simple, gu is unipotent, and gsgu = gugs . This
decomposition is unique [6]. Let S ⊂ G be a standard subgroup. If g = gsgu is the

Jordan decomposition of g ∈G and if gs ∈ Sreg, then gu ∈�S := C(S)u, by definition,
and hence g ∈ Sreg�S .

Fix now a standard subgroup S ⊂G, and let

FS =AdG
(
Sreg

)
, FuS =AdG

(
Sreg�S

)
(2.3)

be the set of semi-simple elements of G conjugated to an element of Sreg and, respec-
tively, the set of elements g ∈ G conjugated to an element of Sreg�S (i.e., the set of

elements g ∈ S such whose semi-simple part is in FS ).
Also, letN(S) := {g ∈G, gSg−1 = S} be the normalizer of S andW(S)=N(S)/C(S).

Since N(S) leaves Sreg invariant and is actually the normalizer of this set, it follows

that the quotientW(S) can be identified with a set of automorphisms of S. Since N(S)
is the set of F-rational points of an algebraic group, the rigidity of tori (see [6, page

117]) shows that W(S) is finite.
The natural map (g,s)→ gsg−1 descends to a map

φS :
(
G×Sreg)
N(S)

� (g,s) �→ gsg−1 ∈ FS. (2.4)
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Similarly, we obtain a map

φuS :
(
G×Sreg�S

)
N(S)

� (g,su) �→ gsug−1 ∈ FuS . (2.5)

In Proposition 2.3 consider the locally compact (and Hausdorff) topology of G, and
not the Zariski topology. Recall that we denote by Gss the set of semi-simple elements

of G.

Proposition 2.3. Let S be a standard subgroup of G. Using the above notation, we

have

(i) The set FS is an analytic submanifold of G, and the maps φS and φuS are home-

omorphisms.

(ii) For each k, the set Vk& Vk+1 is the disjoint union of the sets FuS that have a

nonempty intersection with Vk &Vk+1, and each FuS ⊂ Vk &Vk+1 is an open subset of

Vk&Vk+1.
(iii) Similarly, the set Gss ∩ (Vk &Vk+1) is a disjoint union of the sets FS that have

a nonempty intersection with Vk &Vk+1, and each FS ⊂ Vk &Vk+1 is an open subset of

Gss∩(Vk&Vk+1).
Proof. (i) First we check that φS and φuS are injective. Indeed, assume that

g1s1g−11 = g2s2g−12 , for some s1, s2 ∈ Sreg. Then, if g = g−12 g1, we have

gC
(
s1
)
g−1 = C(s2) 	⇒ gC(S)g−1 = C(S) 	⇒ gSg−1 = S, (2.6)

and hence g ∈ N(S). Consequently, we have (g1,s1) = (g2g,g−1s2g) = g−1(g2,s2),
with g ∈ N(S), as desired. The same argument shows that if FS and FS′ have a point
in common, then the standard subgroups S and S′ are conjugated in G.
The injectivity of φuS follows from the injectivity of φS , indeed, if g1(s1u1)g−11 =

g2(s2u2)g−12 , let g = g−12 g1 as above, and conclude that gs1g−1 = s2, by the uniqueness
of the Jordan decomposition. As above, this implies that g ∈N(S).
Since the differential dφS is a linear isomorphism onto its image (i.e., it is injective)

and φS is injective, it follows that φS is a local homeomorphism onto its image (for

the locally compact topologies), and that its image is an analytic submanifold (see

[22, Theorem 2.3, page 38]). The set Gss∩(Vk&Vk+1) is an algebraic variety on which

G acts with orbits of the same dimension, and hence φS is proper [6]. This proves

that φS is a homeomorphism. Using an inverse for φS , we obtain that φuS is also a

homeomorphism.

Now to prove (ii), consider a standard subgroup S ⊂G, and let d be the dimension

of C(S). Then a0 = a1 = ··· = ad−1 = 0 on S, and Sreg is an open component of

S∩{ad �= 0}. It follows that, if s ∈ (Vk&Vk+1)∩Sreg, then FS ⊂ Vk&Vk+1. This shows
that Gss ∩ (Vk &Vk+1) is a union of sets of the form FS . This must then be a disjoint

union because the sets FS are either equal or disjoint, as proved above.

Now, if g ∈ Vk &Vk+1 has semi-simple part s, then s ∈ FS ⊂ Gss ∩ (Vk &Vk+1), for
some standard subgroup S, and hence g ∈ FuS ⊂ Vk &Vk+1. The sets FuS are open in

the induced topology because the map Vk&Vk+1→Gss∩(Vk&Vk+1) is continuous. See
also [27].
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3. Homology of Hecke algebras. In this section, we obtain a first identification of

the Hochschild homology groups of Hecke algebras of p-adic groups. To this end, we
use several general results on Hochschild homology of algebras, on algebraic groups,

and on the continuous cohomology of totally disconnected groups. Good references

are [6, 7, 17], for the general theory, and [15] for questions related to Hochschild

homology.

Let G be a p-adic group on which we fix a Haar measure dg. Consider now the space

�∞c (G) of compactly supported, locally constant functions on G. Fix a Haar measure

dh on G. Then the convolution product, denoted ∗, is defined by

f1∗f2(g)=
∫
G
f1(h)f2

(
h−1g

)
dh. (3.1)

The convolution product makes �∞c (G) an algebra, called the Hecke algebra of G. It is
important in representation theory to determine the (AdG-)invariant linear functionals

on �∞c (G). If G is unimodular, the space of invariant linear functionals on �∞c (G)
coincides with the space of traces on �∞c (G). The space of traces of �∞c (G) identifies
with HH0(�∞c (G)), the first Hochschild cohomology group of �∞c (G). It is reasonable
then to ask, what are all Hochschild cohomology groups of �∞c (G)? Since Hochschild
cohomology is the algebraic dual of Hochschild homology, it is enough to concentrate

on the latter.

We first recall the definition of the Hochschild homology groups of the algebra

�∞c (G). Let
�∞c

(
Gq+1

)=�∞c (G)⊗�∞c (G)⊗···⊗�∞c (G), (3.2)

(q+1)-times, be the usual (algebraic) tensor product of vector spaces. The Hochschild

differential b : �∞c (Gq+2)→�∞c (Gq+1) is given by

(bf)
(
g0,g1, . . . ,gq

)= q∑
j=0
(−1)j

∫
G
f
(
g0, . . . ,gj−1,γ,γ−1gj,gj+1, . . . ,gq

)
dγ

+(−1)q+1
∫
G
f
(
γ−1g0,g1, . . . ,gq,γ

)
dγ.

(3.3)

By definition, the qth Hochschild homology group of �∞c (G), denoted by HHq(�∞c (G)),
is the qth homology group of the complex (�∞c (Gq+1),b). Hochschild homology can

be defined for any algebra. Our definition takes into account the particular structure

of �∞c (G), in particular, that it is an inductive limit of unital algebras, so there is no

need to first adjoin a unit in order to define Hochschild homology. The computation

of the groups HHq(�∞c (G)) is the main purpose of this paper.

The groupG acts by conjugation on�∞c (G), andwe denote by�∞c (G)ad theG-module

defined by this action. Also, let ∆G denote the modular function of G, which, we recall,
is defined by the relation

∆G(h)
∫
G
f(gh)dg =

∫
G
f(g)dg. (3.4)

We are especially interested in the G-module �∞c (G)δ obtained from �∞c (G)ad by twist-
ing it with the modular function. More precisely, let �∞c (G)δ =�∞c (G) as vector spaces,
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and let the action of G on functions be given by the formula

(γ ·f)(g)=∆G(γ)f
(
γ−1gγ

)
, f ∈�∞c (G)δ. (3.5)

The reason for this twisting is that, for G nonunimodular, the traces of �∞c (G) are the
G-invariant functionals on �∞c (G)δ, not on �∞c (G) (this is an immediate consequence

of Lemma 3.1). More generally, our approach to the Hochschild homology of �∞c (G)
is based on Lemma 3.1.

Before stating and proving Lemma 3.1, we need to introduce some notation. First, if

M is an arbitraryG-module, we denote byM⊗∆G the tensor product of theG-modules

M and C, where the action on C is given by the multiplication with the modular func-

tion of G. (In particular, �∞c (G)δ =�∞c (G)⊗∆G.)
If M is a right G-module and M′ is a left G-module, then M⊗GM′ is defined as the

quotient of M⊗M′ by the submodule generated bymg⊗m′−m⊗gm′. For example,

if H ⊂G is a closed subgroup and if X is a left H-space, then we have an isomorphism

of G-spaces
�∞c (G)⊗H

(
�∞c (X)⊗∆H

)
�∞c
(
G×H X

)
, (3.6)

where G×X is the quotient (G×X)/H for the action h(g,x) = (gh−1,hx). This iso-
morphism is obtained by observing that the natural map

tX : �∞c (G)⊗�∞c (X)=�∞c (G×X) �→�∞c
(
G×H X

)
,

tX(f )
(
(g,x)

)=
∫
H
f
(
gh,h−1x

)
dh,

(3.7)

passes to the quotient to give the desired isomorphism. Sometimes it will be conve-

nient to regard a left G-module as a right G-module by replacing g with g−1. Equation
(3.6) is one of the main reasons why we need to consider the modular function.

Also, recall that aG-moduleM is smooth if and only if the stabilizer of each element

of M is open in G. The continuous homology groups of G with coefficients in the

smoothmoduleM , denoted Hk(G,M), can be defined using tensor products as follows.
Let�q(G)=�∞c (Gq+1), q = 0,1, . . . , be the Bar complex of the groupG, with differential

(df)
(
g0,g1, . . . ,gq

)= q+1∑
j=0
(−1)j

∫
G
f
(
g0, . . . ,gj−1,γ,gj, . . . ,gq

)
dγ. (3.8)

Then the complex (�q,d) gives a resolution of C with projective �∞c (G)-modules, and

the complex

�q(G)⊗GM (3.9)

computes Hq(G,M). See [4, 7].
We need the following extension of a result from [5].

Lemma 3.1. Let �∞c (G)δ = �∞c (G)⊗∆G be the G-module obtained by twisting the

adjoint action of G on �∞c (G) by the modular function. Then we have a natural isomor-

phism

HHq
(
�∞c (G)

)
Hq
(
G,�∞c (G)δ

)
. (3.10)
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Proof. Consider the complex (3.9), which computes the continuous cohomology

of M =�∞c (G)δ, and let

hG : �q(G)⊗�∞c (G)δ 
�∞c (G)⊗�∞c
(
Gq+1

)=�∞c
(
Gq+2

)
�→�∞c (G)⊗q+1 (3.11)

be the map

hG(f)
(
g0,g1, . . . ,gq

)=
∫
G
f
(
g−1hg,g−1g0,g−1g0g1, . . . ,g−1g0g1 ···gq

)
dg,

h= g0g1 ···gq.
(3.12)

As in (3.6), the map hG descends to the quotient to induce an isomorphism

h̃G : �q(G)⊗G�∞c (G)δ 
�∞c
(
Gq+2

)⊗GC
�∞c (G)⊗q+1 (3.13)

of complexes, that is, h̃G ◦ (d⊗G 1) = b ◦ h̃G, which establishes the isomorphism

Hq(G,�∞c (G)δ)
HHq(�∞c (G)), as desired.

To better justify the twisting of the module �∞c (G) by the modular function in

Lemma 3.1, note that the trivial representation of G gives rise to an obvious mor-

phism π0 : �∞c (G)→ C, by π0(f )=
∫
G f(g)dg, which hence defines a trace on �∞c (G).

However, π0 is not G-invariant for the usual action of G, but is invariant if we twist
the adjoint action of G by the modular function, as indicated.

We proceed now to a detailed study of the G-module �∞c (G)δ using the standard

stratification introduced in the previous section.

Let R∞(G) be the ring of locally constant AdG-invariant functions on G with the

pointwise product, which we regard as a subset of the set of endomorphisms of the

G-module �∞c (G)δ = �∞c (G)⊗∆G. Let det(t+1−Adg) =
∑m
i=0ai(g)ti, as before. For

each k≥ 1, denote by Ik ⊂ R∞(G) the ideal generated by functions f :G→ C of the form

f =φ(ar ,ar+1, . . . ,ar+k−1), (3.14)

where φ is a locally constant function φ : Fk → C such that φ(0,0, . . . ,0) = 0. (Recall

that each of the polynomials a0, . . . ,ar−1 is the zero polynomial.) By convention, we

set I0 = (0); also, it follows that Im+1 = R∞(G).
Fix now k, and let φn : Fk→ C be 1 on the set

{
ξ = (ξ0, . . . ,ξk−1)∈ Fk, max |ξi| ≥ q−n

}
, (3.15)

and vanishes outside this set. (Here q is the number of elements of the residual field

of F, and the non-Archimedean norm “| |” is normalized such that its range is {0}∪
{qn, n∈ Z}.) Also, let pn =φn(ar ,ar+1, . . . ,ar+k−1)∈ Ik. Then pn = p2n = pnpn+1 and
Ik =∪pnR∞(G).
For further reference, we state as a lemma a basic property of the constructions we

have introduced.

Lemma 3.2. If M is an R∞(G)-module, then IkM =∪pnM .

As a consequence of the above lemma, we obtain the following result.
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Corollary 3.3. Consider the G-modules,

Mk =
(
Ik+1
Ik

)
⊗R∞(G)�∞c (G)δ 


Ik+1�∞c (G)δ
Ik�∞c (G)δ

. (3.16)

Then, for each q ≥ 0, we have an isomorphism

Hq
(
G,�∞c (G)δ

)
 m⊕
k=0

Hq
(
G,Mk

)
(3.17)

of vector spaces.

Proof. There exists a (not natural) isomorphism

Hq
(
G,�∞c (G)δ

)

⊕m
k=0 Ik+1Hq

(
G,�∞c (G)δ

)
IkHq

(
G,�∞c (G)δ

) (3.18)

of vector spaces.

By Lemma 3.2, the inclusion of Ik�∞c (G)δ → �∞c (G)δ of G-modules induces natural

isomorphisms

Hq
(
G,Ik�∞c (G)δ

)
Hq
(
G, lim→ pn�∞c (G)δ

)

 lim→ pnHq

(
G,�∞c (G)δ

)

 IkHq

(
G,�∞c (G)δ

)
,

(3.19)

because the functor Hq is compatible with inductive limits and with direct sums.

The naturality of these isomorphisms and Lemma 6.1 shows that

Hq
G,Ik+1�∞c (G)δ
Ik�∞c (G)δ


 Ik+1Hq
(
G,�∞c (G)δ

)
IkHq

(
G,�∞c (G)δ

) . (3.20)

This is enough to complete the proof.

If X is a totally disconnected, locally compact space X, we denote by �∞c (X) the
space of compactly supported, locally constant, complex valued functions onX. Recall
that, if U ⊂X is an open subset ofX as above, then restriction defines an isomorphism

�∞c (X)
�∞c (U)


�∞c (X&U). (3.21)

We now study the homology of the subquotients

Mk = Ik+1�∞c (G)δ
Ik�∞c (G)δ


�∞c
(
Vk&Vk+1

)
(3.22)

by identifying them with induced modules. Let Σk be a set of representatives of con-
jugacy classes of standard subgroups S such that FS ⊂ Vk &Vk+1 (or, equivalently,

FuS ⊂ Vk&Vk+1).
Lemma 3.4. Using the above notation, we have Ik�∞c (G)=�∞c (G&Vk) and

Ik+1�∞c (G)δ
Ik�∞c (G)δ



⊕
S∈Σk

�∞c
(
FuS
)
. (3.23)
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Proof. It follows from the definition of Ik that, if f ∈ Ik�∞c (G)δ, then f vanishes

in a neighborhood of Vk. Conversely, if f is in �∞c (G&Vk), then we can find some

polynomial ai, with i ≤ r +k−1, such that |ai| is bounded from below on the sup-

port of f by, say, q−n, then pnf = f . The second isomorphism follows from the first

isomorphism using (3.21) and Lemma 3.2.

If H ⊂G is a closed subgroup and M is a smooth (left) H-module (i.e., the stabilizer

of eachm∈M is an open subgroup of M), we denote

indGH(M)=�∞c (G)⊗HM = �∞c (G)⊗M{
fh⊗m−f ⊗hm, h∈H} , (3.24)

where the right H-module structure on �∞c (G) is (fh)(g)= f(gh−1). Then Shapiro’s

lemma, see [9], states that

Hk
(
G, indGH(M)⊗∆G

)
Hk(H,M). (3.25)

(A proof of Shapiro’s lemma for nonunimodular groups is contained in the proof of

Theorem 6.2.)

The basic examples of induced modules are obtained from H-spaces. If X is an

H-space (we agree that H acts on X from the left), then

�∞c
(
G×X
H

)

 indGH

(
�∞c (X)⊗∆H

)
 indGH
(
�∞c (X)δ

)
(3.26)

asG-modules, whereH acts onG×X byh(g,x)=(gh−1,hx). For example, Proposition

2.3 identifies �∞c (F
u
S ) with an induced module:

�∞c
(
FuS
)
 indGN(S)

(
�∞c

(
Sreg�S

)⊗∆N(S))= indGN(S)
(
�∞c

(
Sreg�S

)
δ
)
. (3.27)

Shapiro’s lemma is an easy consequence of the Serre-Hochschild spectral sequence,

see [9], which states the following. LetM be a smoothG-module andH ⊂G be a normal

subgroup. Then the action of G on Hq(H,M) descends to an action of G/H, and there

exists a spectral sequence with E2p,q =Hp(G/H,Hq(H,M)), convergent to Hp+q(G,M).
Let Mk = Ik+1�∞c (G)δ/Ik�∞c (G)δ, as before.

Proposition 3.5. Using the above notation, we have

Hq
(
G,Mk

)
 ⊕
〈S〉∈Σk

�∞c
(
Sreg

)W(S)⊗Hq (C(S),�∞c (�S)δ), (3.28)

a natural isomorphism of R∞(G)-modules.

Proof. Let S be a standard subgroup of G. Recall first that W(S) = N(S)/C(S) is
a finite group that acts freely on Sreg, which gives an N(S)-equivariant isomorphism

�∞c
(
Sreg�S

)
δ =�∞c

(
�S
)
δ⊗�∞c

(
Sreg

)
. (3.29)

Let M be a smooth N(S)-module. The Hochschild-Serre spectral sequence applied

to the module M and the normal subgroup C(S)⊂N(S) gives natural isomorphisms

Hq
(
N(S),M

)
H0
(
W(S),Hq

(
C(S),M

))
Hq
(
C(S),M

)W(S). (3.30)
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Combining these two isomorphisms, we obtain

Hk
(
G,�∞c

(
FuS
)
δ
)
Hk

(
G, indGN(S)

(
�∞c

(
Sreg�S

)
δ
)
δ
)


Hk
(
N(S),�∞c

(
Sreg�S

)
δ
)


 (Hk (C(S),�∞c (�S)δ)⊗�∞c
(
Sreg

))W(S)

�∞c

(
Sreg

)W(S)⊗Hk (C(S),�∞c (�S)δ).
(3.31)

The result then follows from Lemma 3.4, which implies directly that

Mk 
⊕S∈Σk�∞c
(
FuS
)
δ. (3.32)

The proof is now complete.

Combining Proposition 3.5 with Corollary 3.3, we obtain the main result of this

section. Recall that a p-adic group G = G(F) is the set of F-rational points of a linear
algebraic group G defined over a non-Archimedean, nondiscrete, locally compact field

F of characteristic zero. Also, recall that �S is the set of unipotent elements commut-

ing with the standard subgroup S, and that the action of C(S) on �∞c (�S) is twisted
by the modular function of C(S), yielding the module �∞c (�S)δ =�∞c (�S)⊗∆C(S).

Theorem 3.6. Let G be a p-adic group. Let Σ be a set of representative of conjugacy

classes of standard subgroups of S ⊂ G and W(S) = N(S)/C(S), then we have an

isomorphism

HHq
(
�∞c (G)

)
⊕
S∈Σ

�∞c
(
Sreg

)W(S)⊗Hq (C(S),�∞c (�S)δ). (3.33)

Remark 3.7. The isomorphism of Theorem 3.6 is not natural. A natural description

of HHq(�∞c (G))will be obtained in one of the following sections by considering higher
orbital integrals and their Shalika germs.

4. Higher orbital integrals and their Shalika germs. Proposition 3.5 allows us to

determine the structure of the localized cohomology groups HH∗(�∞c (G))m , where
m is a maximal ideal of R∞(G). This will lead to an extension of the higher orbital

integrals introduced by Blanc and Brylinski in [5] and to a generalization of some

results of Shalika [24] to higher orbital integrals, all discussed in this section. In this

way, we also obtain a new, more natural description of the groups HHq(�∞c (G)).
First recall the following result.

Proposition 4.1. Let G be a reductive p-adic group over a field of characteristic 0,

and let S ⊂G be a standard subgroup, and γ ∈ Sreg (i.e., γ is a semi-simple element such

that C(S)= C(γ)). Then there exists an N(S)-invariant closed and open neighborhood

U of γ in C(S) such that

G×U � (g,h) �→ ghg−1 ∈G (4.1)

defines a homeomorphism of G×N(S)U := (G×U)/N(S) onto a G-invariant, closed, and
open subset V ⊂G containing γ.
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Proof. The result follows from Luna’s lemma. For p-adic groups, Luna’s lemma is

proved in [19, page 109, Properties “C” and “D”].

For any maximal ideal m ⊂ R∞(G) and any R∞(G)-module M , we denote by Mm

the localization of M at m, that is, Mm 
 S−1M , where S is the multiplicative subset

R∞(G)&m.

From Proposition 4.1 we obtain the following consequences for the ring R∞(G).

Corollary 4.2. Let γ ∈ S, U , and V be as in Proposition 4.1.

(i) The ringR∞(G) decomposes as the direct sum �∞(V)G⊕�∞(Vc)G, and �∞(V)G 

�∞(U)N(S) ⊂�∞(C(S))N(S) = R∞(C(S))W(S). (Here Vc is the complement of V in G.)

(ii) For any two semi-simple elements γ,γ′ ∈ G, if φ(γ) = φ(γ′) for all functions

φ∈ R∞(G), then γ and γ′ are conjugated in G.
(iii) Let m ∈ R∞(G) be themaximal ideal consisting of functions that vanish at a semi-

simple element γ ∈ G. Then p is generated by an increasing sequence of projections,

and Mm 
M/mM , for any R∞(G)-module M .

Proof. (i) is an immediate consequence of Proposition 4.1.

(ii) follows from [19, Proposition 2.5].

To prove (iii), observe that the maximal ideal m is generated by an increasing se-

quence of projections pn, that is, m =∪pnR∞(G), with p2n = pn and pn+1pn = pn.
We know from Proposition 2.5 of [19] that R∞(G) is isomorphic to C∞(X), for some

locally compact, totally disconnected topological space X. Moreover, if M is a C∞(X)-
module and m is the maximal ideal of functions vanishing at x0, for some fixed point

x0 ∈X, then �∞(X)m 
�∞(X)/m�∞(X), and hence

Mm =M⊗�∞(X)�∞(X)m 
 M⊗�∞(X)�∞(X)
m�∞(X)


 M
mM

. (4.2)

Since X is metrizable, we can choose a basis Vn of compact open neighborhoods of

x0 in X. If we let pn to be the characteristic function of Vcn, then pn are projections

generating m. By choosing Vn to be decreasing, we obtain an increasing sequence of

projections pn.

We now consider for each maximal ideal m ⊂ R∞ = R∞(G) the localization

HHq(�∞c (G))m .

Proposition 4.3. Let m be a maximal ideal of R∞(G). If m consists of the functions

that vanish at the semi-simple element γ ∈ G and S ⊂ G is a standard subgroup such

that γ ∈ Sreg, then
HHq

(
�∞c (G)

)
m 
Hq

(
C(S),�∞c

(
�S
)
δ
)
. (4.3)

For all other maximal ideals m ⊂ R∞(G), we have HHq(�∞c (G))m = 0.

Note that Hq(C(S),�∞c (�S))
Hq(C(γ),�∞c (C(γ)u)).

Proof. Let mγ := {f ∈ R∞(G), f (γ) = 0}. The vanishing of HH∗(�∞c (G))m in the

last part of Proposition 4.4 because �∞c (G)m = 0 for all maximal ideals m that are not

of the form mγ , for some semi-simple element γ ∈G.
Assume now that m = mγ . The localization functor V → Vm is exact by standard

homological algebra. Let (0) = I0 ⊂ I1 ⊂ ··· ⊂ Im ⊂ Im+1 = R∞(G) be the sequence of
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ideals introduced shortly after Lemma 3.1. The sequence of ideals (Ik)m is an increas-

ing sequence satisfying (I0)m 
 0 and (Im+1)m 
 C. Choose k such that (Ik)m 
 0 and

(Ik+1)m 
 C. (This happens if and only if γ ∈ Vk&Vk+1.) It follows that

Hq
(
G,�∞c (G)δ

)
m 
Hq

(
G,Ik+1�∞c (G)δ
Ik�∞c (G)δ

)
m

. (4.4)

Since all the isomorphisms of Proposition 3.5 are compatible with the localization

functor, we obtain that

HHq
(
�∞c (G)

)
m 
Hq

(
G,�∞c (G)δ

)
m



⊕
〈S〉∈Σk

Hq
(
C(S),�∞c

(
�S
)
δ
)⊗


 �∞c

(
Sreg

)W(S)
m�∞c

(
Sreg

)W(S)

. (4.5)

The only quotient �∞c (Sreg)W(S)/m�∞c (Sreg)W(S) that does not vanish is the one con-

taining (a conjugate of) γ, and then it is isomorphic to C. This completes the proof.

An alternative proof of Proposition 4.3 can be obtained by writing

Hq
(
G,�∞c (G)δ

)
m 
Hq

(
G,�∞c (G)δm

)
Hq

(G,�∞c (G)δ
m�∞c (G)δ

)
, (4.6)

and then observing that �∞c (G)δ/m�∞c (G)δ 
 �∞c (�S), by Corollary 4.2(iii). However

our first proof is more convenient when dealing with orbital integrals. See also [18],

which was first circulated in 1990 as a preprint of the Mathematical Institute of the

Romanian Academy (INCREST) No. 18, March 1990, and where the localization tech-

niques were first introduced.

We now extend the definition of higher orbital integrals introduced by Blanc and

Brylinski [5] to cover nonregular semi-simple elements also. Fix a standard subgroup

S ⊂ G, and let k be such that Sreg ⊂ Vk&Vk+1. As in the above proof, Proposition 3.5

gives a natural R∞(G)-linear, degree preserving, surjective morphism

H∗
(G,Ik+1�∞c (G)δ

Ik�∞c (G)δ

)
�→�∞c

(
Sreg

)W(S)⊗H∗ (C(S),�∞c (�S)δ), (4.7)

and hence a linear map

Ik+1HH∗
(
�∞c (G)

)=H∗
(
G,Ik+1�∞c (G)δ

)
�→�∞c

(
Sreg

)W(S)⊗H∗ (C(S),�∞c (�S)δ). (4.8)
Fix c ∈Hq(C(S),�∞c (�S)δ) and γ ∈ Sreg, and let

�γ,c = �Sγ,c : Ik+1HHq
(
�∞c (G)

)
�→ C (4.9)

be the evaluation of the map at γ and c in (4.8). We obtain, in particular, that for

any f ∈ Ik+1HHq(�∞c (G)), the function γ → �γ,c(f ) is a locally constant, compactly

supported function on Sreg. The function �γ,c can then be extended to the whole group

HHq(�∞c (G)) using a simple observation as follows. By Lemma 3.2, we know that for
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any γ ∈ Sreg there exists a locally constant function φ ∈ Ik+1 such that φ(γ) = 1.

Then let

�γ,c(f ) := �γ,c(φf), (4.10)

which is independent of φ. It follows from the definition of �γ,c that, for any f ∈
HHq(�∞c (G)), the function γ → �γ,c(f ) is a locally constant function on Sreg, but not
necessarily compactly supported. We thus obtain the following result.

Proposition 4.4. Let S ⊂ G be a standard subgroup. Then there exists a degree-

preserving, R∞(G)-linear map

�S : HH∗
(
�∞c (G)

)
�→�∞

(
Sreg

)W(S)⊗H∗ (C(S),�∞c (�S)δ), (4.11)

which is an isomorphism when localized at any maximal ideal m = mγ ⊂ R∞(G), con-
sisting of functions vanishing at some element γ ∈ Sreg.
We call themaps �S and �γ,c = �Sγ,c “higher orbital integrals” because they generalize

the usual notion of orbital integral. (If c is a cocycle of dimension q, we call �γ,c an

order q higher orbital integral.) Indeed, assume that G and C(S) are unimodular. Let

c0 = 1 ∈ H0(C(S),�∞c (�S)δ) be the evaluation at the identity element e ∈ G, and let

f ∈�∞c (G)=HH0(�∞c (G)). Then

�γ,c0(f )= �γ,1(f )=
∫
G/C(S)

f
(
gγg−1

)
dḡ, (4.12)

where dḡ is the induced measure on G/C(S).
If γ ∈ G is a semi-simple element and S is a standard subgroup of G such that

C(γ)= C(S), (i.e., γ ∈ Sreg), then restriction at γ defines a map

�γ = �Sγ : HH∗
(
�∞c (G)

)
�→H∗

(
C(S),�∞c

(
�S
)
δ
)

(4.13)

such that c(�γ(f ))= �γ,c(f ), for all c ∈Hq(C(S),�∞c (�S)δ). The localization of �γ at

γ yields the isomorphism of Proposition 4.4.

A word on notation, whenever we write �Sγ,c or �Sγ , we assume that γ ∈ Sreg, which
actually determines S. This means that we can omit S from notation. However, if we

want to write that �γ,c = �Sγ,c is obtained by evaluating

�S : HH∗
(
�∞c (G)

)
�→�∞

(
Sreg

)W(S)⊗H∗ (C(S),�∞c (�S)δ) (4.14)

to a point γ ∈ Sreg and then by pairing with c, that is,

�Sγ,c(f )=
〈
�S(f )(γ),c

〉
, (4.15)

then it is obviously better to include S in the notation.

Let γ ∈G be a semi-simple element. We want now to investigate the behavior orbital

integrals �g,c with g in a small neighborhood of γ. Fix a standard subgroup S ⊂ G
such that γ is in the closure of AdG(Sreg), but is not in AdG(Sreg), and a class c ∈
Hq(C(S),�∞c (�S)). More precisely, we want to study the germ of the function g →
�g,c(f ) at an element γ, where f ∈ HHq(�∞c (G)) is arbitrary. The germ of a function

h at γ will be denoted by hγ .
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The following theorem extends one of the basic properties of Shalika germs from

usual orbital integrals to higher orbital integrals.

Theorem 4.5. Let S ∈G be a standard subgroup and let γ ∈ S be an element in the

closure of Sreg, such that γ �∈ Sreg. Then there exists a degree preserving linear map

σSγ : H∗
(
C(γ),�∞c

(
C(γ)u

)
δ
)
�→�∞

(
Sreg

)W(S)
γ ⊗H∗

(
C(S),�∞c

(
�S
)
δ
)
, (4.16)

such that

�S(f )γ = σSγ
(
�γ(f )

)
, (4.17)

for all f ∈HH∗(�∞c (G)).

Note that, in the notation for the maps σSγ , the standard subgroup S is no longer

determined by γ.

Proof. By the definition of the localization of a module, the map

�S : HH∗
(
�∞c (G)

)
�→�∞

(
Sreg

)W(S)
γ ⊗H∗

(
C(S),�∞c

(
�S
)
δ
)

(4.18)

factors through a map

F : HH∗
(
�∞c (G)

)
γ �→�∞

(
Sreg

)W(S)
γ ⊗H∗

(
C(S),�∞c

(
�S
)
δ
)
. (4.19)

Since �γ : HH∗(�∞c (G))γ → H∗(C(γ),�∞c (C(γ)u)δ) is an isomorphism, by Proposition

4.3, we may define

σSγ = F ◦�−1γ , (4.20)

and all desired properties for σSγ will be satisfied.

Let γ ∈ S & Sreg be such that γ is in the closure of Sreg, as above, and also let

c ∈ Hq(C(S),�∞c (�S)δ). Then a consequence of Theorem 4.5 is that the germ at γ
of the higher orbital integrals �Sg,c depends only on �γ . More precisely, if g ∈ Sreg,
f ∈HHq(�∞c (G)), and we regard �Sg,c(f ) as a function of g, then its germ at γ, denoted
�Sg,c(f )γ , is given by

�Sg,c(f )γ =
〈
σSγ
(
�γ(f )

)
,c
〉
. (4.21)

This observation allows us to relate Theorem 4.5 with results of Shalika [24] and

Vigneras [27]. So assume now that G is reductive and let ξi ∈ H0(C(γ),�∞c (C(γ)u)δ)
be the basis dual to the basis of H0(C(γ),�∞c (C(γ)u)δ) given by the orbital integrals

over the orbits of γu, for u nilpotent in C(γ). If we let FSi = σSγ (ξi), then we recover

the usual definition of Shalika germs. Due to this fact, we call the maps σSγ , introduced
in Theorem 4.5, the higher Shalika germs.

We can now characterize the range of the higher orbital integrals. Combining all

higher orbital integrals for S ⊂ G ranging through a set Σ of representatives of stan-

dard subgroups of G, we obtain a map

� : HH∗
(
�∞c (G)

)
�→
⊕
S∈Σ

�∞
(
Sreg

)W(S)⊗H∗ (C(S),�∞c (�S)). (4.22)
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Theorem 4.6. Let Σ be a set of representatives of standard subgroups of G and σSγ
be the maps introduced in Theorem 4.5 for γ ∈ S̄reg&Sreg. Also, let

�⊂
⊕
S∈Σ

�∞
(
Sreg

)⊗H∗ (C(S),�∞c (�S)δ) (4.23)

be the space of sections ξ satisfying ξγ = σSγ (ξ(γ)) for all standard subgroups S and

all γ ∈ S̄reg&Sreg. Then � establishes an R∞(G)-linear isomorphism

� : HH∗
(
�∞c (G)

)
�→�. (4.24)

Proof. Note first that the map � is well defined, that is, its range is contained in

�, by Theorem 4.5.

To prove that � is an isomorphism, filter both HH∗(�∞c (G)) and � by the subgroups

IkHH∗(�∞c (G)) and, respectively, by Ik�, using the ideals Ik introduced in Section 3.

Since � is R∞(G)-linear, it preserves this filtration and induces maps

Ik+1HH∗
(
�∞c (G)

)
IkHH∗

(
�∞c (G)

) �→ Ik+1�

Ik�
. (4.25)

These maps are, by construction, exactly the isomorphisms of Proposition 3.5. Stan-

dard homological algebra then implies that � itself is an isomorphism, as desired.

A consequence of the above result is the following “density” corollary.

Corollary 4.7. Let a ∈ HHq(�∞c (G)). If all order q, higher orbital integrals of a
vanish, then a= 0.

We also need certain specific cocycles below. Let τ0 be the trace τ0(f ) = f(e) on
�∞c (G), G unimodular, obtained by evaluating f at the identity e of G. Let G0 be the

kernel of all characters of G that are equal to 1 on all compact subgroups of G. Then
G/G0 
 Zr , where r is the rank of a split component of G. Let pj : G → Z be the

morphisms obtained by considering the jth component of Zr . Then

δj(f )(g)= pj(g)f(g) (4.26)

defines a derivation of�∞c (G). Moreover, we can identify H
∗(G)withΛ∗Cr , the exterior

algebra with generators δ1, . . . ,δr . Fix c ∈ H∗(G). It is enough to assume that c =
δ1∧···∧δq, and then we define the map Dc : �∞c (G)⊗q+1→�∞c (G) by the formula

Dc
(
f0, . . . ,fq

)= (q!)−1 ∑
σ∈Sq

ε(σ)f0δσ(1)
(
f1
)
δσ(2)

(
f2
)···δσ(q)(fq). (4.27)

Then τc = τ0 ◦Dc(f0, . . . ,fq) defines a Hochschild q cocycle on �∞c (G), and

τc = �e,c , (4.28)

if we naturally identify c with an element of the cohomology group H∗(G,�∞c (Gu)).
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5. The cohomology of the unipotent variety. It follows from the main result of

Section 3, Theorem 3.6, that in order to obtain a more precise description of the

Hochschild homology of �∞c (G), we need to understand the continuous cohomology

of theH-module �∞c (Hu)δ, whereH ranges through the set of centralizers of standard

subgroups of G and Hu is the variety of unipotent elements in H. We call the vari-

ety Hu the unipotent variety of H, as it is usually customary. Since the cohomology

groups Hk(H,�∞c (Hu)δ) depend only onH (i.e., they do not depend on G), it is enough
to consider the case H =G. Motivated by this, in this section, we gather some results

on the groups Hq(G,�∞c (Gu)δ).
We first need to recall the computation of the groups H∗(G) = H∗(G,C), see for

example [7]. More generally, we also need to compute H∗(G,Cχ), where χ : G → C∗

is a character of G and Cχ = C as a vector space, but with G-action given by the

character χ.
Assume first thatG = S is a commutative p-adic group, and let S0 be the union of all

compact-open subgroups of S. Then S0 is a subgroup of S and S/S0 is a free Abelian
subgroup, whose rank we denote by rk(S). For this group, we then have

Hk(S)
Hk

(
S
S0
,C
)

ΛkCrk(S). (5.1)

Moreover, Hk(S,Cχ)= 0 if χ : S → C∗ is a nontrivial character of S.
For an arbitrary p-adic group G, we may identify the cohomology groups Hq(G)

with those of a commutative p-adic group. Indeed, if G0 is the connected component

of G (in the sense of algebraic groups) then G/G0 is finite, and hence Hq(G)
Hq(G0),
by the Hochschild-Serre spectral sequence. This tells us that we may assume G to be

connected as an algebraic group. Choose then a Levi decomposition G =MN , where
N is the unipotent radical of G, M is a reductive subgroup, uniquely determined up

to conjugation, and the product MN is a semi-direct product. Since Hq(N) = 0 for

q > 0, it follows that Hq(G) 
 Hq(M) by another application of the Serre-Hochschild

spectral sequence.

Let M1 ⊂ M be the commutator subgroup of M , which is also a p-adic group, see
[6]. The cohomology groups Hq(M1) were computed in [5, Proposition 6.1, page 316],

or [7] and they also vanish for q > 0 (recall that the crucial idea of this proof is that

the fundamental domain of the building of M1 is a simplex). All in all, we obtain that

Hq(G)
Hq(M)
Hq
(
Mab), (5.2)

where Mab =M/M1 is the abelianization of M .

We summarize the above discussion in the following well-known statement.

Lemma 5.1. Let G be a p-adic group, not necessarily reductive, and let r be the rank

of a split component of the reductive quotient of G. Then

Hq(G)=Hq(G,C)
ΛqCr . (5.3)

Moreover, Hq(G,Cχ)= 0, if χ is a nontrivial character of G.

We continue by discussing first a few elementary properties of Hk(G,�∞c (Gu)δ).
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Remark 5.2. If G1→G is a surjective morphism with finite kernel F , then there ex-
ists a natural homeomorphism G1u 
Gu of the unipotent varieties of the two groups.
Since the kernel F acts trivially on G1u, using the Hochschild-Serre spectral sequence

we obtain an isomorphism

Hk
(
G1,�∞c

(
G1u

)
δ
)
Hk

(
G1,�∞c

(
Gu
))
Hk

(
G,�∞c

(
Gu
))
. (5.4)

Remark 5.3. If G ⊂ G1 is a normal p-adic subgroup with F 
 G1/G finite, then we

again have a natural homeomorphism G1u =Gu. This gives

Hk
(
G1,�∞c

(
G1u

)
δ
)
Hk

(
G1,�∞c

(
Gu
)
δ
)
Hk

(
G,�∞c

(
Gu
)
δ
)F , (5.5)

using once again the Hochschild-Serre spectral sequence. In particular, if the charac-

teristic morphism F → Aut(G)/ Inn(G) is trivial, then we get a natural isomorphism

Hk(G,�∞c (Gu)δ)
Hk(G1,�∞c (G1u)δ).

Remark 5.4. If G = G′ ×G′′, then Gu = G′u×G′′u naturally, and hence �∞c (Gu) 

�∞c (G′u)⊗�∞c (G′′u). This gives

Hk
(
G,�∞c

(
Gu
)
δ
)
 ⊕

i+j=k
Hi
(
G′,�∞c

(
G′u
))⊗Hj (G′′,�∞c (G′′u)). (5.6)

Remark 5.5. If Z is a commutative p-adic group of split rank r , then

Hk
(
Z,�∞c

(
Zu
)
δ
)
�∞c

(
Zu
)⊗ΛkCr . (5.7)

Remark 5.6. The above isomorphisms reduce the computation of Hk(G,�∞c (Gu)δ)
for G reductive, to the computation of the cohomology groups corresponding to its

semi-simple quotient H :=G/Z(G):

Hk
(
G,�∞c

(
Gu
)
δ
)=Hk

(
G,�∞c

(
Gu
))
 ⊕

i+j=k
Hi
(
H,�∞c

(
Hu

)
δ
)⊗ΛjCr , (5.8)

where r is the rank of a split component ofG. Let τ0 be the trace obtained by evaluating
at the identity. Using τ0, we obtain an injection Hj(G)� c→ τ0⊗c ∈Hj(G,�∞c (Gu)).
In order to obtain more precise results on H∗(G,�∞c (Gu)δ), we need to take a closer

look at the structure of �∞c (Gu) as a G-module. For a G-space X, we denote by 〈X〉 the
quotient space X/G with the induced topology, which may be non-Hausdorff. Thus

〈Gu〉 is the set of unipotent conjugacy classes of G.
Assume now that 〈Gu〉 is a finite set. (This happens, for example, if G is reductive,

because the ground field F has characteristic zero.) Then the space Gu can be written

as an increasing union of open G-invariant sets Ul ⊂ Gu, U−1 = ∅, such that each

difference set Ul&Ul−1 is a disjoint union of open and closed G-orbits,

Ul&Ul−1 =∪Xl,j. (5.9)

A filtration Ul with these properties will be called “nice.” There may be several nice

filtrations of Gu.
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A nice filtration of Gu, as above, gives rise, by standard arguments, to a spectral

sequence converging to Hk(G,�∞c (Gu)δ), as follows. First, let 〈g〉 ∈ 〈Gu〉 be the orbit
through an element g ∈ Gu. Also, let C(g) denote the centralizer of g ∈ Gu and rg
denote the rank of a split component of C(g) if C(g) is unimodular, rg = 0 otherwise.

This definition of rg is such that Hk(C(g),∆C(g))
ΛkCrg .
Proposition 5.7. Let G be a p-adic group with finitely many unipotent orbits (i.e.,

〈Gu〉 is finite). Then, for any nice filtration (Ul) ofGu by openG-invariant subsets, there
exists a natural spectral sequence with

E2p,q =
⊕

〈u〉∈〈Up&Up−1〉
Λp+qCru , (5.10)

convergent to Hp+q(G,�∞c (Gu)δ).

Proof. The argument is standard and goes as follows. Recall first that any fil-

tration 0 = F0 ⊂ F1 ⊂ ··· ⊂ FN = �∞c (Gu)δ by G-submodules gives rise to a spectral

sequence with E1p,q =Hp+q(G,Fp/Fp−1), convergent to Hp+q(G,�∞c (Gu)δ).
Now, associated to the open sets Ul of a nice filtration, there exists an increasing

filtration Fl =�∞c (Ul)δ ⊂�∞c (Gu)δ by G-submodules such that

�∞c
(
Ul
)
δ

�∞c
(
Ul−1

)
δ


⊕
j

�∞c
(
Xl,j

)
δ, (5.11)

where each Xl,j is the orbit of a unipotent element (because Ul&Ul−1 has the topology
given by the disjoint union of the orbits Xl,j ). Fix l and j, and let u be a unipotent

element in Xl,j (so that then Xl,j is the orbit through u), which implies that �∞c (Xl,j)

indGC(u)(∆C(u)). Finally, from Shapiro’s lemma we obtain that

Hk
(
G,�∞c

(
Xl,j

)
δ
)
Hk

(
C(u),∆C(u)

)
ΛkCru , (5.12)

and this completes the proof.

We expect this spectral sequence to converge for G reductive. This is the case, for

example, forG = GLn(F) and for SLn(F). See Section 7. The convergence of the spectral

sequence implies, in particular, the convergence of the orbital integrals of unipotent

elements in reductive groups (which is a well-known fact due to Deligne and Rao

[20]). In general, the convergence of the spectral sequence of Proposition 5.7 can be

interpreted as the convergence of “higher orbital integrals.”

6. Induction and the unipotent variety. We assume from now on in this section

that G is reductive. We fix a parabolic subgroup P ⊂ G, P �= G, and a Levi subgroup

M ⊂ P , so that P = MN , where N is the unipotent radical of P , and the product is

a semi-direct product. In this section, we relate the groups H∗(G,�∞c (Gu)δ) to the

groups, H∗(P,�∞c (Pu)δ) and H∗(M,�∞c (Mu)δ). Since P is nonunimodular, this justifies

the consideration of such groups in the previous sections.

Let K be a “good” maximal compact subgroup of G (see [11, Theorem 5]), so that

G =KP . This decomposition shows that the map

K×P � (k,p) �→ kpk−1 ∈G (6.1)
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is proper, and hence the map G×P P := (G×P)/P � (g,p)→ gpg−1 ∈G is also proper.

This gives a map

�∞c (G)δ =�∞c (G) �→�∞c
(
G×P P

)
 indGP
(
�∞c (P)⊗∆P

)= indGP
(
�∞c (P)δ

)
(6.2)

of G-modules. This map of G-modules and the standard identification of Hochschild

homology with continuous cohomology, equation (3.10), then give a morphism

indGP : HH∗
(
�∞c (G)

)
�→HH∗

(
�∞c (P)

)
, (6.3)

defined as the composition of the following sequence of morphisms:

HH∗
(
�∞c (G)

)
H∗
(
G,�∞c (G)δ

)
�→H∗

(
G, indGP

(
�∞c (P)δ

)⊗∆G)

Hk

(
P,�∞c (P)δ

)
HH∗
(
�∞c (P)

) (6.4)

of Hochschild homology groups. The main result of this section states that indGP is

induced by a morphism of algebras, which we now proceed to define.

Let dk be the normalized Haar measure on the maximal compact subgroup K, nor-
malized such that K has volume 1. The composition of kernels

T1T2
(
k1,k2

)=
∫
G/P
T1
(
k1,k

)
T2
(
k,k2

)
dk (6.5)

defines on �∞(K×K) an algebra structure. Let

φGP : �∞c (G) �→�∞(K×K)⊗�∞c (P) (6.6)

be defined by φGP (f)(k1,k2,p)= f(k1pk−12 ).
Recall [11] that the push-forward of the product dpdk of Haar measure on P ×K,

via the multiplication map P ×K � (p,k)→ pk ∈ G, is a left invariant measure on G,
and hence a multiple λdg of the Haar measure dg on G. Suppose that the measure dk
of K is the restriction of dg to K, and has total mass 1. Then the Haar measures on G
and P are called compatible if λ= 1. We need the following result of Harish Chandra

(implicitly stated in [25]).

Lemma 6.1. Suppose the Haar measures on G and P are compatible. Then the linear

map φGP , defined in (6.6), is a morphism of algebras.

Proof. The product on �∞(K×K)⊗�∞c (P)=�∞c (K×K×P) is given by the formula

(
h1h2

)(
k1,k2,p

)=
∫
K

∫
P
h1
(
k1,k,q

)
h2
(
k,k2,q−1p

)
dqdk. (6.7)

Let ∗ denote the multiplication (i.e., convolution product) on �∞c (G). Thus, we need
to prove that

f1∗f2
(
k1pk−12

)=
∫
K

∫
P
f1
(
k1qk−1

)
f2
(
kq−1pk−12

)
dqdk, (6.8)

for all f1,f2 ∈�∞c (G). Consider the map P×K � (q,k)→ g := qk−1 ∈G, and let dµ be

the push-forward of the measure dqdk. Then the right-hand side of (6.8) becomes∫
K

∫
P
f1
(
k1qk−1

)
f2
(
kq−1pk2

)
dqdk=

∫
G
f1
(
k1g

)
f2
(
g−1pk−12

)
dµ(g). (6.9)
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We know that dµ = dg, by assumptions (see the discussion before the statement of

this lemma), and then∫
G
f1
(
k1g

)
f2
(
g−1pk−12

)
dµ(g)=

∫
G
f1(g)f2

(
g−1k1pk−12

)
dµ(g)

= f1∗f2
(
k1pk−12

)
,

(6.10)

by the invariance of the Haar measure. The lemma is proved.

The trace �∞(K×K)→ C induces an isomorphism

τ : HH∗
(
�∞(K×K)⊗�∞c (P)

)
HH∗
(
�∞c (P)

)
. (6.11)

Explicitly, this isomorphism is given at the level of chains by

τ
(
f0⊗f1⊗···⊗fq

)(
p0,p1, . . . ,pq

)
:=
∫
Kq+1

f0
(
k0,k1,p0

)
f1
(
k1,k2,p1

)···fq(kq,k0,pq)dk0 ···dkq. (6.12)

This isomorphism combines with φGP to give a morphism

(
φGP

)
∗ : HH∗

(
�∞c (G)

)
�→HH∗

(
�∞c (P)

)
. (6.13)

Theorem 6.2. Let P be a parabolic subgroup of a reductive p-adic group G. Con-
sider the morphisms (φGP )∗ and indGP : HH∗(�∞c (G)) → HH∗(�∞c (P)), defined above

(equations (6.3) and (6.13)). Then (φGP )∗ = indGP .

Proof. Let M1 and M2 be two left G-modules. We can regard M1 as a right mod-

ule, and then the tensor product M1⊗G M2 is the quotient of M1⊗M2 by the group

generated by the elements gm1 ⊗gm2 −m1 ⊗m2, as before. Alternatively, we can

think ofM1⊗GM2 as (M1⊗M2)⊗GC. This justifies the notation f ⊗G1 for a morphism

M1⊗GM2→M′
1⊗GM′

2 induced by a morphism

f = f1⊗f2 :M1⊗M2 �→M′
1⊗M′

2. (6.14)

We prove the theorem by an explicit computation. To this end, we use the results

and notation (hG and h̃G = hG⊗G 1) of Lemma 3.1.

By a direct computation using (6.12), we see that the morphism

τ ◦φGP : �∞c (G)⊗q+1 �→�∞c (P)⊗q+1 (6.15)

between Hochschild complexes, is given by the formula

τ ◦φGP (f)
(
p0,p1, . . . ,pq

)
=
∫
Kq+1

f
(
k0p0k−11 ,k1p1k

−1
2 , . . . ,kqpqk

−1
0

)
dk0dk1 ···dkq.

(6.16)

We now want to realize the map indGP : HH∗(�∞c (G))→HH∗(�∞c (P)), at the level of
complexes. In the process, it is convenient to identify the smooth G-module �∞c ((G×
P)/P) 
 indGP (�∞c (P)δ) with a subspace of the space of functions on G×P , using the
projection G×P → (G×P)/P .
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Consider the G-morphism

l : �q(G)⊗�∞c (G) �→�q(G)⊗ indGP
(
�∞c (P)δ

)
(6.17)

induced by the morphism

�∞c (G) �→ indGP
(
�∞c (P)δ

)⊂�∞(G×P). (6.18)

Explicitly,

l(f )
(
g0,g1, . . . ,gq,g,p

)= f (g0,g1, . . . ,gq,gpg−1). (6.19)

Then the resulting morphism

l⊗G 1 : Hq
(
G,�∞c (G)δ

)=Hq
(
G,�∞c (G)δ

)
�→Hq

(
G, indGP

(
�∞c (P)δ

))
(6.20)

is the morphism Hq(G,�∞c (G)δ)→ Hq(G, indGP (�∞c (P)δ)) on homology corresponding

to the G-morphism �∞c (G)→ indGP (�∞c (P)δ).
The G-morphism

r : �q(G)⊗ indGP
(
�∞c (P)δ

)
�→ indGP

(
�q(P)⊗�∞c (P)δ

)
=�∞c (G)⊗P

(
�q(P)⊗�∞c (P)δ

)⊂�∞
(
G×Pq+2) (6.21)

given by the formula

r(f )
(
g,p0,p1, . . . ,pq,p

)=
∫
Kq+1

f
(
gp0k−11 ,gp1k

−1
2 , . . . ,gpnk

−1
0 ,g,p

)
dk, (6.22)

(dk= dk0 ···dkq) is well defined and commutes with the differentials of the two com-

plexes. Moreover, it induces an isomorphism in homology, because the only nonzero

homology groups are in dimension 0, and they are both isomorphic to indGP (�∞c (P)δ).
We have an isomorphism

χ : indGP
(
�q(P)⊗�∞c (P)δ

)⊗GC �→ (
�q(P)⊗�∞c (P)δ

)⊗P C (6.23)

of complexes. This shows that the homology of the complex indGP (�∞c (P)δ)⊗G C is

isomorphic to Hq(P,�∞c (P)δ), and that the map induced on homology, that is,

χ
(
r ⊗G 1

)
: Hq

(
G, indGP

(
�∞c (P)δ

))
�→Hq

(
P,�∞c (P)δ

)
(6.24)

is also an isomorphism (the Shapiro isomorphism).

Below, where convenient, we drop the composition sign ◦, for example, we write rl
instead of r ◦l.
Recall now that the isomorphism Hq(G,�∞c (G)δ) 
 HHq(�∞c (G)) is induced by the

morphism of complexes h̃q defined in Lemma 3.1, equation (3.10). From the definition

of the morphism indGP : HH∗(�∞c (G)) → HH∗(�∞c (P)) and the above discussion, we

obtain the equality of the morphisms Hq(G,�∞c (G)δ) → Hq(P,�∞c (P)δ) induced by

χ ◦ (r l⊗G 1) and h̃
−1
P ◦ indGP ◦ h̃G. Thus, in order to complete the proof, it would be

enough to check that h̃P ◦χ◦(r l⊗G 1)= τ ◦φGP ◦ h̃G at the level of complexes. Let

t : �q(G)⊗ indGP
(
�∞c (P)δ

)
�→�q(G)⊗G indGP

(
�∞c (P)δ

)
(6.25)
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be the natural projection. Since the map hG is surjective, it is also enough to check

that h̃P ◦χ◦(r ⊗G 1)tl= τ ◦φGP ◦hG.
Let

r ′(f )
(
p0,p1, . . . ,pq,p

)=
∫
K×Kq+1

f
(
k′p0k−11 ,k′p1k

−1
2 , . . . ,k′pnk

−1
0 ,k′,p

)
dk′dk, (6.26)

where dk= dk0 ···dkq, as before. Then r ′ induces a morphism

r ′ : �q(G)⊗ indGP
(
�∞c (P)δ

)
�→�q(P)⊗�∞c (P)δ (6.27)

of complexes satisfying hP ◦r ′ = h̃P ◦χ ◦ (r ⊗G 1)t. Directly from the definitions we

obtain then that hP ◦r ′ ◦l= τ ◦φGP ◦hG. This completes the proof.

For simplicity, we have stated and proved the above result only for G reductive,

however, it extends to arbitrary G and P such that G/P is compact, by including the

modular function of G, where appropriate.
In order to better understand the effect of the morphism

indGP =
(
φGP

)
∗ : HH∗

(
�∞c (G)

)
�→HH∗

(
�∞c (P)

)
, (6.28)

it is sometimes useful to look at its action on the geometric fibers of the group

HH∗(�∞c (G)) regarded as an R∞(G)-module. This is especially useful because the ac-

tion on the geometric fibers also recovers some classical results on the characters of

induced representations.

First we observe that restriction defines a morphism ρGP : R∞(G)→ R∞(P). LetM be

a Levi component of the parabolic group P . Because the group G is reductive, we also

have R∞(P)
 R∞(M).
Lemma 6.3. Let P be a parabolic subgroup of a reductive p-adic group G, and let

ρGP : R∞(G)→ R∞(P) be the morphism induced by restriction, used to define an R∞(G)-
module structure on HH∗(�∞c (P)). Then

indGP : HH∗
(
�∞c (G)

)
�→HH∗

(
�∞c (P)

)
(6.29)

is R∞(G)-linear, in the sense that indGP (fξ)= ρGP (f ) indGP (ξ), for all f ∈ R∞(G) and all

ξ ∈HH∗(�∞c (G)).

Proof. The result of the lemma follows from the fact that the map

�∞c (G) �→ indGP
(
�∞c (P)δ

)
(6.30)

is R∞(G)-linear and the isomorphism of Shapiro’s lemma,

Hq
(
G, indGP

(
�∞c (P)δ

))
Hq
(
P,�∞c (P)δ

)
, (6.31)

is natural.

Alternatively, one can use the explicit formula of (6.16).

If m = mγ ⊂ R∞(G) is the maximal ideal of functions vanishing at a semi-simple

element γ ∈ G, then its image (ρGP )∗(m) := ρGP (m)R∞(P) ⊂ R∞(P) = R∞(M) is the
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ideal of functions vanishing at all g ∈ M that are conjugated to γ in G. If γ is ellip-

tic, then m = R∞(P). If γ ∈ M , then (ρGP )∗(m) need not, in general, be maximal. Let

γ1,γ2, . . . ,γl ∈M be representatives of the conjugacy classes of M that are contained

in the conjugacy class of γ. Then (ρGP )∗(m)=mγ1∩mγ2∩···∩mγl , and hence we obtain
a morphism (

ρGP
)
γ : C
 R∞(G)γ =

R∞(G)
m

�→ R∞(M)(
ρGP
)
∗(m)


 Cl. (6.32)

We are ready now to study the morphisms

(
indGP

)
γ : HHq

(
�∞c (G)

)
γ =

HHq
(
�∞c (G)

)
mHHq

(
�∞c (G)

) �→HHq
(
�∞c (P)

)
γ

= HHq
(
�∞c (P)

)
(
ρGP
)
∗(m)HHq

(
�∞c (P)

) 
 l⊕
j=1

HHq
(
�∞c (P)

)
γj .

(6.33)

Let CP(γj) be the centralizer of γj in P and CG(γj) 
 CG(γ) be the centralizer of
γj in G. Then CP(γj)u identifies with a subspace of CG(γ)u, which gives rise to a

continuous proper map CG(γ)×CP (γ) CP(γ)u→ CG(γ)u, and hence to a morphism

�∞c
(
CG(γ)u

)
�→ ind

CG(γ)
CP (γj)

(
�∞c

(
CP
(
γj
)
u
)
δ
)

(6.34)

of CG(γ)-modules. Passing to cohomology, we obtain using Shapiro’s lemma a mor-

phism

ιγγj : Hq
(
CG(γ),�∞c

(
CG(γ)u

))
�→Hq

(
CP(γ),�∞c

(
CP
(
γj
)
u
)
δ
)
. (6.35)

Recall that Proposition 4.3 gives isomorphisms

HHq
(
�∞c (G)

)
γ 
Hq

(
CG(γ),�∞c

(
CG(γ)u

))
,

HHq
(
�∞c (P)

)
γj 
Hq

(
CP
(
γj
)
,�∞c

(
CP
(
γj
)
u
)
δ
)
.

(6.36)

Proposition 6.4. Let γ ∈ G be a semi-simple element and M ⊂ P be as above.

If the conjugacy class of γ does not intersect M , then HH∗(�∞c (P))γ = 0, and hence

(indGP )γ = 0. Otherwise, using notation (6.35), we have

(
indGP

)
γ =⊕lj=1ιγγj : HH∗

(
�∞c (G)

)
γ �→⊕lj=1HH∗

(
�∞c (P)

)
γj 
HH∗

(
�∞c (P)

)
γ . (6.37)

Proof. This follows from definitions if we observe that, in the sequence of maps

G×P P×CP (γi)
(
γiCP

(
γi
)
u
)
G×CG(γi) CG(γi)×CP (γi) (γiCP(γi)u)
�→G×CG(γi)

(
γiCG

(
γi
)
u
)
,

(6.38)

the second map is induced by CG(γi)×CP (γi)CP (γi)u→ CG(γi)u and their composition

induces on homology the direct summand ιγγj of the map (indGP )γ .

Another morphism that is likely to play an important role is the “inflation mor-

phism,” which we now define. LetN ⊂ P be the unipotent radical of an algebraic p-adic
group, and let M = P/N be its reductive quotient. Then integration over N defines an

algebra morphism

ψPM : �∞c (P) �→�∞c (M), ψPM(f)(m)=
∫
N
f(mn)dn. (6.39)



154 VICTOR NISTOR

Integration over N also defines a G-morphism �∞c (P)δ → �∞c (M), and since N is a

union of compact groups, we finally obtain morphisms

HHk
(
�∞c (P)

)
Hk
(
P,�∞c (P)δ

)
�→Hk

(
P,�∞c (M)

)

Hk

(
M,�∞c (M)

)
HHk
(
�∞c (M)

)
,

(6.40)

whose composition we denote infPM .

Theorem 6.5. IfM is a Levi component of a p-adic group P , as above. Then we have

(
ψPM

)
∗ =

P
inf
M

: HH∗
(
�∞c (P)

)
�→HH∗

(
�∞c (M)

)
. (6.41)

Proof. Integration over N defines a morphism

f : �(P)⊗�∞c (P)δ �→�(M)⊗�∞c (M), (6.42)

which commutes with the action of P . Then f ⊗P 1 coincides with the morphism of

complexes induced by ψPM .
Consider now the maps hG defined in the proof of Lemma 3.1. Then ψPM ◦hP =

hM ◦f , and hence ψPM ◦ h̃P = h̃M ◦(f ⊗P 1), from which the result follows.

We now want to proceed by analogy and establish the explicit form of the action of

infPM on the geometric fibers of the groups HH∗(�∞c (P)) and HH∗(�∞c (M)). Fix γ ∈M .

Integration over the nilpotent radical of CP(γ), the centralizer of γ in P , induces a
morphism

�∞c
(
CP(γ)u

)
δ =�∞c

(
CP(γ)u

)⊗∆CP (γ) �→�∞c
(
CM(γ)u

)
(6.43)

of P -modules. Let

jγ : HH∗
(
�∞c (P)

)
γ =H∗

(
CP(γ),�∞c

(
CP(γ)u

)
δ
)
�→H∗

(
CP(γ),�∞c

(
CM(γ)u

))

H∗

(
CM(γ),�∞c

(
CM(γ)u

))
=HH∗

(
�∞c (M)

)
γ

(6.44)

be the induced morphism.

Proposition 6.6. Let P be a p-adic group, let M ⊂ P be a Levi component, and

γ ∈ M be a semi-simple element. Let d(γ) be the determinant of Ad−1γ −1 acting on

Lie(N)/ker(Ad−1γ −1). Then, using localization at the maximal ideal defined by γ in

R∞(G)= R∞(P) and notation (6.44), we have( P
inf
M

)
γ
= |d(γ)|−1jγ : HH∗

(
�∞c (P)

)
γ �→HH∗

(
�∞c (M)

)
γ. (6.45)

Proof. Fix γ ∈ G, not necessarily semi-simple and let Nγ be the subgroup of ele-

ments of N commuting with γ. We choose a complement Vγ of Lie(Nγ) in Lie(N) and
we use the exponential map to identify Vγ with a subset of N . Then the Jacobian of

the map

Vγ×Nγ �
(
n,n′

)
�→ γ−1nγn−1n′ ∈N = VγNγ (6.46)

is d(γ), and from this the result follows.

This result is compatible with the results of van Dijk on characters of induced

representations, see [26].
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7. Examples. The results of the previous sections can be used to obtain some ex-

plicit calculations of the groups HHk(�∞c (G)) for particular groups G.

Example 7.1. Let Z be a commutative p-adic group of split rank r (so that Hq(Z)

ΛqCr , for all q ≥ 0). Then

HHq
(
�∞c (Z)

)
�∞c (Z)⊗ΛqCr . (7.1)

Example 7.2. Let P be the (parabolic) subgroup of upper triangular matrices in

SL2(F), and A ⊂ P be the subgroup of diagonal matrices. Then inflation defines a

morphism

P
inf
A
: HH∗

(
�∞c (P)

)
�→HH∗

(
�∞c (A)

)=�∞c (A)⊗Λ∗C (7.2)

whose range is �∞c (A)⊕�∞c (A& {±I}), with I the identity matrix of SL2(F). (We see

this by localizing at each γ ∈A.) To describe the kernel of infPA, let

ub =
[
1 b
0 1

]
. (7.3)

Then, if we choose b to range through Σu, a set of representative of F∗/F∗2, the set of
elements ub forms a set of representatives of the set of nontrivial conjugacy classes

of unipotent elements of P (a unipotent element is nontrivial if it is different from

the identity). Recall that F has characteristic zero, so Σu is a discrete set. Let �ub be

the orbital integral associated to ub, and let �−ub be the orbital integral associated to

−ub, then the two maps

F± = ⊕b�±ub : �∞c (G) �→ CΣu (7.4)

can be used to identify the kernel of infPA as follows. The map

F+⊕F− : ker
( P
inf
A

)
�→ C±Σu (7.5)

is injective, and the range of each of the two morphisms F± is the set of elements with

zero sum.

All in all, we consider the map Φ = infPA⊕F+⊕F−,

Φ : HH∗
(
�∞c (P)

)
�→ (

�∞c (A)⊕C±Σu
)
(0)⊕

(
�∞c

(
A&{±I}))(1), (7.6)

where the lower index (i) represents the degree. Then Φ is surjective in degree 1,

and, in degree 0, its range consists of (f ,λb,ε), f ∈ �∞c (A), λb,ε ∈ C, for ε ∈ {±1} and
b ∈ Σu 
 F∗/F∗2, such that

∑
b λb,ε = f(εI), for ε=±1.

The following example is also discussed in [1, 5], but from a different perspective.



156 VICTOR NISTOR

Example 7.3. Consider now the group G = SL2(F), where F is a p-adic field of

characteristic zero. Let Fq be the residual field of F (thus q denotes the number of

elements of Fq and is the power of the prime number p). We choose ε in the valuation
ring of F, such that its image in Fq is not a square. Also, let τ be a generator of the

(unique) maximal ideal of the valuation ring of F. Fix aθ ∈ F not in the image of the

norm map N : F[θ]∗ → F∗. We use the notation of [21], so let θ ∈ {ε,τ,ετ} and let Tθ
and T #

θ be the elliptic tori defined by

Tθ=
{[
aij

]
, a11=a22, a21=θa12

}
, T #

θ =
{[
aij

]
, a11=a22, a21=θa2θa12

}
. (7.7)

We distinguish two cases, first the case where −1 is a square in F and then the case

where it is not a square in F. If −1 is a square, then the Weyl group of each of the

tori Tθ or T #
θ has order 2 (and will be denoted by S2). Otherwise W(T)= {1}, for each

torus T = Tθ or T = T #
θ , but Tθ and T

#
θ are conjugate for each fixed θ.

Let X = ∪θ(Tθ/S2∪T #
θ /S2), if −1 is a square, and X = ∪θTθ otherwise. We endow

X with the induced topology. Then X&{±1} identifies with the set of elliptic conju-

gacy classes of SL2(F). Denote by A ⊂ SL2(F) the set of diagonal matrices in SL2(F).
Let W(A) = S2 act on �∞c (A)⊗Λ∗C by conjugation on �∞c (A) and by the nontrivial

character on C.
Recall that the set ub, b ∈ F/(F∗)2, parameterizes the set of conjugacy classes of

unipotent elements of SL2(F). Consequently, the set ub, b ∈ F∗/(F∗)2, parameterizes

the set of conjugacy classes of nontrivial unipotent elements of SL2(F). Let l be the
number of elements of F∗/(F∗)2. Then we have the following proposition.

Proposition 7.4. Let P ⊂ SL2(F) be the subgroup of upper triangular matrices. The

composition

φ := inf
a
AP ◦ indGP : HH∗

(
�∞c

(
SL2(F)

))
�→HH∗

(
�∞c (A)

)=�∞c (A)⊗Λ∗C (7.8)

has range consisting of W(A)-invariant elements. The kernel of φ is isomorphic to

�∞c (X & {±I})⊕C2l, via orbital integrals with respect to elliptic elements and orbital

integrals with respect to ±ub, b ∈ F/(F∗)2. The factor C2l corresponds to the fact

that there are l + 1 conjugacy classes of unipotent elements of SL2(F) but the or-

bital integral associated ±ub satisfy
∑
b∈F∗/(F∗)2 �εub(f )=φ(f)(ε), if f ∈ ker(φ) and

ε∈ {±1}.
Proof. First of all, it is clear that the composition φ = infPA ◦ indGP is invariant

with respect to the Weyl group W(A), and hence its range consists of W(A)-invariant
elements.

The localization ofφ at a regular, diagonal conjugacy class γ is onto by Proposition
4.3. Next, we know that every orbital integral extends to �∞c (SL2(F)), and this implies

directly that the spectral sequence of Proposition 5.7 collapses at the E2 term. This

proves that the localization of φ at γ = 1 is also onto, and hence φ is onto. The rest

of the proposition follows also from Proposition 5.7 by localization.

We also have the following alternative description of HH∗(�∞c (SL2(F))).
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Corollary 7.5. The morphism indGP : HH∗(�∞c (SL2(F)))→HH∗(�∞c (P)) has image

consisting of those elements whose image through the morphism

P
inf
A
: HH∗

(
�∞c (P)

)
�→HH∗

(
�∞c (A)

)
(7.9)

is W(A)-invariant. The kernel of indGP is isomorphic to �∞(X).

Example 7.6. We end this section with a description of the ingredients enter-

ing in the formula (1.3) for the Hochschild homology of �∞c (G), if G = GLn(F). Let
γ ∈ G be a semi-simple element. The minimal polynomial Qγ of γ decomposes as

Qγ = p1p2 ···pr into irreducible polynomials with coefficients in F. (We assume, for

simplicity, that each polynomial pj is a monic polynomial.) Also, let Pγ = pl11 pl22 ···plrr
be the characteristic polynomial of γ. Then the algebra generated by γ is

F[γ]
K1⊕···⊕Kr , (7.10)

where Ki = F[t]/(pi(t)) are not necessarily distinct fields. The commutant {γ}′ of γ
in Mn(F) is the commutant of this algebra, and hence

{γ}′ 
Ml1
(
K1
)⊕Ml2(K2

)⊕···⊕Mlr (Kr ),
C(γ)


r∏
i=1

GLli
(
Ki
)
, S := Z(C(γ))
 r∏

i=1
K∗i ,

Sreg

{(
xi
)∈ r∏

i=1
K∗i , Ki=F

[
xi
]
and the minimal polynomials of xi are distinct

}
.

(7.11)

By the Skolem-Noether theorem, the Weyl group W(S)=N(S)/C(S) coincides with
the group of algebra automorphisms of {γ}′. This group has as quotient a group

isomorphic to the subgroup Π ⊂ N(S) which permutes the algebras Mli(Ki). Then
Π
 Sm1×···×Smt , that is, Π is a product of symmetric groups. We denote the kernel

of this morphism by W0(S). It is isomorphic to
∏r
i=1AutF(Ki) (again by the Skolem-

Noether theorem). The group W(S) is then the semi-direct product of W0(S) by Π. We

hence obtain exact sequences

1 �→N0(S) �→N(S) �→Π �→ 1,

1 �→ C(S) �→N0(S) �→W0(S) �→ 1.
(7.12)

According to (1.3), the only other ingredients necessary to compute HH∗(�∞c (G))
are the groups H∗(C(S),�∞c (�S)).
Now, the unipotent variety of C(S) is the product of the unipotent varieties of

GLli (Ki), i = 1,r , and the subgroup C(S) preserves this product decomposition. We

see then that in order to prove that the spectral sequence of Proposition 5.7 collapses

(for any choice of open subsets Ui), it is enough to check this for the spectral sequence
converging to the cohomology of �∞c (GLn(K)u), for an arbitrary characteristic zero

p-adic field K.
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Fix a unipotent element γ ∈ GLn(K). Define then V0 = 0, Vl = ker(γ−1)l ⊂ Kn, if
l > 0. Also, choose Wl such that Vl = Vl−1⊕Wl, and define

P = {γ ∈ GLn(K), γVl ⊂ Vl
}
, M = {γ ∈ GLn(K), γWl =Wl

}
. (7.13)

Then P is a parabolic subgroup with unipotent radical

N = {γ ∈ GLn(K), (γ−1)Vl ⊂ Vl−1
}
, (7.14)

and M is a Levi component of P . It is easy to check, from definition, that the P -orbit
of u in N is dense. The centralizer of u is then contained in P and has split rank less

than or equal to the split rank of P . Fix a maximal split torus A in the centralizer of

u. We can assume that this split torus is contained in M . From the definition and by

direct inspection, the map H∗(A)→H∗(M) is injective, and hence the map

H∗(M) �→H∗(A)=H∗
(
C(u)

)
(7.15)

is surjective.

Fix now a cohomology class c0 ∈Hq(C(γ))
Hq(A) and choose a cohomology class

c ∈Hq(M) that maps to c0 under the above restriction map. Also, let τ be the trace on
τ0(f )= f(e) on �∞c (M) (obtained by evaluation at the identity e). Then the formula

φ0
(
f0, . . . ,fq

)= τ0(Dc(f0, . . . ,fq)) (7.16)

defines a Hochschild cyclic cocycle on �∞c (M). Consequently,

φ=φ0 ◦
P
inf
A
◦ indGP (7.17)

defines a Hochschild cocycle on �∞c (G). For any filtration Ui of Gu by open, invariant
open sets, such that each Ul &Ul−1 consists of a single orbit. Suppose that the orbit
Ul&Ul−1 is the orbit of γ ∈ GLn(F) considered above. Then the cocycle φ will vanish

on �∞c (Ul) and represent the cohomology class

c ∈Hq
(
C(γ)

)
Hq
(
G,�∞c

(
Ul&Ul−1

))
. (7.18)

From this it follows that the spectral sequence of Proposition 5.7 degenerates at E2.
It is very likely that the above argument extends to arbitrary reductiveG by choosing

M and P as in [20].
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