# SUFFICIENT CONDITIONS FOR MEROMORPHIC STARLIKENESS AND CLOSE-TO-CONVEXITY OF ORDER $\alpha$ 

## NAK EUN CHO and SHIGEYOSHI OWA

(Received 7 February 2000)


#### Abstract

The object of the present paper is to derive a property of certain meromorphic functions in the punctured unit disk. Our main theorem contains certain sufficient conditions for starlikeness and close-to-convexity of order $\alpha$ of meromorphic functions.


2000 Mathematics Subject Classification. 30C45.

1. Introduction. Let $\sum$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the punctured unit disk $\mathscr{D}=\{z: 0<|z|<1\}$. A function $f \in \sum$ is said to be meromorphic starlike of order $\alpha$ if it satisfies

$$
\begin{equation*}
-\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad(z \in \mathscr{U}=\mathscr{D}-\{0\}) \tag{1.2}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$. We denote by $\sum^{*}(\alpha)$ the class of all meromorphic starlike functions of order $\alpha$.

Let $\operatorname{MC}(\alpha)$ be the subclass of $\sum$ consisting of functions $f$ which satisfy

$$
\begin{equation*}
-\operatorname{Re}\left\{z^{2} f^{\prime}(z)\right\}>\alpha \quad(z \in U) \tag{1.3}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$. A function $f$ in $\operatorname{MC}(\alpha)$ is meromorphic close-to-convex of order $\alpha$ in $\mathscr{D}$ (see [1]).
2. Main result. In proving our main theorem, we need the following lemma due to Owa, Nunokawa, Saitoh, and Fukui [2].

LEMMA 2.1. Let $p$ be analytic in $u$ with $p(0)=1$. Suppose that there exists a point $z_{0} \in U$ such that $\operatorname{Re} p(z)>0\left(|z|<\left|z_{0}\right|\right), \operatorname{Re} p\left(z_{0}\right)=0$, and $p(z) \neq 0$. Then we have $p(z)=i a(a \neq 0)$ and

$$
\begin{equation*}
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i \frac{k}{2}\left(a+\frac{1}{a}\right) \tag{2.1}
\end{equation*}
$$

where $k$ is a real number with $k \geq 1$.
With the aid of Lemma 2.1, we derive the following theorem.

THEOREM 2.2. If $f \in \sum$ satisfies $f(z) f^{\prime}(z) \neq 0$ in $\mathscr{D}$ and

$$
\begin{equation*}
\operatorname{Re}\left\{\alpha \frac{z f^{\prime}(z)}{f(z)}-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}<2(2-\alpha)-\beta \quad(z \in U) \tag{2.2}
\end{equation*}
$$

then

$$
\begin{equation*}
-\operatorname{Re}\left\{\frac{z^{2-\alpha} f^{\prime}(z)}{f^{\alpha}(z)}\right\}>\frac{1}{1+2(2-\alpha)-2 \beta} \quad(z \in ひ) \tag{2.3}
\end{equation*}
$$

where $\alpha \leq 2$ and $(2(2-\alpha)-1) / 2 \leq \beta<2-\alpha$.
Proof. We define the function $p$ in $\vartheta$ by

$$
\begin{equation*}
-\frac{z^{2-\alpha} f^{\prime}(z)}{f^{\alpha}(z)}=\gamma+(1-\gamma) p(z) \tag{2.4}
\end{equation*}
$$

with $\gamma=1 /(1+2(2-\alpha)-2 \beta)$. Then $p$ is analytic in $U$ with $p(0)=1$ and

$$
\begin{equation*}
\alpha \frac{z f^{\prime}(z)}{f(z)}-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=2-\alpha-\frac{(1-\gamma) z p^{\prime}(z)}{\gamma+(1-\gamma) p(z)} . \tag{2.5}
\end{equation*}
$$

Suppose that there exists a point $z_{0} \in \cup$ such that

$$
\begin{equation*}
\operatorname{Re} p(z)>0 \quad\left(|z|<\left|z_{0}\right|\right), \quad \operatorname{Re} p\left(z_{0}\right)=0, \quad p(z) \neq 0 \tag{2.6}
\end{equation*}
$$

Then, applying Lemma 2.1, we have $p(z)=i a(a \neq 0)$ and

$$
\begin{equation*}
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i \frac{k}{2}\left(a+\frac{1}{a}\right) \quad(k \geq 1) \tag{2.7}
\end{equation*}
$$

It follows from this that

$$
\begin{equation*}
\alpha \frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}-\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}=2-\alpha-\frac{(1-\gamma) z_{0} p^{\prime}\left(z_{0}\right)}{\gamma+(1-\gamma) p\left(z_{0}\right)}=2-\alpha+\frac{k(1-\gamma)\left(1+a^{2}\right)}{2(\gamma+i(1-\gamma) a)} . \tag{2.8}
\end{equation*}
$$

Therefore, we have

$$
\begin{align*}
\operatorname{Re}\left\{\alpha \frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}-\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right\} & =2-\alpha+\frac{k(1-\gamma)\left(1+a^{2}\right)}{2\left(\gamma^{2}+(1-\gamma)^{2} a^{2}\right)}  \tag{2.9}\\
& \geq 2-\alpha+\frac{k(1-\gamma)}{2 \gamma} \geq 2(2-\alpha)-\beta
\end{align*}
$$

This contradicts our assumption. Thus, we conclude that $\operatorname{Re} p(z)>0$ for all $z \in u$, that is,

$$
\begin{equation*}
-\operatorname{Re}\left\{\frac{z^{2-\alpha} f^{\prime}(z)}{f^{\alpha}(z)}\right\}>\gamma=\frac{1}{1+2(2-\alpha)-2 \beta} \quad(z \in U) . \tag{2.10}
\end{equation*}
$$

Putting $\beta=(2(2-\alpha)-1) / 2$ in Theorem 2.2, we have
Corollary 2.3. If $f \in \sum$ satisfies $f(z) f^{\prime}(z) \neq 0$ in $\mathscr{D}$ and

$$
\begin{equation*}
\operatorname{Re}\left\{\alpha \frac{z f^{\prime}(z)}{f(z)}-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}<\frac{3}{2}-\alpha \quad(z \in U) \tag{2.11}
\end{equation*}
$$

then

$$
\begin{equation*}
-\operatorname{Re}\left\{\frac{z^{2-\alpha} f^{\prime}(z)}{f^{\alpha}(z)}\right\}>\frac{1}{2} \quad(z \in U) \tag{2.12}
\end{equation*}
$$

where $\alpha \leq 2$.

Taking $\alpha=1$ in Theorem 2.2, we have the following corollary.
Corollary 2.4. If $f \in \sum$ satisfies $f(z) f^{\prime}(z) \neq 0$ in $\mathscr{D}$ and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}<2-\beta \quad(z \in u) \tag{2.13}
\end{equation*}
$$

then

$$
\begin{equation*}
-\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\frac{1}{3-2 \beta} \quad(z \in U) \tag{2.14}
\end{equation*}
$$

that is, $f \in \sum^{*}(1 /(3-2 \beta))$, where $1 / 2 \leq \beta<1$.
Further, letting $\alpha=0$ in Theorem 2.2, we have the following corollary.
Corollary 2.5. If $f \in \sum$ satisfies $f(z) f^{\prime}(z) \neq 0$ in $\mathscr{D}$ and

$$
\begin{equation*}
-\operatorname{Re}\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}<4-\beta \quad(z \in U) \tag{2.15}
\end{equation*}
$$

then

$$
\begin{equation*}
-\operatorname{Re}\left\{z^{2} f^{\prime}(z)\right\}>5-2 \beta \quad(z \in U), \tag{2.16}
\end{equation*}
$$

that is, $f \in \operatorname{MC}(1 /(5-2 \beta))$, where $3 / 2 \leq \beta<2$.
Acknowledgement. This work was supported by the Korea Research Foundation Grant (KRF-99-015-DP0019).

## References

[1] M. D. Ganigi and B. A. Uralegaddi, Subclasses of meromorphic close-to-convex functions, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 33(81) (1989), no. 2, 105-109. MR 91b:30036. Zbl 685.30004.
[2] S. Owa, M. Nunokawa, H. Saitoh, and S. Fukui, Starlikeness and close-to-convexity of certain analytic functions, Far East J. Math. Sci. 2 (1994), no. 2, 143-148. MR 97d:30014. Zbl 933.30008.

Nak Eun Cho: Department of Applied Mathematics, Pukyong National University, Pusan 605-737, Korea

E-mail address: necho@dolphin.pknu.ac.kr
Shigeyoshi Owa: Department of Mathematics, Kinki University, Higashi-Osaka, OSAKA 577-8502, Japan

E-mail address: owa@math.kindai .ac.jp

