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1. Introduction. In the main approach to semigroup compactification, whose con-

siderations goes back at least to the pioneering paper of de Leeuw and Glicksberg [2],

the spectra of some C∗-algebras of functions on a semitopological semigroup are em-

ployed to construct certain universal compactifications. For instance, Junghenn in his

elaborate study of distal functions characterized the universal group compactifica-

tion, [7]. The main goal of the present work is to construct two function algebras �V

and �� whose corresponding compactifications are universal with respect to the prop-

erties satisfying a variety V of semigroups and a variety � of groups (the structures

of which in terms of subdirect products are given in [1, Section 3.3]).

2. Preliminaries. Here we highlight some required notions and notations from

Berglund et al. [1], which is our ground rule. On �(S), the C∗-algebra of all contin-

uous bounded complex-valued functions on a semitopological semigroup S, the left

and right translations Ls and Rs are defined so that, (Lsf )(t) = f (st) = (Rtf )(s). A
unital C∗-subalgebra � of �(S) which is a left translation invariant (i.e., Lsf ∈ � for

all s ∈ S and f ∈�) is called m-admissible if the function s � (Tµf )(s)= µ(Lsf ) lies

in � for all f ∈ � and µ ∈ S� (equal to the spectrum of �). Then the pair (ε,S�) is

a (semigroup) compactification (called �-compactification) of S, in which S� is fur-

nished with the Gelfand topology and the multiplication µν = µ◦Tν , and ε : S → S� is

the evaluation mapping.

Them-admissible algebras of the leftmultiplicatively continuous, (weakly) [strongly]

almost periodic, and strongly minimal distal functions, are denoted by ���, (���)
[	��]��, and 
�, respectively; see [1, 7].

3. The main results. From now on, FA is a fixed free semigroup on the countable al-

phabet A, on which the identities of V are expressed, and p(=∏m
i=1 ai)= q(=∏n

j=1 bj)
is a fixed arbitrary formal identity of V ; see [6].

Definition 3.1. We define �V (S) as the set of those f ∈ ���(S) such that the

identities
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are valid for all identities
∏m

i=1 ai =
∏n

j=1 bj of V , and all nets θα (of mappings from A
into S), for which the involved pointwise limits exist. (Note that, the notation

∏
is being

used for the iterated multiplications in different semigroups, and one should realize

that
∏m

i=2 limα Rθα(ai) plays the role of identity operator whenever m= 1; similarly for

n= 1.)

The next lemma presents �V in terms of S���.

Lemma 3.2. A function f ∈ ��� belongs to �V if and only if for every homomor-

phism Φ : FA → S���, each identity p = q of V , and every µ ∈ S���, Φ(p)(f )= Φ(q)(f ),
(Φ(p)µ)(f )= (Φ(q)µ)(f ), TΦ(p)f = TΦ(q)f , and T(Φ(p)µ)f = T(Φ(q)µ)f .

Proof. For the necessity, it is enough to show thatΦ(p)(g)= Φ(q)(g) and TΦ(p)g =
TΦ(q)g, for allg∈Xf∪{f}, whereXf is the pointwise closure ofRSf in �(S). There exists

a net θα : A→S such that, for each i and j, limα ε(θα(ai))=Φ(ai) and limα ε(θα(bj))
= Φ(bj). Now using (3.1) and (3.2), we have

Φ(p)(g)= Φ(a1
)
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= Φ(q)(g).

(3.5)

A similar argument, using (3.3) and (3.4), shows that TΦ(p)g = TΦ(q)g. Conversely, for

any net θα, of mappings from A into S, consider the mapping θ : A → S��� defined

by θ(a) = limα ε(θα(a)). Using the crucial property of free semigroups, θ can be

extended to a homomorphism Φ : FA → S���. Therefore, for every g ∈Xf ∪{f},
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which is equivalent to (3.3) and (3.4), taken together. A similar argument can be used to

obtain the other required identity, which is equivalent to (3.1) and (3.2) taken together.

Now we have the next result which describes the main property of FV .

Theorem 3.3. �V is m-admissible and �V -compactification is universal with respect

to the property satisfying V .

Proof. Using Lemma 3.2, the m-admissibility of �V may be readily verified. Again

Lemma 3.2 implies that, for each homomorphism Φ : FA → S�V and f ∈�V , Φ(p)(f )=
Φ(q)(f ); which means S�V ∈ V . It is enough to show that for every other compacti-

fication (ψ,X) of S, with X ∈ V , ψ∗(�(X)) ⊆ �V (S). Let π : S��� → X be the homo-

morphism for which π ◦ε =ψ. This implies that ψ∗(�(X)) ⊆���(S). Furthermore,

if h∈�(X), then for each homomorphism Φ : FA → S��� and each µ ∈ S���,
(
Φ(p)µ

)(
ψ∗(h)

)=h
(
(π ◦Φ)(p)π(µ)

)=h
(
(π ◦Φ)(q)π(µ)

)=(Φ(q)µ
)(

ψ∗(h)
)
. (3.7)

Similar arguments show that

Φ(p)
(
ψ∗(h)

)= Φ(q)
(
ψ∗(h)

)
,

TΦ(p)ψ∗(h)= TΦ(q)ψ∗(h),

T(Φ(p)µ)ψ∗(h)= T(Φ(q)µ)ψ∗(h).

(3.8)

Now Lemma 3.2 implies that ψ∗(h)∈�V (S), as claimed.

Let �Vc consist of those f ∈�(S) such that f (Φ(p))=f (Φ(q)), f (Φ(p)s)=f (Φ(q)s),
f (sΦ(p))= f (sΦ(q)), and f (sΦ(p)t)= f (sΦ(q)t), for all s,t ∈ S, for every homomor-

phism Φ : FA → S, and all identities p = q of V . Trivially, �V ⊆ �Vc (with the equality

holding in the compact setting). Due to joint continuity of the multiplication of S��,

we get the next simplification of �V ∩��.

Proposition 3.4. �V ∩��=�Vc ∩��.

Proof. According to Lemma 3.2 it is enough to show that if f ∈�Vc∩��, then for

each homomorphism Φ : FA → S��, and all µ ∈ S��, Φ(p)(f )= Φ(q)(f ), (Φ(p)µ)(f )=
(Φ(q)µ)(f ), TΦ(p)f = TΦ(q)f , and T(Φ(p)µ)f = T(Φ(q)µ)f . Imitating the methods of the

proof of Lemma 3.2, let Φα : FA → S be that net (of homomorphisms) for which

limα ε(Φα(ai)) = Φ(ai) and limα ε(Φα(bj)) = Φ(bj); and also tα be a net in S such

that limα ε(tα)= µ. Now, for all s ∈ S;

(
TΦ(p)µf

)
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)
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(3.9)

Similar arguments may apply to the other required equalities.
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Remarks. (a) The present results are a generalization of what we have described

in [4], for the familiar varieties of abelian semigroups, AB, bands, BD, and semilattices,

SL.
By Definition 3.1, �AB consists of those f ∈��� such that the identities
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hold for all nets sα,tα, and uα in S, for which the limits exist. Since S�AB is semitopo-

logical, one realizes that the latter seemingly complicated limit process is preparatory,

and can be condensed so that it presents �AB in the simple form
{
f ∈��� : f (st)= f (ts), and f (stu)= f (sut)∀s,t,u∈ S

}
. (3.11)

In other words, �AB =�ABc ∩���.

Again, Definition 3.1 implies that �BD is the set of all f ∈���, for which
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(3.12)

for all nets sα and tα in S, for which the limits exist. In contrast to the situation for

�AB , in general �BD �⊆ ��� (e.g., a direct verification shows that the characteristic

function of even numbers on N, with its maximum multiplication, lies in �BD but not

in ���). Furthermore, as it is seen by easy examples (e.g., consider [0,1]×N under its

rectangular multiplication) �BD ≠�BDc , in general. It would be desirable to investigate

the equality of �BD =�BDc ∩���, the left and right introversion of �BD , the relation

between �BD and the space similarly defined in terms of the left translations, and to

characterize the topological center of S�BD . We believe that there are close connections

among these problems.

By the joint continuity theorem of Lawson [8], �SL ⊆�� and so �SL =�SLc ∩��.

It would be desirable to examine �V for the variety of simple semigroups.

(b) It might be readily verified that the conditions (3.3) and (3.4) in the definition of

�V , taken together, are equivalent to the fact that the enveloping semigroup
∑

(S,Xf ∪
{f}), of the natural flow (S,Xf ∪{f}), lies in V ; and so the latter is satisfied whenever

f ∈ �V . A natural question that arises is whether the converse is also true. As a

helpful answer, one can verify that; a function f ∈ 
� lies in �V if and only if
∑

(S,Xf )
lies in V ; that is, �V ∩
�= {f ∈ 
� :

∑
(S,Xf )∈ V}.

Now, for a variety � of groups, defined by the set of lawsΩ (see [9]), we define ��(S)
as the set of all f ∈ 
�(S) such that (

∏m
i=1(limα Rsiα

)li )(limα Rsα f ) = limα Rsα f , for

all laws
∏m

i=1 xi
li in Ω, and all nets siα and sα in S for which the required limits exists.
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It is easy to verify that, a function f ∈ 
� lies in �� if and only if Tωµf = Tµf for

all µ ∈ S
� and all values in S
� of the laws ω∈ Ω; which is also equivalent to the fact

that
∑

(S,Xf ) ∈ �. Using these, one may obtain the next result, which is the group

version of Theorem 3.3.

Theorem 3.5. �� is m-admissible and ��-compactification is universal with respect

to the property satisfying �.

It should be mentioned that �� is not in ��� in general (e.g., for the variety of all

groups we get 
� which is not always in ���). Using the (joint continuity) theorem

of Ellis [5], we have

��∩���=��∩��=��∩	��. (3.13)

More precisely, each side of (3.13) (and hence ��, when S is compact) consists of

those f ∈	�� such that, (
∏m

i=1(Rsi )
li )(Rsf )= Rsf , for all laws

∏m
i=1 xi

li in Ω, and all

s1,s2, . . . ,sm, and s in S. (For instance, for the variety of abelian groups, �� consists

of those f ∈ 	�� such that f (stu) = f (sut) for all s,t and u in S, [3]; which, of

course, is equal to �AB∩
�, see the previous remarks (b)). Hence, for every element

of �, each side of (3.13) is equal to 	��, and so for a compact element S of �,

��(S)=�(S).
As we have shown in [3], for the variety of nilpotent groups, in the definition of ��,

limα Rsα f can be replaced by f . However this seems not to be possible in general.
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