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ON THE CORRECT FORMULATION OF A NONLINEAR
DIFFERENTIAL EQUATION IN BANACH SPACES
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Abstract. We study the existence and uniqueness of the initial value problems in a
Banach space E for the abstract nonlinear differential equation (dn−1/dtn−1)(du/dt+
Au)= B(t)u+f(t,W(t)), and consider the correct solution of this problem. We also give
an application of the theory of partial differential equations.
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1. Introduction. Let E be a Banach space. Suppose that {(Bi(t), i= 1,2, . . . ,ν), B(t),
t∈I=[0,T0]} are families of closed linear operators defined on dense sets S1,S2, . . . ,Sν ,
F in E, independent of t. Let −A be a closed linear operator defined on a dense set S
in E such that S ⊂ F , S ⊂ Si, (i= 1,2, . . . ,ν).
Suppose that the range of these operators are in E, therefore consider the abstract

nonlinear differential equation

dn−1

dtn−1

(
du
dt

+Au
)
= B(t)u+f(t,W), (1.1)

u|t=0 = g0, dudt
∣∣∣∣
t=0

= g1, d
2u
dt2

∣∣∣∣
t=0

= g2, . . . , d
n−1u
dtn−1

∣∣∣∣
t=0

= gn−1, (1.2)

where all the elements g0,g1,g2, . . . ,gn−1 ∈ S, W = (B1(t)u,B2(t)u,. . . ,Bν(t)u) and f
is a given abstract nonlinear function defined on I×Eν with values in E. Without loss
of generality, we assume that

u|t=0 = dudt
∣∣∣∣
t=0

= d2

dt2

∣∣∣∣
t=0

= ··· = dn−1

dtn−1

∣∣∣∣
t=0

= θ, (1.3)

where θ is the zero element of the Banach space E. Let f be uniformly Hölder contin-
uous for all t ∈ I, that means

∥∥f(t,W)−f(t∗,W)∥∥≤K|t−t∗|β, (1.4)

for all t and t∗ in I and allW in Eν , the constant K and β are positive and β < 1, where
‖·‖ is the norm in E. For allW ,W∗ ∈ Eν, W = (w1,w2, . . . ,wν), W∗ = (w∗

1 ,w
∗
2 , . . . ,w∗

ν ),
and t ∈ I, the function f satisfies the Lipschitz condition

∥∥f(t,W)−f(t,W∗)
∥∥≤K1

ν∑
i=1

∥∥∥wi−w∗
i

∥∥∥. (1.5)

For every z ∈ Si∩F the functions Bi(t)z and B(t)z are uniformly Hölder continuous
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for t ∈ I and i = 1,2,3, . . . ,ν with exponents β′ and β′′, respectively—without loss of
generality, we can suppose that β= β′ = β′′. The space of continuous functions u(t)
with t ∈ I and u(t)∈ E is denoted by CE(I). The norm in this space is defined by

‖u‖CE(I) =maxt∈I
‖u(t)‖. (1.6)

Suppose that−A generates a semigroup {T(t), t ∈ I} strongly continuous for all t ≥ 0,
this class of semigroup is called C0 (see [11, 12]). Furthermore, suppose that T(t)v ∈ S
for all v ∈ E, t > 0 (see [6]).
Assume that if there exist 0< δ< 1 and a positive constant M , then

∥∥B(t2)T(t1)v∥∥≤ Mtδ1 ‖v‖, (1.7)

∥∥Bi(t2)T(t1)v∥∥≤ Mtδ1 ‖v‖, (1.8)

where M is a positive constant and 0 < δ < 1 for all v ∈ E, t2 ∈ I, t1 ∈ (0,T0] with
i= 1,2, . . . ,ν . In this paper, we prove the existence and the uniqueness of the solution
of the Cauchy problem (1.1) and (1.2). The correct formulation of the considered prob-

lem is also proved, finally we give an application of the theory of partial differential

equations.

2. The solution of the problem. In this section, we discuss the existence and

uniqueness of the solution of the initial value problem (1.1) and (1.3). Define on CE(I),
a distance function (metric) ρ by

ρ(u1,u2)=max
t∈I

e−λt ‖u1(t)−u2(t)‖ , (2.1)

where u1,u2 ∈ CE(I), λ > 1 being a fixed number. It is clear that (CE(I),ρ) is a metric
space, (see [2, 3]).

Theorem 2.1. The abstract initial value problem (1.1) and (1.3) has a weak solution

in the metric space (CE(I),ρ) for every t ∈ I.
Proof. From equation (1.1), let

du
dt

=−Au+v. (2.2)

The desired solutionu of the above equation can be written in the form (see [1, 11, 12])

u(t)=
∫ t
0
T(t−s)v(s)ds, (2.3)

where v satisfies

dn−1v
dtn−1

= B(t)
∫ t
0
T(t−s)v(s)ds+f(t,W), (2.4)

W = (w1,w2, . . . ,wν
)
, wi(t)= Bi(t)

∫ t
0
T(t−s)v(s)ds. (2.5)
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Integrating (2.4) (n−1) times, we get

v =
∫ t
0

∫ t
s

∫ yn−1
s

···
∫ y3
s

∫ y2
s
B
(
y1
)
T
(
y1−s

)
v(s)dy1dy2 ···dyn−1ds

+
∫ t
0

∫ ξn−1
0

···
∫ ξ3
0

∫ ξ2
0
f
(
ξ1,W(ξ1)

)
dξ1dξ2 ···dξn−1.

(2.6)

Let Q be an operator defined on CE(I) by

Qv =
∫ t
0

∫ t
s

∫ yn−1
s

···
∫ y3
s

∫ y2
s
B
(
y1
)
T
(
y1−s

)
v(s)dy1dy2 ···dyn−1ds

+
∫ t
0

∫ ξn−1
0

···
∫ ξ3
0

∫ ξ2
0
f
(
ξ1,W(ξ1)

)
dξ1dξ2 ···dξn−1.

(2.7)

We prove that Q is a contraction mapping. We notice that

∥∥Qv−Qv∗∥∥≤K1
∫ t
0

∫ t
s

∫ yn−1
s

···
∫ y2
s

(
y1−s

)−δ∥∥v(s)−v∗(s)∥∥dy1 ···dyn−1ds
(2.8)

which gives

ρ
(
Qv,Qv∗

)≤ K1Tn−δ0 Γ(1−δ)
Γ(n−δ)λn−2 ρ(v,v∗). (2.9)

For a sufficiently large λ we deduce that Q is a contraction operator therefore there
exists a unique fixed point such that (see [2, 3, 1]) Qv = v ∈ CE(I), which proves the
existence and uniqueness of a weak solution u in CE(I).

We prove that |f(t,W(t))| is bounded on the interval [0,T0].
Theorem 2.2. If the function f(t,W(t)) satisfies the conditions (1.4) and (1.8), then

|f(t,W(t))| is bounded for all t ∈ I.
Proof. From condition (1.4), it is clear that

∥∥f (t,W(t))−f(t,θ, . . . ,θ)∥∥= ∥∥f (t,W(t))−f (t,W(0))∥∥≤K ν∑
i=1
‖wi(t)‖

=K
ν∑
i=1

∥∥∥∥∥
∫ t
0
Bi(t)T(t−s)v(s)ds

∥∥∥∥∥ .
(2.10)

From (1.8), we get the required result.

Theorem 2.3 (see [1, 4, 11]). The function u(t) is an element of S for every t ∈ I
and so u∈ CS[0,T0].
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Proof. To prove this theorem, it is enough to show that v(t) satisfies the Lipschitz
condition in t ∈ I

v(t2)−v(t1)=
∫ t2
0

∫ t2
t1

∫ yn−1
s

···
∫ y3
s

∫ y2
s
B
(
y1
)
T
(
y1−s

)
v(s)dy1dy2 ···dyn−1ds

+
∫ t2
t1

∫ t2
s

∫ yn−1
s

···
∫ y3
s

∫ y2
s
B
(
y1
)
T
(
y1−s

)
v(s)dy1dy2 ···dyn−1ds

+
∫ t2
t1

∫ ξn−1
0

···
∫ ξ3
0

∫ ξ2
0
f
(
ξ1,W(ξ1)

)
dξ1dξ2 ···dξn−1ds.

(2.11)

The theorem is proved by using the above equation and (1.6).

To complete the proof of the existence and uniqueness of the solution (strongly)

we prove that each of the following derivative

du
dt
,
d2u
dt2

, . . . ,
dn−1u
dtn−1

(2.12)

belong to CG(I), let Ψ1(t)= B(t)u(t) and Ψ2(t)= f(t,W(t)). From (1.1), we can write
formally

dru(t)
dtr

=
∫ t
0

∫ yn−r−1
s

···
∫ y3
s

∫ y2
s
T
(
y1−s

)
Ψ1(s)dy1dy2 ···dyn−r−1ds

+
∫ t
0

∫ ξn−r−1
s

···
∫ ξ3
s

∫ ξ2
s
T
(
ξ1−s

)
Ψ2(s)dξ1dξ2 ···dξn−r−1ds.

(2.13)

To get the required result, we must prove that Ψ1 and Ψ2 satisfies a uniform Hölder

condition for t ∈ I. Suppose that t2 > t1, therefore it is easy to show that

Ψ1(t2)−Ψ1(t1)=
∫ t1
0
B(t2)T(t1−s)

[
T(t−t)−J]v(s)ds

+
∫ t1
0

[
B(t2)−B(t1)

]
T
(
t1−s

)
v(s)ds

+
∫ t2
t1
B(t2)T(t−s)v(s)ds,

(2.14)

where J is the identity operator on E,

‖Ψ2(t2)−Ψ2(t1)‖ ≤
∥∥f (t2,W(t2))−f (t1,W(t2))∥∥+∥∥f (t1,W(t2))−f (t1,W(t1))∥∥

≤K1
(
t2−t1

)β+K2
ν∑
i=1
‖Ai(t2)u(t2)−Ai(t1)u(t1)‖ ,

(2.15)

where K1 and K2 are positive constants. Similarly, as in [9], we can prove that Ψ1
and Ψ2 satisfies Hölder condition in t ∈ I, therefore (du/dt) ∈ CS(I) and (dv/dt) is
continuous for all t ∈ I.
Now, Au(t) can be written in the form

Au(t)=
∫ t
0

∫ t
s

∫ yn−1
s

···
∫ y3
s

∫ y2
s
AT

(
y1−s

)[
Ψ1(s)+Ψ2(s)

]
dy1dy2 ···dyn−1ds.

(2.16)
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Thus differentiate (n−1) times we get

dn−1

dtn−1
[Au]=

∫ t
0
AT

(
y1−s

)[
Ψ1(s)+Ψ2(s)

]
ds =Ad

n−1u
dtn−1

. (2.17)

Therefore,

dnu
dtn

= d
n−1v
dtn−1

−Ad
n−1u
dtn−1

(2.18)

is continuous on I. Consequently,

u(t)=
∫ t
0
T(t−s)v(s)ds (2.19)

represent the unique solution of the considered Cauchy problem (compare with [8,

10, 11]).

3. Correct solution. In this section, we prove the correct formulation of the con-

sidered initial value problem (1.1) and (1.2). In other words, we prove the continuous

dependent of the solution of the problem on the initial conditions. Let {um} be a
sequence of solutions of the initial value problem

dnum

dtn
+Ad

n−1um

dtn−1
= B(t)um+f (t,Wm), (3.1)

um|t=0 = gm0 ∈ S,
dum

dt

∣∣∣∣
t=0

= gm1 , . . . ,
dn−1um

dtn−1

∣∣∣∣
t=0

= gmn−1, (3.2)

where Wm is the sequence Wm = (B1(t)um,B2(t)um,. . . ,Bν(t)um).
Theorem 3.1 (see [7, 9]). Let the sequences {gm0 },{gm1 },{gm2 }, . . . ,{gmn−1},{Agmn−1},

be convergent in E to g0,g1,g2, . . . ,gn−1,Agn−1, respectively. If the sequences {B(t)gm0 },
{B(t)gm1 }, {B(t)gm2 }, . . . ,{B(t)gmn−1}, {Bi(t)gm0 }, {Bi(t)gm1 }, {Bi(t)gm2 }, . . . ,{Bi(t)gmn−1}
are uniformly convergent with respect to t ∈ I in E to B(t)g0,B(t)g1,B(t)g2, . . . ,
B(t)gn−1,Bi(t)g0,Bi(t)g1,Bi(t)g2, . . . ,Bi(t)gn−1, i = 1,2, . . . ,ν , respectively, where

g0,g1,g2, . . . ,gn−1 are elements in G, then the sequence of solutions {um(t)} of the

problem (3.1) and (3.2) converges in the metric space CE(I) to the solution u(t) of the

considered problem with the initial conditions,

u|t=0 = g0, dudt
∣∣∣∣
t=0

= g1, . . . , d
n−1u
dtn−1

= gn−1, (3.3)

Proof. Let

ζm(t)=um(t)−
n−1∑
k=0

tk

k!
gmk (3.4)

substitute in equation (1.8), we get

dnζm

dtn
+Ad

n−1ζm

dtn−1
= B(t)ζm+f∗(t,Wm) (3.5)
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with the initial conditions

ζm|t=0 = 0, dζ
m

dt

∣∣∣∣
t=0

= 0, . . . , d
n−1ζm

dtn−1

∣∣∣∣
t=0

= 0, (3.6)

where

f∗
(
t,Wm)= n−1∑

k=0

(
B
tk

k!
gmk

)
+f (t,Wm)−Agmn−1,

Wm = (B1(t)um,B2(t)um,. . . ,Bν(t)um)

=

B1ζm+

n−1∑
k=0

B1(t)
tk

k!
gmk , . . . ,Bν(t)ζ

m+
n−1∑
k=0

Bν(t)
tk

k!
gmk


 .

(3.7)

Set
dζm(t)
dt

+Aζm(t)= Pm(t), (3.8)

therefore,
dn−1

dtn−1
(
Pm(t)

)= B(t)ζm(t)+f∗(t,Wm). (3.9)

It is clear that

Pm(t)=
∫ t
0

∫ t
s

∫ yn−1
s

···
∫ y3
s

∫ y2
s
B
(
y1
)
T
(
y1−s

)
Pm(s)dy1dy2 ···dyn−1ds

+
∫ t
0

∫ ξn−1
0

···
∫ ξ3
0

∫ ξ2
0
f∗
(
ξ1,Wm(ξ1)

)
dξ1dξ2 ···dξn−1,

(3.10)

we can easily deduce that∥∥Pm(t)−Pr (t)∥∥
≤
∫ t
0

∫ t
s

∫ yn−1
s

···
∫ y3
s

∫ y2
s

∥∥B(y1)T(y−s)∥∥‖Pm(s)−Pr (s)‖ dy1dy2 ···dyn−1ds
+
∫ t
0

∫ ξn−1
0

···
∫ ξ3
0

∫ ξ2
0

[n−1∑
k=0

B
tk

k!

∥∥∥gmk −grk
∥∥∥

+∥∥f (t,Wm)−f (t,Wr )∥∥+A∥∥∥(gmn−1−gn−1)
∥∥∥
]

×dξ1dξ2 ···dξn−1.
(3.11)

Multiply by e−λt and using the metric defined by equation (2.1), we get

ρ
(
Pm,Pr

)≤Kρ(Agmn−1,Agrn−1)+K

n−1∑
k=0

ρ
(
Bgmk ,Bg

r
k

)

+K
ν∑
k=1

n−1∑
j=0
ρ
(
Akgmj ,Akg

r
j

)
.

(3.12)

According to all the conditions before, the sequence {Pm} is fundamental and hence
converges to P in CE(I). But

ζm(t)=
∫ t
0
T(t−s)Pm(s)ds. (3.13)
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Therefore, the sequence {um(t)} uniformly converges with respect to t ∈ I in E to the
required solution (compare with [6, 5, 4, 9]).

4. Application. Consider the Cauchy problem

∂n−1

∂tn−1
(Lu)=

∑
|α|≤2m−1

aα(x,t)Dαu+f(x,t,W), (4.1)

with the initial conditions

u(x,t)|t=0 = g0(x), ∂u(x,t)∂t

∣∣∣∣
t=0

= g1(x), . . . , ∂
n−1u(x,t)
∂tn−1

∣∣∣∣
t=0

= gn−1(x), (4.2)

where

Lu= ∂u
∂t
+A(x,D)u, A(x,D)=

∑
|α|≤2m

bα(x)Dα,

W =
(
B1(t)u,B2(t)u,. . . ,Bν(t)u

)
, Bi(t)=

∑
|α|≤2m−1

Cα,i(x,t)Dα,
(4.3)

for x = (x1,x2, . . . ,xn)∈Rn, Di = ∂/∂xi, Dα =Dα11 Dα22 ···Dαnn , α= (α1,α2, . . . ,αn) is
an n-dimensional multi-index, and |α| =α1+α2+···+αn. LetM be an open set in the
n-dimensional Euclidean space Rn, and let L2(M) be the space of all square integrable
functions on M . We denote by Cm(M) the set of all continuous real-valued functions
inM together with all theirm-partial derivatives, and we denote by Cm0 (M) the subset
of Cm(M) consisting of all functions having a compact support. Let Hm(M) be the
complete space of Cm(M) with respect to the norm (see [2, 3])

‖f‖m =
[ ∑
|α|≤m

∫
M

∣∣Dαf(x)∣∣2dx
]1/2

. (4.4)

For any 0< b <∞ denote by Ωb the cylinder {(x,t) : x ∈M, 0< t < b}, and by Γb the
boundary {(x,t) : x ∈ ∂M, 0< t < b}, where ∂M is the boundary of M . We say that L
is uniformly parabolic in M̄ , the closure of M if the coefficients bα are continuous on
M̄ and if

(−1)m
∑

|α|=2m
bα(x)ηα ≥ C|η|2m, c > 0, (4.5)

for all x ∈M and for all η∈ Rn, where ηα = ηα11 ηα22 ···ηαnn , and |η|2 = η21+η22+···+
η2n. Suppose also that the coefficients aα, Cα,i are continuous on Ωb and satisfies a
uniform Hölder condition in t ∈ [0,b]. The Cauchy problem (4.1) and (4.2) can be

written in the abstract form (1.1) and (1.2), where A is the operator with domain
S =H2m(M)∩Hm

0 (M) given by

Au=A(x,D)u=
∑

|α|≤2m
bα(x)Dαu. (4.6)

Let E = L2(M). Then the domain S is dense in L2(M). The operators B(t),B1(t),B2(t),
. . . ,Bν(t) are given by

B(t)=
∑

|α|≤2m−1
aα(x,t)Dα, Bi(t)=

∑
|α|≤2m−1

Cα,i(x,t)Dα, (4.7)
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where i= 1,2, . . . ,ν . The domain of these operators can be taken H2m−1(M)∩Hm
0 (M)

which is dense in L2(M) (see [1, 2, 10]). Therefore, we can assume that

S1 = S2 = ··· = Sν = F =H2m−1(M)∩Hm
0 (M). (4.8)

Suppose that g0(x), g1(x), . . . ,gn−1(x) are given functions in S. Since Lu is uniformly
parabolic, it follows that −A = −A(x,D) generates a semi-group {T(t)} of class C0.
It can be proved that T(t) satisfies the condition (1.7) and (1.8). Consequently, [2, 6]
can be applied to the Cauchy problem (4.1) and (4.2). This means that the considered

problem can be solved in S without any restrictions on the characteristic forms of the
operators ∑

|α|≤2m
aα(x,t)Dα,

∑
|α|≤2m

Cα,i(x,t)Dα, (4.9)

which depends only on the continuity of the functions g0,g1, . . . ,gn−1.
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