
IJMMS 26:3 (2001) 173–178
PII. S016117120100432X
http://ijmms.hindawi.com
© Hindawi Publishing Corp.
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Abstract. The holomorphic extension of functions defined on a class of real hypersur-
faces in Cn with singularities is investigated. When n = 2, we prove the following: every
C1 function on Σ that satisfies the tangential Cauchy-Riemann equation on boundary of
{(z,w) ∈ C2 : |z|k < P(w)}, P ∈ C1, P ≥ 0 and P �≡ 0, extends holomorphically inside
provided the zero set P(w) = 0 has a limit point or P(w) vanishes to infinite order. Fur-
thermore, if P is real analytic then the condition is also necessary.
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1. Introduction. The problem of holomorphic extensions of CR functions on non-

singular real hypersurfaces of Cn is classical and well investigated. See, for example,

[2]. An optimal result in C2 was obtained by Trepreau [6] (see Section 4).

In this paper, the phenomenon of holomorphic extension of functions on singular

real hypersurfaces Σ is investigated. In analogy with the nonsingular case, we need

to have the notion of tangential Cauchy-Riemann equations on Σ. More precisely, we

need the notion of a CR (Cauchy-Riemann) function. We call a function on Σ a CR

function if it is continuous on Σ and satisfies tangential Cauchy-Riemann equations

on the nonsingular part of Σ.
The hypersurfaces considered in this paper are the ones that bound regions which

can be swept with analytic disks, with singularities being precisely the points where

these disks degenerate into points. Following [3], the approach then is to integrate

the given CR function f on the boundaries of these disks with the Cauchy Kernel, and

obtain a holomorphic function f̃ defined in the interiors of the disks. The question

then is, are the boundary values of f̃ given by f ? The main result roughly states that,

if the degenerate disks are parameterized by a set which is a uniqueness set for holo-

morphic functions in the direction transversal to analytic disks, then the function f̃ is

indeed the holomorphic extension of f . When n= 2, this condition is also necessary

in the real analytic case.

2. The main result. Let Ω be a region in Cn containing 0. Let Σ= {z ∈Ω : ρ(z)= 0}
be a connected (2n−1)-dimensional subset of Ω, where ρ is a real-valued C2 function

on Ω such that ρ(0)= 0 and dρ �≡ 0 on Σ. For z = (z1, . . . ,zn)∈ Cn, let z′ = (z2, . . . ,zn),
and let π ′ denote the projection π ′(z)= z′. For each fixed z′0 ∈π ′(Ω), put

γz′0 =
{
z1 : ρ

(
z1,z′0

)= 0
}
. (2.1)

We assume that Σ satisfies the following hypothesis: each γz′0 either degenerates into
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a point or it defines a closed connected C1 curve in the z1-plane such that

ρz1
(
z1,z′0

) �= 0 ∀z1 ∈ γz′0 . (2.2)

Put
SΣ =

{
p ∈ Σ : dρ(p)= 0

}
,

DΣ =
{
z′ ∈π ′(Ω) : γz′ degenerates

}
.

(2.3)

Lemma 2.1. If Σ, DΣ, and SΣ are as above, then the following hold:

DΣ =π ′{z ∈ Σ : ρz̄1(z)= 0
}
, (2.4)

DΣ �=π ′(Ω), (2.5)

π ′(SΣ)⊂DΣ. (2.6)

Proof. Suppose z′0 ∈DΣ. If {z0
1} = γz′0 then (z0

1,z
′
0)∈ Σ, and if ρz̄1(z

0
1,z

′
0) �= 0 then

the equation ρ(z1,z′0) = 0 defines a one-dimensional curve near z1 = z0
1, which is a

contradiction.

Conversely, assume z0 ∈ Σ is such that ρz̄1(z0)= 0. Since ρ is real, ρz1(z0)= 0 also.

If z′0 =π ′(z0) ∉DΣ then, by the hypothesis on Σ, ρ(z1,z′0)= 0 is the defining equation

of a closed connectedC1 curve in z1-space, which is a contradiction sincedρ(·,z′0)≡ 0.

To prove (2.5), assume that DΣ = π ′(Ω). Let α(z′) denote the unique solution of

ρ(α,z′)= 0. Note that α is at least continuous. Now since the map

z′ �→ (α(z′),z′) (2.7)

parameterizes Σ, the real-dimension of Σ is 2n− 2. This is a contradiction to our

hypothesis that Σ is (2n−1)-dimensional.

Finally, (2.6) follows immediately from (2.4).

The vector fields

Lj = ρz̄j
∂
∂z̄1

−ρz̄1
∂
∂z̄j

, 2≤ j ≤n, (2.8)

have continuous coefficients which vanish precisely at the singular set SΣ, and form a

basis of tangential Cauchy-Riemann equations on the nonsingular part of Σ.
Let Σ± denote the two “sides” of Σ. By replacing ρ by −ρ, if necessary, we may

assume that

Σ+ = {z ∈Ω : ρ(z) < 0
}

(2.9)

is the side that contains the interiors of the curves γz′ .

Definition 2.2. A C1 function f defined on Σ is called a CR function if it satisfies,

Ljf ≡ 0 on the regular part of Σ ∀j = 2, . . . ,n. (2.10)

(Here by a C1 function on Σ we mean a function continuous on Σ, and C1 on Σ−SΣ.)
Lemma 2.3. If u is a CR function on Σ, then

ũ
(
z′
)=

∫
ρ(ζ,z′)=0

u
(
ζ,z′

)
dζ (2.11)

is a holomorphic function in π ′(Ω).
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Proof. It is clear that ũ is continuous and

ũ
(
z′
)= 0 on DΣ. (2.12)

By Rado’s theorem [5] and by Hartogs’s theorem, it is enough to prove that ũ is sepa-

rately holomorphic in π ′(Ω)−DΣ. It is enough to show that it is holomorphic in one

of the variables, say z2, with the remaining variables fixed. Denote z′′ = (z3, . . . ,zn)
and fix z′′ = z′′0 . For the sake of convenience of notations, in the rest of the proof

of Lemma 2.3, we omit the z′′0 and write ρ(z1,z2) for ρ(z1,z2,z′′0 ). Observe that the

induced tangential Cauchy-Riemann vector field on ρ(z1,z2)= 0 is

L2 = ρz̄2
∂
∂z̄1

−ρz̄1
∂
∂z̄2

. (2.13)

LetC be an arbitrary closed rectifiable Jordan curve in the z2-space such that (z2,z′′0 ) ∉
DΣ for all z2 ∈ int(C), the closure of the interior. If z1 = γ(θ,z2) denotes the C1 curve

ρ(z1,z0
2)= 0, then

ρ
(
γ,z2

)≡ 0. (2.14)

By Morera’s theorem, to prove the holomorphicity of ũ it is enough to show that
∫
C
ũdz2 = 0. (2.15)

If we view dz1 and dz̄1 as dγ and dγ̄, restricted to Σ, respectively, then on Σ we

have

ρz1 dz1+ρz̄1 dz̄1+ρz2 dz2+ρz̄2 dz̄2 = 0. (2.16)

Since ρz̄1 �= 0, we have

dz̄1∧dz1∧dz2 =−ρz̄2ρz̄1
dz̄2∧dz1∧dz2. (2.17)

Since L2u= 0, the above equation implies that

d
(
u(z)dz1∧dz2

)=
(
∂u
∂z̄1

dz̄1+ ∂u
∂z̄2

dz̄2
)
dz1dz2= 1

ρz̄1

(
L2u

)
dz̄2dz1dz2=0. (2.18)

Hence the restriction of the form u(z)dz1∧dz2 to Σ is closed. By applying the Stokes’

theorem, we have ∫
C
ũdz2 = 0. (2.19)

Definition 2.4. Σ is said to be extendible to the side Σ+ if the following holds: for

every CR function f on Σ∩Ω, there is a function F holomorphic in Σ+ and continuous

on Σ+ such that F|Σ∩Ω = f .
By a uniqueness set E of a connected and simply connected set U , we mean a subset

E ⊆ Ū such that for any function f continuous on Ū and holomorphic in U that

vanishes on E vanishes identically on U .

Theorem 2.5. Let Σ andDΣ be as described above. IfDΣ is a uniqueness set ofπ ′(Ω),
then Σ is extendible to Σ+.
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Proof. Let f be a CR function on Σ. Following [3], we define

f̃ (z)= (2πi)−1
∫
ρ(ζ1,z′)=0

f
(
ζ1,z′

)
ζ1−z1 dζ1. (2.20)

Since for z ∉ Σ, the integrand in f̃ is a CR function on ρ(ζ1,z′) = 0 we can apply

Lemma 2.3 to conclude that f̃ is holomorphic in the domain Ω−Σ.
It needs to be shown that f̃ is an extension of f to Σ+. It is enough to show this

for each fixed z′ = z′0. In order to show that f̃ is a holomorphic extension of f to the

inside of ρ(z1,z′0) = 0, all we need to show is that f̃ (z1,z′) = 0, for all (z1,z′) such

that z1 ∉ int(γz′). (See [4].)

Let π1 denote the projection of Cn to the first coordinate: π1(z) = z1. Let {Kj}∞j=1
be a sequence of exhausting sequence of compact open subsets of π1(Ω). For each

j ≥ 1, put
Ωj =Kj×π ′(Ω). (2.21)

We first show that the restriction of f to Σ∩Ωj extends holomorphically to Σ+j =
Ωj∩Σ+. Let R > 0 be a large constant such that the following is satisfied:

∣∣z1∣∣>R �⇒ (z1,z′) ∉Ωj ∀z′ ∈π ′(Ω). (2.22)

Let z0
1, |z0

1|> R, be fixed. By (2.22) and by Lemma 2.3, it follows that z′ → f̃ (z0
1,z′) is

holomorphic in π ′(Ω), and it clearly vanishes on DΣ. By the hypothesis that DΣ is a

uniqueness set of π ′(Ω), f̃ (z0
1,z′) must vanish everywhere in π ′(Ω). Hence

f̃
(
z1,z′

)≡ 0 if
∣∣z1∣∣>R. (2.23)

Since f̃ is holomorphic in ρ(z) > 0, f̃ (z1,z′)= 0 for all z1 ∈Kj and outside γz′ .
If f̃j denotes the holomorphic extension of f toΩ(j)

+ . It is clear from the construction

of f̃j ’s that f̃j = f̃j′ if j′ > j. By letting j→∞, we get the extension to all of Ω.

3. The two-dimensional case

Theorem 3.1. LetΩ ⊂ C2 be a region containing the origin. Let P ∈ C1(πw(Ω)) such
that P ≥ 0 and P �≡ 0. Let k > 1. Consider the following three-dimensional set:

Σ= {(z,w)∈Ω : |z|k = P(w)}, (3.1)

then, in order for Σ to be extendible to

{
(z,w)∈Ω : |z|k < P(w)}, (3.2)

it is sufficient that either the zero ser P(w) = 0 has a limit point in πw(Ω) or P(w) is
flat at some point in πw(Ω). Furthermore, if P is real analytic then the above condition

is also necessary.

Proof. The vector field

L= 2Pw̄
∂
∂z̄
−kz|z|k−1 ∂

∂w̄
(3.3)

can be taken as a CR vector field on Σ. The intersection of each complex line w =w0

with Σ is a circle, possibly degenerate, centered at 0 in the z-plane. The degenerate
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ones are given by those w ∈DΣ = {w ∈ πw(Ω) : P(w) = 0}. Hence, if P(w) = 0 has a

limit point, then Σ satisfies the hypothesis of Theorem 2.5.

Now assume that DΣ is discrete and P vanishes to infinite order atw0 ∈DΣ. For the
sake of convenience we assume that w0 = 0.

As in the proof of Theorem 2.5, the function

f̃ (z,w)= (2πi)−1
∫
|z|=p(w)

f (ζ,w)
ζ−z dζ (3.4)

is an holomorphic extension of f to |z|<p(w), provided

Jm(w)=
∫
|z|=p(w)

f (ζ,w)ζmdζ ≡ 0 ∀m= 0,1,2, . . . . (3.5)

By following the reasoning in the proof of Lemma 2.3, and by using Rado’s theorem,

we can conclude that the Jm’s are holomorphic functions in πw(Ω). We show that the

Jm’s vanish to infinite order at 0.

Letm be fixed. Rewriting Jm as

Jm(w)= i
(
p(w)

)m+1∫ 2π

0
f
(
p(w)eiθ,w

)
ei(m+1)θ dθ, (3.6)

we have ∣∣Jm(w)∣∣≤ ∣∣p(w)∣∣m+1
∫ 2π

0

∣∣f (p(w)eiθ,w)∣∣dθ. (3.7)

The integrand in Jm is bounded when w stays in a bounded set containing 0. Since P
vanishes to infinite order at 0, for every integer l > 0 there is a constant Cl such that

|P(w)|<Cl ·|w|l. We have

∣∣J(w)∣∣<C1/k
l ·|w|l(m+1)/k(2π) sup

|w|<R,θ

∣∣f (p(w)eiθ,w)∣∣<C′l |w|l′ , (3.8)

where C′l′ > 0 is a constant, and l′ is an integer, l′ → ∞ as l→∞. Hence, Jm vanishes

to infinite order at 0.

Suppose P is real analytic. First assume that P(w) �= 0 for w �= 0. Since P is real

analytic, there are constants C > 0 and δ > 0 such that |P(w)| ≥ C|w|δ.
Let m be a large fixed positive integer, and let u be a function on Σ defined as

follows:

u(z,w)= wm

zk

∣∣∣∣
Σ

if 0 �= (z,w)∈ Σ, if u(0,0)= 0. (3.9)

Since

|u| = |w|
m

|z|k
∣∣∣∣
Σ
= |w|

m

P(w)
≤ |w|m−δ, (3.10)

it follows that it is continuous on Σ. By choosingm large, we can makeu a Cr function
for a given r . Clearly u is a CR function that does not extend holomorphically to the

side |z|k < P(w). This example can be easily modified to the case when P(w) has

more than one isolated zero.

4. Examples. A theorem of Trepreau [6] says that if a nonsingular real hypersurface

Σ ⊂ C2, 0 ∈ Σ, does not contain a holomorphic curve passing through 0, then Σ is
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extendible, near 0, to at least one side. The analogue of this theorem does not hold

for singular real hypersurfaces as shown by the following example.

Example 4.1. Consider the hypersurface

Σ= {(z,w)∈ C2; |z|2 = |w|2+|w|4} (4.1)

with an isolated singularity at the origin. It follows from Theorem 3.1, that Σ is not

extendible to either side. Suppose V is a holomorphic curve contained in Σ. Ifp �= (0,0)
is a nonsingular point of V , then Σ is of infinite type at p (see [1]). But a simple

calculation shows that Σ is of type 2 at all points p �= (0,0). Hence, Σ does not contain

a holomorphic curve.

Example 4.2. Theorem 3.1 shows that the hypersurface

Σ= {(z,w)∈ C2 : |z|2 =w2+w̄2} (4.2)

is extendible to the side |z|2 <w2+w̄2. As before it is easy to see that the restriction

of z4w−1 to Σ is a CR function which clearly does not extend holomorphically to

|z|2 >w2+w̄2.

Example 4.3. The hypersurface Σ = {(z,w) ∈ C2; |z|2 = e−1/|w|2}∪{(0,0)} has an

isolated singularity at the origin and, by Theorem 3.1, is extendible to |z|2 < e−1/|w|2 .
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