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Abstract. We prove some coincidence and fixed point theorems for generalized (φ,f )-
contractive type and f -nonexpansive type multivalued and singlevalued mappings in met-
ric and Banach spaces, respectively. Our results extend, improve, and unify a few known
results due to Browder, Browder and Petryshyn, Chang, Huang, and Cho, Husain and Latif,
Husain and Tarafdar, and Karlovitz.
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1. Introduction. Husain and Latif [5, 6, 7] introduced the notions of f -contractive
type and f -nonexpansive type multivalued mappings and proved fixed point theo-

rems for the mappings in metric and Banach spaces, respectively. Chang, Huang, and

Cho [4] introduced the concept of generalized f -contractive type multivalued map-

pings in metric spaces and established a coincidence point theorem for generalized

f -contractive type multivalued mappings.

Motivated and inspired by the above works, we introduce a concept of general-

ized (φ,f )-contractive type multivalued mappings which contains the concepts of f -
contractive type multivalued mappings and generalized f -contractive type multival-

ued mappings as special cases, and we prove three coincidence and fixed point theo-

rems for such mappings which extend and improve the main results of Chang, Huang,

and Cho [4], Husain and Latif [6, 7], and others. On the other hand, we study the ex-

istence of common fixed points of f -nonexpansive type multivalued mappings which

generalizes the main results of Husain and Latif [5, 6, 7] and contains some results

due to Browder [1], Browder and Petryshyn [2], Husain and Tarafdar [8], and Karlovitz

[9] as particular cases.

2. Preliminaries. Throughout this paper, we denote byR,R+,N the set of real num-

bers, the set of nonnegative real numbers, and the set of positive integers, respectively.

Let Φ be the family of mappings φ : (R+)5 → R+ such that each φ is nondecreasing

for each variable and

ψ(t)≥max
{
φ(t,t,t,at,bt) : a,b ∈ {0,1,2}}, ∀t ∈R+, (2.1)

where ψ :R+ →R+ is nondecreasing, right continuous,
∑∞
n=1ψn(t) <∞ for all t ∈R+

and limn→∞(tn−ψ(tn))= 0 implies that limn→∞tn = 0 for any {tn}n∈N ⊂R+.
Lemma 2.1 (see [3]). Let h : R+ → R+ be nondecreasing, right continuous, and

limn→∞hn(t)= 0 for all t ∈R+. Then

http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com


332 ZEQING LIU ET AL.

(i) h(t) < t for all t > 0;

(ii) t = 0 provided that t ≤ h(t) for some t ∈R+.
Lemma 2.2. Let {an}n∈N and {bn}n∈N be in R+ and limn→∞an = 0. Then

limsup
n→∞

(
an+bn

)= limsup
n→∞

bn. (2.2)

Proof. Note that

limsup
n→∞

bn ≤ limsup
n→∞

(
an+bn

)≤ limsup
n→∞

an+ limsup
n→∞

bn = limsup
n→∞

bn, (2.3)

which implies that (2.2) holds. This completes the proof.

Lemma 2.3. Let {an}n∈N be a sequence in R+ and h : R+ → R+ be nondecreasing

and right continuous. Then

limsup
n→∞

h
(
an
)≤ h( limsup

n→∞
an
)
. (2.4)

Proof. Set limsupn→∞h(an) = a. It follows that there exists a subsequence

{ani}i∈N of {an}n∈N with limi→∞h(ani) = a. Put limsupi→∞ani = b. Then there ex-

ists a subsequence {anij }j∈N of {ani}i∈N such that limj→∞anij = b. Observe that each

sequence in R contains a monotone subsequence. Thus {anij }j∈N contains a mono-

tone subsequence {anijk }k∈N. If {anijk }k∈N is nondecreasing, then h(anijk )≤ h(b) for
any k∈N. This means that

lim
k→∞

h
(
anijk

)
≤ h(b). (2.5)

If {anijk }k∈N is nonincreasing, by the right continuity of h, we obtain that

lim
k→∞

h
(
anijk

)
= h

(
lim
k→∞

anijk

)
= h(b). (2.6)

Using (2.5) and (2.6), we have

a≤ h(b)≤ h
(
limsup
n→∞

an
)
. (2.7)

That is, (2.4) holds. This completes the proof.

Let (X,d) be a metric space and M a nonempty subset of X. Define

2M = {A :A is nonempty subset of M
}
,

CL(M)= {A :A is nonempty closed subset of M
}
,

CB(M)= {A :A is nonempty closed bounded subset of M
}
,

C(M)= {A :A is nonempty compact subset of M
}
.

(2.8)

Let H denote the Hausdorff metric on CB(X) induced by d. That is,

H(A,B)=max

{
sup
x∈A

d(x,B),sup
x∈B

d(x,A)
}
, ∀A, B ∈ CB(X), (2.9)

where d(x,A)= inf{d(x,y) :y ∈A}.
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Definition 2.4. Let r be in [0,1), φ ∈ Φ, and let J : M → 2X and f : M → X be

multivalued and singlevalued mappings, respectively.

(i) J is said to be a generalized (φ,f )-contractive type multivalued mapping if,

for all x ∈M and for each ux ∈ Jx, there exists νy ∈ Jy for all y ∈M satisfying

d
(
ux,νy

)≤φ(d(fx,fy),d(fx,ux),d(fy,νy),d(fx,νy),d(fy,ux)). (2.10)

(ii) J is said to be a generalized f -contractive type multivalued mapping if, for all

x ∈M and for each ux ∈ Jx, there exists νy ∈ Jy for all y ∈M satisfying

d
(
ux,νy

)≤ rmax
(
d(fx,fy),d

(
fx,ux

)
,d
(
fy,νy

)
,
1
2

[
d
(
fx,νy

)+d(fy,ux)]
)
.

(2.11)

(iii) J is said to be an f -contractive type multivalued mapping if, for all x ∈M and

for each ux ∈ Jx, there exists νy ∈ Jy for all y ∈M satisfying

d
(
ux,νy

)≤ rd(fx,fy). (2.12)

(iv) J is said to be an f -nonexpansive type multivalued mapping if, for all x ∈M
and for each ux ∈ Jx, there exists νy ∈ Jy for all y ∈M satisfying

d
(
ux,νy

)≤ d(fx,fy). (2.13)

Clearly, each f -contractive type multivalued mapping is both f -nonexpansive type

multivalued mapping and generalized f -contractive type multivalued mapping, and

each generalized f -contractive type multivalued mapping is a generalized (φ,f )-
contractive type multivalued mapping.

3. Coincidence and fixed points of generalized (φ,f )-contractive type multi-

valued mappings. In this section, we establish three coincidence and fixed point

theorems for generalized (φ,f )-contractive type multivalued mappings in complete

metric space.

Theorem 3.1. LetM be a nonempty closed subset of a complete metric space (X,d),
and let f :M →M be a singlevalued mapping, and J :M → CL(M) a generalized (φ,f )-
contractive type multivalued mapping. Suppose that fM = M . Then f and J have a

coincidence point in M .

Proof. Let x0 be an arbitrary but fixed element of M and choose y1 ∈ Jx0. It

follows fromM = fM that there exists x1 ∈M with y1 = fx1. Since J is a generalized

(φ,f )-contractive type multivalued mapping and M = fM , we can choose y2 ∈ Jx1

and x2 ∈M such that

d
(
y1,y2

)≤φ(d(fx0,fx1
)
,d
(
fx0,y1

)
,d
(
fx1,y2

)
,d
(
fx0,y2

)
,d
(
fx1,y1

))
(3.1)

and y2 = fx2. Inductively, we can extract a sequence {fxn}n∈N ⊂M such that fxn+1
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is in Jxn and

dn ≤φ
(
dn−1,dn−1,dn,d

(
fxn−1,fxn+1

)
,d
(
fxn,fxn

))
≤φ(dn−1,dn−1,dn,dn−1+dn,0), (3.2)

where dn = d(fxn,fxn+1) for all n≥ 0. We claim that

dn ≤ dn−1, ∀n∈N. (3.3)

Suppose that dn > dn−1 for somen∈N. Thus (3.2) ensures that dn ≤ψ(dn). It follows

from Lemma 2.1 that dn = 0, which is a contradiction. Therefore (3.3) holds. In view

of (3.2) and (3.3), we have

dn ≤ψ
(
dn−1

)≤ ··· ≤ψn(d0
)
, ∀n∈N. (3.4)

Thus for all n,p ∈N, we conclude that

d
(
fxn,fxn+p

)≤ n+p−1∑
i=n

di ≤
n+p−1∑
i=n

ψi(d0
)
. (3.5)

Note that
∑∞
n=1ψn(d0) <∞. It follows from (3.5) that {fxn}n∈N is a Cauchy sequence

in the closed setM . Since X is complete, there exists z ∈M such that limn→∞fxn = z.
Observe that fM = M . Hence there exists q ∈ M with fq = z. From fxn+1 ∈ Jxn,
fM =M , and (2.10), we can choose that fνn ∈ Jq satisfying

d
(
fxn+1,fνn

)
≤φ

(
d
(
fxn,fq

)
,d
(
fxn,fxn+1

)
,d
(
fq,fνn

)
,d
(
fxn,fνn

)
,d
(
fq,fxn+1

))

≤ψ
(
max

{
d
(
fxn,fq

)
,d
(
fxn,fxn+1

)
,d
(
fq,fνn

)
,d
(
fxn,fνn

)
,d
(
fq,fxn+1

)})
.

(3.6)

It is easy to see that there exists an increasing sequence {ni}i∈N ⊂N such that at least

one of (3.7), (3.8), and (3.9) holds,

d
(
fxni+1,fνni

)
≤ψ

(
max

{
d
(
fxni ,fq

)
,d
(
fxni ,fxni+1

)
,d
(
fq,fνni

)})
, ∀i∈N;

(3.7)

d
(
fxni+1,fνni

)
≤ψ

(
d
(
fxni ,fνni

))
, ∀i∈N; (3.8)

d
(
fxni+1,fνni

)
≤ψ

(
d
(
fq,fxni+1

))
, ∀i∈N. (3.9)

We now prove that

lim
i→∞

d
(
fq,fνni

)
= 0. (3.10)

Suppose that (3.7) is satisfied. If limi→∞d(fq,fνni)≠ 0, then there exist ε > 0 and a

subsequence {νnij }J∈N of {νni}i∈N such that d(fq,fνnij )≥ ε for all j ∈N. Note that
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limn→∞fxn = fq and limn→∞d(fxn,fxn+1) = 0. Thus there exists k ∈ N satisfying

max{d(fxnij ,fq),(fxnij ,fxnij+1)}< ε for all j ≥ k. Using (3.7), we have

d
(
fq,fνnij

)
≤ d

(
fq,fxnij+1

)
+d

(
fxnij+1,fνnij

)

≤ d
(
fq,fxnij+1

)

+ψ
(
max

{
d
(
fxnij ,fq

)
,d
(
fxnij ,fxnij+1

)
,d
(
fq,fνnij

)})

≤ d
(
fq,fxnij+1

)
+ψ

(
max

{
ε,ε,d

(
fq,fνnij

)})

≤ d
(
fq,fxnij+1

)
+ψ

(
d
(
fq,fνnij

))
,

(3.11)

for all j ≥ k. Equation (3.11) ensures that

d
(
fq,fνnij

)
−ψ

(
d
(
fq,fνnij

))
≤ d

(
fq,fxnij+1

)
�→ 0 as j �→∞, (3.12)

which implies that limj→∞d(fq,fνnij ) = 0. This is a contradiction. Consequently,

(3.10) holds.

Suppose that (3.8) is fulfilled. In view of (3.8), we obtain that for all i∈N,
d
(
fq,fνni

)
≤ d

(
fq,fxni+1

)
+d

(
fxni+1,fνni

)

≤ d
(
fq,fxni+1

)
+ψ

(
d
(
fxni ,fνni

))

≤ d
(
fq,fxni+1

)
+ψ

(
d
(
fxni ,fq

)
+d

(
fq,fνni

))
.

(3.13)

By virtue of (3.13) and Lemmas 2.2 and 2.3, we conclude that

limsup
i→∞

d
(
fq,fνni

)
≤ limsup

i→∞

[
d
(
fq,fxni+1

)
+ψ

(
d
(
fxni ,fq

)
+d

(
fq,fνni

))]

= limsup
i→∞

ψ
(
d
(
fxni ,fq

)
+d

(
fq,fνni

))

≤ψ
(
limsup
i→∞

[
d
(
fxni ,fq

)
+d

(
fq,fνni

)])

=ψ
(
limsup
i→∞

d
(
fq,fνni

))
.

(3.14)

Using (3.14) and Lemma 2.1, we get that limsupi→∞d(fq,fνni) = 0. It is easy to see

that (3.10) holds.

Suppose that (3.9) is satisfied. Then

d
(
fq,fνni

)
≤ d

(
fq,fxni+1

)
+d

(
fxni+1,fνni

)

≤ d
(
fq,fxni+1

)
+ψ

(
d
(
fq,fxni+1

))
�→ 0 as i �→∞.

(3.15)

That is, (3.10) holds.
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Since Jq is closed and {fνni}i∈N ⊂ Jq, by (3.10) we conclude immediately that fq
belongs to Jq. This completes the proof.

Taking φ(u,ν,w,x,y) = rmax{u,ν,w,(1/2)(x + y)} in Theorem 3.1, we have

the following corollary.

Corollary 3.2 (see [4, Theorem 2.1]). Let M be a nonempty closed subset of a

complete metric space (X,d), f :M →M a singlevalued mapping, and J :M → CL(M)
a generalized f -contractive type multivalued mapping. Suppose that fM =M . Then f
and J have a coincidence point in M .

Remark 3.3. Theorem 2.2 of [4] and Theorem 2.3 of [6] are special cases of Theo-

rem 3.1.

To see that the closedness of M in the hypothesis of Theorem 3.1 is essential, we

need the following example.

Example 3.4. LetX=Rwith the usual metric. TakeM = (0,1), Jx={(1/4)(1−x4)},
and fx = 1−x2 for all x ∈M . Obviously, |Jx−Jy| ≤ (1/2)|fx−fy| for all x,y ∈M .

The requirements of Theorem 3.1 are satisfied except that M is closed. But f and J
have no coincidence point in M .

The following example reveals that the condition of fM = M in Theorem 3.1 is

necessary.

Example 3.5. LetX =Rwith the usualmetric andM = [0,1]. Define Jx = {(1/6)x2}
and fx = 1−(1/2)x for allx,y ∈M . Then |Jx−Jy| ≤ (2/3)|fx−fy| for allx,y ∈M .

It is easy to see that the hypotheses of Theorem 3.1 are satisfied except fM = M .

However, f and J have no coincidence point in M .

Theorem 3.6. LetM be a nonempty closed subset of a complete metric space (X,d),
and let f : M → M a singlevalued mapping and J : M → CL(M) a generalized (φ,f )-
contractive type multivalued mapping. If f is continuous, JM ⊆ fM , and fJx ⊆ Jfx
for all x ∈M , then f and J have a coincidence point in M .

Proof. Let {fxn}n∈N and z be as in the proof of Theorem 3.1. Put un = fxn for all

n∈N. Since limn→∞fxn = z ∈M and f is continuous inM , so that fun = ffxn→ fz
as n → ∞. From un ∈ Jxn−1, we have fun ∈ fJxn−1 ⊆ Jfxn−1 = Jun−1. It follows

from (2.10) that there exists νn ∈ Jz satisfying

d
(
fun,νn

)
≤φ

(
d
(
fun−1,fz

)
,d
(
fun−1,fun

)
,d
(
fz,νn

)
,d
(
fun−1,νn

)
,d
(
fz,fun

))
.

(3.16)

As in the proof of Theorem 3.1, we conclude that there exists a subsequence {uni}i∈N
of {un}n∈N such that limi→∞uni = fz and fz ∈ Jz. This completes the proof.

Remark 3.7. In case f = iX (the identity mapping on X), Theorem 3.6 reduces to a

result which extends and improves Theorem 2.3 of [6].
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Theorem 3.8. Let X, M , f , and J be as in Theorem 3.6. Suppose that for all x ∈M ,

the following condition is fulfilled:

fx ∈ Jx implies lim
n→∞f

nx exists. (3.17)

Then f and J have a common fixed point in M .

Proof. Theorem 3.6 ensures that there exists z ∈X such that fz ∈ Jz. Set fnz =
an for all n ∈ N. Equation (3.17) and the closedness of M means that there exists

t ∈ M such that an → t as n → ∞. Since f is continuous, fan = fn+1z → t = ft as

n→∞. Observe that

an = fnz = fn−1fz ∈ fn−1Jz ⊆ Jfn−1z = Jan−1, ∀n∈N. (3.18)

It follows from (2.10) that there exists bn ∈ Jt satisfying
d
(
an,bn

)≤φ(d(fan−1,f t),d(fan−1,an),d(ft,bn),d(fan−1,bn),d(ft,an))
≤φ

(
d
(
an,t

)
,0,d

(
t,bn

)
,d
(
an,t

)+d(t,bn),d(t,an))
≤ψ

(
d
(
an,t

)+d(t,bn)),
(3.19)

which implies that

d
(
t,bn

)≤ d(t,an)+d(an,bn)≤ d(t,an)+ψ(d(an,t)+d(t,bn)). (3.20)

Put S = limsupn→∞d(bn,t). Using (3.20) and Lemmas 2.2 and 2.3, we obtain that

S ≤ limsup
n→∞

d
(
an,t

)+ limsup
n→∞

ψ
(
d
(
an,t

)+d(bn,t))

≤ψ
(
limsup
n→∞

d
(
an,t

)+ limsup
n→∞

d
(
bn,t

))=ψ(S). (3.21)

Lemma 2.1 implies that S = 0. Therefore bn → t as n → ∞. Since Jt is closed and

{bn}n∈N ⊂ Jt, we conclude that t belongs to Jt. This completes the proof.

Husain and Latif [5] and Kaneko and Sessa [9] proved the following results, respec-

tively.

Theorem 3.9 (see [5, Theorem2.2]). LetM be a nonempty closed subset of a complete

metric space (X,d) and f a continuous mapping of M into itself. Suppose J : M →
CL(M) is an f -contractive type multivalued mapping such that Jf = fJ and JM ⊆ fM .

Moreover, assume that one of (3.17) and (3.22) holds for all x ∈M , where

fx �= f 2x implies fx ∉ Jx. (3.22)

Then f and J have a common fixed point in M .

Theorem 3.10 (see [9, Theorem 3]). Let (X,d) be a complete metric space, and let f :

X →X and J :X → CB(X) be compatible continuous mappings such that JX ⊆ fX and

H(Jx,Jy)≤ rmax
{
d(fx,fy),d(fx,Jx),d(fy,Jy),

1
2

[
d(fx,Jy)+d(fy,Jx)]},

(3.23)

for any x,y ∈ X, where 0 ≤ r < 1. Assume also that for each x ∈ X either (3.17) or

(3.22) holds. Then f and T have a common fixed point in X.
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Remark 3.11. Note that (3.22) is equivalent to the following

fx ∈ Jx implies fx = f 2x. (3.24)

It is easy to see that (3.22) implies (3.17). Therefore (3.22) in Theorems 3.9 and 3.10

is superfluous. Thus Theorem 2.2 of [5] is a special case of Theorem 3.8.

Remark 3.12. It follows from [5, Theorem 4.2, Condition (A)] that for any two

mappings Ji, Jj and any x ∈ M , Jix ⊆ Jjx, and Jjx ⊆ Jix. That is, Jix = Jjx for all

x ∈M , and i,j ∈N. Thus [5, Theorem 4.2] is the same as [5, Theorem 2.2].

4. Fixed points of f -nonexpansive type multivalued mappings. In this section,

we establish a commonfixed point theorem for f -nonexpansive typemultivaluedmap-

pings in nonempty convex weakly compact subsets of a Banach space under certain

conditions.

A Banach space (X,‖·‖) is said to satisfy Opial’s condition [11] if for each x ∈ X
and each sequence {xn}n∈N weakly converging to x,

liminf
n→∞

∥∥xn−y∥∥> liminf
n→∞

∥∥xn−x∥∥, ∀y �= x. (4.1)

Theorem 4.1. LetM be a nonemptyweakly compact convex subset of a Banach space

X which satisfies Opial’s condition. Suppose that f is a continuous affine mapping ofM
into itself and J :M → C(M) is an f -nonexpansive type multivalued mapping satisfying

JM ⊆ fM, (4.2)

fJx ⊆ Jfx, ∀x ∈M. (4.3)

Then f and J have a common fixed point in M .

Proof. We may, without loss of generality, assume that 0∈M . For each sequence

{hn}n∈N with hn ∈ (0,1) and limn→∞hn = 1, we define Jnx = {hnu : u ∈ Jx} for

x ∈M . It follows from (4.3) that

Jnfx ⊇
{
hnu :u∈ fJx}= {ft : t ∈ hnJx}= fJnx. (4.4)

As in the proof of Theorem 3.1 in [6], we conclude that Jn : M → CL(M) is an f -
contractive typemultivaluedmapping and JnM ⊆ fM for alln∈N. Let k∈N. We show

that if fx is in Jkx, then limn→∞fnx exists. Assume that fx ∈ Jkx = hkJx. Then there

exists u1 ∈ Jx with fx = hku1. This implies that fu1 ∈ fJx ⊆ Jfx = Jhku1 = hkJu1

and fu1 = hku2 for some u2 ∈ Ju1. Consequently, f 2x = fhku1 = hkfu1 = h2
ku2.

Using (4.3), we can construct a sequence {un}n∈N ⊆ M with un+1 ∈ Jun and fun =
hkun+1 for all n≥ 0, where u0 = x. It is clear that

fnx = fn−1fx = fn−1hku1 = fn−2h2
ku2 = ··· = hnkun, ∀n∈N. (4.5)

Since M is bounded and {un}n∈N ⊆M , it follows that {‖un‖}n∈N is bounded. Hence

‖fnx‖ = hnk‖un‖→ 0 as n→∞. In view of Theorem 3.8, we obtain that f and Jn have

a common fixed point in M . The remaining part of the proof is as in Theorem 3.1 of

[6]. This completes the proof.

As a consequence of Theorem 4.1, we have the following corollary.
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Corollary 4.2 (see [6, Theorem 3.1]). Let M,X,f ,J be as in Theorem 4.1. Suppose

that f and J satisfy (4.2) and the following relations:

fJx = Jfx, ∀x ∈M ;

fx �= f 2x implies tfx ∉ Jx, ∀x ∈M, t ≥ 1.
(4.6)

Then f and J have a common fixed point in M .

Remark 4.3. Theorem 4.1 extends Theorems 2.2 and 3.2 of [5] and Theorem 3.4

of [7]. Theorem 4.1 contains also the results due to Browder [1], Browder and Petryshyn

[2], and Karlovitz [10], respectively, as particular cases.
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