
IJMMS 26:5 (2001) 269–280
PII. S0161171201020129
http://ijmms.hindawi.com
© Hindawi Publishing Corp.

SEMICLASSICAL QUANTIZATION OF CIRCULAR BILLIARD
IN HOMOGENEOUS MAGNETIC FIELD:

BERRY-TABOR APPROACH
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Abstract. Semiclassical methods are accurate in general in leading order of �, since they
approximate quantum mechanics via canonical invariants. Often canonically noninvari-
ant terms appear in the Schrödinger equation which are proportional to �2, therefore a
discrepancy between different semiclassical trace formulas in order of �2 seems to be
possible. We derive here the Berry-Tabor formula for a circular billiard in a homogeneous
magnetic field. The formula derived for the semiclassical density of states surprisingly
coincides with the results of Creagh-Littlejohn theory despite the presence of canonically
noninvariant terms.
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1. Introduction. Semiclassical methods are part of an important aspect of quan-

tum chaos, the understanding of the transition from classical to quantum mechanics.

These methods can be viewed as generalizations of the Bohr-Sommerfeld quantiza-

tion rules. The most famous one is Gutzwiller’s trace formula for the level density

of classically chaotic systems [9, 10, 11], where the old quantization rules do not ap-

ply. This formula relates the density of states to the actions, periods, and stability of

classical periodic orbits. Since this method is applicable only when all the involved

orbits are isolated in phase space, other methods were developed for systems where

periodic orbits form continuous families. The Berry-Tabor formula [1, 2] has been de-

veloped for integrable systems while the Creagh-Littlejohn theory [4, 5] for systems

with continuous symmetries.

In special cases the leading order term of the semiclassical quantization reproduces

the exact quantum result [13], however, in general, quantum corrections to higher or-

ders are of great interest in the study of the accuracy of the semiclassical approxima-

tions [6, 8, 12, 13, 14]. One reason why semiclassical methods are accurate in leading

order of � only, is that they are approximating quantum mechanics via canonical in-

variants. Often, canonically noninvariant terms appear in the Schrödinger equation

upon coordinate transformation which are proportional with �2. Consequently, a dis-
crepancy between different semiclassical methods of order �2 might occur.

The goal of this paper is to derive the Berry-Tabor semiclassical trace formula for

the density of states of the circular billiard in a homogeneous magnetic field and to

compare the result with a similar trace formula [3] derived from the Creagh-Littlejohn

theory. This system has the property that when the Schrödinger equation is trans-

formed from Cartesian coordinates to polar coordinates, a (�2/r)(∂/∂r) term appears
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(r is the distance from the center,φ is the angle), which has no definite classical coun-

terpart in the classical Hamilton function in polar coordinates. Thus this system is

ideal for testing whether there is a discrepancy between different semiclassical level

densities in orders of �2.

2. The Berry-Tabor level density of two-dimensional integrable systems. Gener-

ally, in d dimensions, a system is integrable if there are d independent constants of

the motion. Usually this is the result of the fact that the Hamiltonian is separable, that

is, in a suitably chosen coordinate system the Hamiltonian depends only on separate

functionsφi(qi,pi) of the coordinates and the conjugated momenta. This means that

the dynamics can be viewed as a collection of independent one-dimensional dynamical

systems. The function φ(qi,pi) plays the role of the Hamiltonian in each subsystem.

The one-dimensional semiclassical quantization procedure can be carried out in each

subsystem separately

Ii = 1
2π

∮
pidqi = �

(
ni+ νi

4

)
, ni = 0,1,2, . . . , (2.1)

where Ii is the action variable and νi is the Maslov index. The Maslov index is the

sum of the Maslov indices of the turning points of the classical motion. Smooth or

“soft” classical turning points (i.e., zeros of pi(qi)) contribute +1 to the Maslov index,
while “hard” classical turning points (i.e., infinite potential walls) contribute +2 to the
Maslov index.

The quantized energies can be recovered if we express the Hamiltonian in terms

of Ii

E
(
n1,n2, . . . ,nd

)=H(I1, I2, . . . , Id)
=H

(
�
(
n1+ ν1

4

)
,�
(
n2+ ν2

4

)
, . . . ,�

(
nd+ νd

4

))
.

(2.2)

The semiclassical density of states is the density of these energies,

d(E)=
∞∑

n1,n2,...,nd=0
δ
(
E−E(n1,n2, . . . ,nd

))
. (2.3)

The density of states can be rewritten via the Poisson resummation technique

d(E)=
∫
ddIδ

(
E−H(I1, I2, . . . , Id))

d∏
i=1

+∞∑
ni=−∞

δ
(
Ii−�

(
ni+ νi

4

))

=
∞∑

m1,m2,...,md=−∞

∫
ddIdt

1
2π�d+1

e(i/�)(t(E−H(I1,...,Id))+2π
∑
imi(Ii−�νi/4)).

(2.4)

Here, we used the Fourier expansion of the delta spike train. The term mi = 0 (i =
1,2, . . . ,d) can be evaluated directly and yields the nonoscillatory average density of

states. Other terms can be evaluated by the saddle point method when � → 0. The

saddle point conditions select the periodic orbits of the system and the result of the
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integration is

d(E)= d0(E)+
∑
p

+∞∑
r=1

(2π)(d−1)/2

2(χp−1)�(d+1)/2
cos

(
rSp(E)/�−(π/2)rνp+(π/4)(d−1)

)
√(
rTp

)d−1(−detDp) .

(2.5)

Here p is the index of the primitive periodic orbits, r is the number of repetitions,

Sp is the classical action along the orbit, Tp is the time period of the orbit, νp is the

Maslov-index. The quantity χp is the number of action variables of the periodic orbit

whose saddle point value is zero (Ik = 0), since in this case the Gaussian saddle point

integral is only one-sided and its contribution is half of the full Gaussian integral. The

matrix Dp is related to the second derivative matrix

detD = det



∂2H

(
I1, . . . , Id

)
∂Ii∂Ij

∂H
(
I1, . . . , Id

)
∂Ii

∂H
(
I1, . . . , Id

)
∂Ij

0


 . (2.6)

Equation (2.5) is the generic form of the semiclassical density of states in terms of

periodic orbits, known as the Berry-Tabor formula.

In two dimensions, very often the Hamiltonian cannot be expressed with the action

variables explicitly, only the implicit function

I2 = g
(
I1,H

)
(2.7)

is available. In this case it is more useful to express the quantities in the Berry-Tabor

trace formula in terms of the derivatives of g. With the simple transformations de-

tailed in Appendix A, one can write down the period and the main determinant simply

as

T = 2πm
∂g
(
I1,E

)
∂E

, detD = (2πm)
3

T 3

∂2g
∂I21

. (2.8)

In the expressions above m is the number of cycles in the motion projected to the

variable I2 under one cycle of the orbit. The density of states in two dimensions is

then

d(E)= d0(E)+
∑
p

+∞∑
r=1

cos
(
rSp(E)/�−(π/2)rνp+(π/4)(d−1)

)
2χpπ(�)3/2

√
−rm3

p
(
∂2g/∂I21

)
/T 2

p

. (2.9)

3. The circle billiard in homogeneous magnetic field. In this section, we apply the

general theory outlined in Section 2 for the case of the circle billiard in a homogeneous

magnetic field. In polar coordinates the Hamiltonian and the conjugated momenta are

as follows:

H = 1
2m

(
p2
r +

p2
φ

r 2
+ e

2B2r 2

4
−eBpφ

)
, pr =mṙ, pφ =mr 2φ̇+ eBr

2

2
. (3.1)
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The action integrals Ir and Iφ are generated via (2.1) as

Iφ = 1
2π

∮
pφdφ= pφ, (3.2)

Ir = 1
2π

∮
pr dr = 1

2π

∮ (
2mE− p

2
φ

r 2
− e

2B2r 2

4
+eBpφ

)1/2
dr

= 1
2π


√−I2φ+(2mEa2+2αIφ)z2−α2z4

−
(
mEa2+αIφ

)
α

arcsin


 mEa2+αIφ−α2z2

mEa2
√
1+(2αIφ/mEa2)




−Iφ arcsin



(
mEa2+αIφ

)
z2−I2φ

z2mEa2
√
1+(2αIφ/mEa2)





r1

r2

, (3.3)

where we introduced the new variables α := eBa2/2 and z := r/a, where a denotes

the radius of the billiard. In the first equation pφ is a constant of the motion. At the

second equation, to determine Ir we have to substitute into r1 and r2 the classical

turning points. In the case of cyclotron orbits (i.e., orbits not hitting the wall) these

are the zeros of the function pr (r)

r1 =
√
2mEa+

√
2mEa2+4αpφ
2α

, r2 =
∣∣∣∣∣∣
√
2mEa−

√
2mEa+4αpφ
2α

∣∣∣∣∣∣. (3.4)

The integration in (3.3) within these boundaries gives

Ir = mEa
2

2α
. (3.5)

For bouncing orbits the upper limit in (3.3) should be replaced by the wall of the

billiard, resulting in

Ir = 1
2π


√−I2φ+2mEa2+2αIφ−α2

−
(
mEa2+αIφ

)
α

arcsin


 mEa2+αIφ−α2

mEa2
√
1+(2αIφ/mEa2)




−Iφ arcsin

 mEa2+αIφ−I2φ
mEa2

√
1+(2αIφ/mEa2)


+

(
mEa2+αIφ

)
α

π
2
−Iφ π

2


.

(3.6)

We see that the right-hand side of (3.6) is the function g(E,Iφ) which connects the

energy and Iφ to Ir . According to (2.8), (2.9) we need the

∂2g
∂Iφ2 =

1
π

mEa2+Iφα−α2(
mEa2+2Iφα

)√−Iφ2+2mEa2+2Iφα−α2
, (3.7)

derivative of g for the semiclassical density of states.
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The next step is the classification and examination of the periodic orbits. This is

discussed in detail in [3], so here we only summarize their results. Every primitive

bouncing periodic orbit can be indexed in the following way: (qp,wp)±, where qp
denotes the number of corners (vertices), and wp is the winding number, that is, it

counts how often the orbit winds around the center. (Of course, qp ≥ 2 and wp ≥ 1.)

The additional upper index is “+” if in the weak field limit, the orbit segments are bent

toward the center of the billiard, and “−” if they are bent outward (see Figures B.1 and
B.2). From now on in every formula the upper signs are for the “+” orbits, the lower
signs for the “−” orbits. From simple geometry (outlined in Appendix B) the length L,
the time T , the action S, and the action integral Iφ of the orbits (q,w)± are given by

φp := πwp

qp
, ψp := arcsin

(
a
Rc

sin
(
φp

))
, (3.8)

Lp = qpRc2ψp, (3.9)

Tp = Lpv = Lp
2
√
2mE

= qpRcψp√
2mE

, (3.10)

Iφ,p =±
√
2mEacos

(
φp±ψp

)+α, (3.11)

Sp=




√
2mELp−qpB

[
a2

2
sin

(
2φp

)+R2
cψp− R

2
c
2
sin

(
2ψp

)] (−, Rc > a),
√
2mELp−qpB

[
R2
c
(
π−ψp

)+R2
c
2
sin

(
2ψp

)−a2
2
sin

(
2φp

)] (−, Rc < a),
√
2mELp+qpB

[
a2

2
sin

(
2φp

)−(R2
cψp− R

2
c
2
sin

(
2ψp

))]
(+),

(3.12)

where we introduced Rc =
√
2mE/eB, the cyclotron radius.

Now we are in the position to construct the semiclassical density of states for the

Rc ≥ a regime, where only bouncing orbits exist. First, we substitute (3.11) into (3.7)

resulting
∂2g
∂I2φ

= 1

π
√
2mE

FBT
(
a,Rc,φp,ψp

)
, (3.13)

where

FBT
(
a,Rc,φp,ψp

)= 1±(a/Rc)cos(φp±ψp
)

asin
(
φp+ψp

)(
1±2(a/Rc)cos(φp±ψp

)+(a2/R2
c
)) . (3.14)

We introduce the new variable k = √2mE/�. For the sake of simplicity we use the

units �= 1,m= 1/2, and e= 1. Substituting (3.10), (3.12), and (3.14) into (2.9) gives

d(E)= d0(E)+
∑
p,r
Ap,r cos

(
rSp+ 3rqpπ

2
+ π
4

)
, (3.15)

where

Ap,r = Rcψp

2χp
√
kπrqpFBT

(
a,Rc,φp,ψp

) . (3.16)

To complete the derivation of the semiclassical density of states we now treat the
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case when Rc ≤ a. Here an additional term appears due to the cyclotron orbits. This

contribution cannot be obtained using (2.9) since the function g in this case does not

depend on Iφ. We need to go back to the general form (2.4) of the density of states

and carry out the integral with respect to Iφ directly instead of using the saddle point

method. This is easy, since the integrand does not depend on the integration variable,

so the result is the measure of the interval of allowed Iφ−s . The Ir and t integrals can
be evaluated with the saddle point method, as usual. The detailed calculation of these

integrals and the action are given in Appendix C. The cyclotron orbit contribution to

the density of states is

dcyc(E)= 1
2

(
a−Rc

)2 ∞∑
r=1

cos
(
rkπRc−rπ

)
. (3.17)

4. Comparison with exact quantum mechanics. Our formulas (3.15), (3.16) can

now be compared to the exact result. The exact eigenenergies are given by the zeros

of the confluent hypergeometrical functions [7]. We developed an alternative way to

determine the levels by writing the radial Schrödinger equation as an ordinary dif-

ferential equation and solving it using a simple shooting method. We regularized the

PO sum in (3.15) with Gaussian smoothing with a γ broadening factor as discussed

in [3]. Figure 4.1 shows the quantum mechanical results and the semiclassical density

of states using γ = 0.25 broadening factor at various magnetic field parameters.

There is a spike in the level density at each eigenenergy. This means that the semi-

classical density of states obtained from the Berry-Tabor formula is in good agreement

with the quantummechanical energy levels in the whole parameter range. Note that at

level crossings the spike is about twice as high as usual due to the double degeneracy

of the levels.
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Figure 4.1. The semiclassical level density and the quantum mechanical
eigenstates in the Rc > a regime.
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5. Comparison with Creagh-Littlejohn theory. Recently Blaschke and Brack [3]

have derived a similar periodic orbit formula for the semiclassical density of states

based on Creagh-Littlejohn theory of continuous symmetries. If we compare our for-

mula with the Blaschke-Brack formula term by term, we see that the actions andMaslov

indices of periodic orbits and the cyclotron orbit contributions are the same in both

cases, while the amplitudes of orbits hitting the wall seem to be different in general.

The trace formula published in [3] and our trace formula (3.15), (3.16) differ only

in function FBT (a,Rc,φ,ψ). In their formula FBT is replaced by FCL

FCL
(
a,Rc,φ,ψ

)
:= Rc cos(ψ)
asin(φ+ψ)(Rc cos(ψ)±acos(φ)) . (5.1)

Both FBT and FCL contain a factor 1/asin(φ+ψ). We now concentrate on how are the

rest of the expressions related to each other. First, we define the functions fBT and

fCL as

fBT
(
a,Rc,φ,ψ

)
:= 1±(a/Rc)cos(φ±ψ)

1±2(a/Rc)cos(φ±ψ)+a2/R2
c
,

fCL
(
a,Rc,φ,ψ

)
:= Rc cos(ψ)
Rc cos(ψ)±acos(φ) =

cos(ψ)
cos(ψ)±(a/Rc)cos(φ) ,

(5.2)

(i.e., without the common factor in function FBT and FCL). Using (3.8) which connects

the two angles φ and ψ the function fBT can be rewritten as

fBT
(
a,Rc,φ,ψ

)= 1±(a/Rc)cos(φ)cos(ψ)∓(a/Rc)sin(φ)sin(ψ)
1±2(a/Rc)cos(φ)cos(ψ)∓2sin(φ)sin(ψ)+a2/R2

c

= 1±(a/Rc)cos(φ)cos(ψ)∓sin2(ψ)
1±2(a/Rc)cos(φ)cos(ψ)∓2(a2/R2

c
)
sin2(φ)+a2/R2

c
,

(5.3)

and using the simple trigonometrical identity sin2(ψ)= 1−cos2(ψ), we find

fBT
(
a,Rc,φ,ψ

)= ±(a/Rc)cos(φ)cos(ψ)+cos2(ψ)
1±2(a/Rc)cos(φ)cos(ψ)∓(a2/R2

c
)
sin2(φ)+(a2/R2

c
)
cos2(φ)

= cos(ψ)
[
cos(ψ)±(a/Rc)cos(φ)]

cos2(ψ)±2(a/Rc)cos(φ)cos(ψ)+(a2/R2
c
)
cos2(φ)

.

(5.4)

We can further simplify this by dividing out the common factor cos(ψ)±(a/Rc)cos(φ)

fBT
(
a,Rc,φ,ψ

)= cos(ψ)
cos(ψ)±(a/Rc)cos(φ) = fCL

(
a,Rc,φ,ψ

)
, (5.5)

so the two formulas derived via different semiclassical theories coincide. Consequent-

ly, the � expansion of the formulas also coincide, including the canonically noninvari-

ant part.

6. Summary. We derived a semiclassical formula for the level density of a circular

billiard in a homogeneousmagnetic field using the Berry-Tabor formula. Unexpectedly

the result in this case is the same as the semiclassical density of states derived from
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Creagh-Littlejohn theory of continuous symmetries for the same system, despite of the

presence of canonically noninvariant terms. This result is promising from the point

of view of semiclassical theory since it indicates that in certain practically interesting

cases different approaches can yield results of comparable precision.

Appendices

A. The main determinant in the Berry-Tabor formula. In this section, we express

the quantities in the Berry-Tabor trace formula in terms of the derivatives of g. Taking
the partial derivative of (2.7) with respect to I1 yields

0= ∂g
(
I1,H

)
∂I1

+ ∂g
(
I1,H

)
∂H

∂H
(
I1, I2

)
∂I1

, (A.1)

while the partial derivative of (2.7) with respect to I2 gives

1= ∂g
(
I1,H

)
∂H

∂H
(
I1, I2

)
∂I2

. (A.2)

The frequencies can be expressed from these equations

ω1 = ∂H
(
I1, I2

)
∂I1

=−∂g
(
I1,H

)
/∂I1

∂g
(
I1,H

)
/∂H

, ω2 = ∂H
(
I1, I2

)
∂I2

= 1
∂g
(
I1,H

)
/∂H

. (A.3)

Periodic orbits are recovered from ω1 = 2πn/T and ω2 = 2πm/T . The action I1 for
a periodic orbit at the energy E can be obtained by solving the following equation:

ω1

ω2
= n
m
= np
mp

− ∂g
(
I1,E

)
∂I1

, (A.4)

where m = rmp and n = rnp corresponding to the primitive orbit. Then the period

can be expressed simply as

T = 2πm
∂g
(
I1,E

)
∂E

. (A.5)

The main determinant to be calculated is

detD =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2H
(
I1, I2

)
∂I21

∂2H
(
I1, I2

)
∂I1∂I2

∂H
(
I1, I2

)
∂I1

∂2H
(
I1, I2

)
∂I1∂I2

∂2H
(
I1, I2

)
∂I22

∂H
(
I1, I2

)
∂I2

∂H
(
I1, I2

)
∂I1

∂H
(
I1, I2

)
∂I2

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
(
− ∂

2H
∂I21

(
∂H
∂I2

)2
+2 ∂2H

∂I1∂I2
∂H
∂I1

∂H
∂I2

− ∂
2H
∂I22

(
∂H
∂I1

)2)
.

(A.6)

Now, the second derivatives of H can be expressed with the second derivatives of g
by taking further partial derivatives of (A.1) and (A.2) with respect to I1 and I2. Then
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(Φ−Ψ)

Φ

a
Rc

Ψ

(Ψ−Φ)

aRc
ΦΨ

(
Rc < a

)(
Rc > a

)

Figure B.1. The geometry of the “−” orbits.

we can express the second derivatives as

∂2H
∂I21

= 1
(∂g/∂H)3

(
2
∂2g
∂H∂I1

∂g
∂I1

∂g
∂H

− ∂
2g
∂H2

(
∂g
∂I1

)2
− ∂

2g
∂I21

(
∂g
∂H

)2)
,

∂2H
∂I1∂I2

= 1
(∂g/∂H)3

(
∂2g
∂H2

∂g
∂I1

− ∂2g
∂I1∂H

∂g
∂H

)
,

∂2H
∂I22

=− 1
(∂g/∂H)3

∂2g
∂H2

.

(A.7)

Using these expressions, the determinant becomes

detD = 1
(∂g/∂H)3

∂2g
∂I21

= (2πm)
3

T 3

∂2g
∂I21

. (A.8)

B. Geometry of the bouncing orbits. We examine an orbit which winds w times

around the center and touches the wall q times. There are two angles which describe

the arcs building up the orbit: φ and ψ

φ= πw
q
, ψ= arcsin

(
a
Rc

sin(φ)
)
. (B.1)

Since Iφ = pφ = constant, Figures B.1 and B.2 show that (3.1) can be written as

Iφ =±
√
2mEacos(φ±ψ)+α. (B.2)

The upper signs are for the “+” orbits, the lower signs are for the “−” orbits.
The length of the orbit is simply the length of the arcs multiplied by q and the time

period of the orbit is the length divided by v , the velocity, as shown in (3.9) and (3.10).
In nonzero magnetic fields the momentum of the free particle is replaced by p−eA,
so the action integral becomes

S =
∫ (
p−eA)dq =

∫
pdq−e

∫∫
BdF, (B.3)
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Φ+Ψ

Φ

a
Rc

Ψ

(
π(Φ+Ψ))

aRc

ΦΨ

(
Rc > a

) (
Rc < a

)
Figure B.2. The geometry of the “+” orbits.

Rc > a,− Rc < a,−

Rc > a,+ Rc < a,+

Figure B.3. The enclosed areas between two bounces.

where we transformed the second term to a surface-integral which is calculated by

integrating the magnetic field on the enclosed area. The sign of this term depends on

whether the orbit encloses clockwise or anticlockwise. With the help of Figure B.3 the

action turns out to be (3.12).

C. The cyclotron orbits. In case of cyclotron orbits, the integration with respect to

Iφ in (2.4) simply multiplies the rest of the expression by the measure of the interval
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r

Rc

a

Figure C.1. The cyclotron orbit.

of possible Iφ values. According to (3.1) and (3.2)

Iφ = pφ =mr 2φ̇+ eBr
2

2
, (C.1)

which is constant throughout the motion since the Hamiltonian does not depend on

φ. This constant value in our units is

Iφ =−kr + Br
2

2
= B
2

(
r − k

B

)2
− k

2

2B
, (C.2)

where r denotes the maximum distance between the center of the billiard and the

electron throughout the motion (see Figure C.1). As a function of r this is a parabola

with a minimum value of −k2/2B at r = k/B, whereas the possible maximum value

of Iφ is (C.2) evaluated at r = a. This means that the integral with respect to Iφ is

equivalent to the following multiplying factor in (2.4):

Ba2

2
−ka+ k

2

2B
= 1
2

(
Ba2−2ka+ k

2

B

)
. (C.3)

The Ir and t integrals can be evaluated with the saddle point method just as in case

of a one-dimensional system. The determinant of the second derivative matrix is

detD= det



−∂

2H
∂I2r

T −∂H
∂Ir

−∂H
∂Ir

0


=−

(
∂H
∂Ir

)2
. (C.4)

According to (A.2), we find

∂H
∂Ir

= 1
∂g/∂E

= 2πm
T

�→ detD=−4π
2m2

T 2
=−4k

2

R2
c
, (C.5)

where the time period of the cyclotron orbit is T =πRcm/k. Thus the total amplitude

standing in front of the oscillating factors in (2.4) (with χp = 0) is

Rc
2k

(
Ba2−2ka+ k

2

B

)
= 1
2

(
a2−2aRc+R2

c
)= a2

2

(
1− Rc

a

)2
. (C.6)
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Finally, with the action being S = kπRc and with a Maslov-index ν = 2 the expression

(2.4) takes the following form:

dcyc(E)= a
2

2

(
1− Rc

a

)2 ∞∑
r=1

cos
(
rkπRc−rπ

)
. (C.7)

Note that since formally in the argument of the cosine in (2.4) d= 1 since we used the

saddle point method only in one action variable.
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