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GROUP THEORY BASED AT ANY POINT
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Abstract. If (G,·) is a group with identity e, we call G, the group based at e. In this paper,
we aim to release the present day group theory which is based at e, by replacing e by an
arbitrary element of the group.
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1. Introduction. If (G,·) is a group with the identity e, we call G a group based

at e. We can change this base to any other element a∈G, by defining a new sandwich

multiplication,
∗
a, called the multiplication based at a, as

p
∗
aq = pa−1q; p,q ∈G (1.1)

making (G,
∗
a), a group now based at a. It was previously known [1, 2] that all these

structures at different based points are isomorphic.

Thus the group theoretic concepts, presently available at (G,·) based at e are rather
special cases of the more general concepts based at an arbitrary point a ∈ G, called
now the concepts based at a. The idea here is parallel to that in differential geome-

try, where one chooses a point on a smooth manifold and then studies differential

geometric concepts like that of, say, a “tangent bundle” at that point [3].

If a concept based at a holds for all a∈G, we call this an everywhere concept in G.
In this paper, we briefly underline these ideas. Our study arose while looking at

concepts for pregroups mentioned in our previous work [2]. We use the notation of

[2], by replacing â, by
∗
a for simplification.

Throughout, we denote (G,·) for the group based at e, and a denotes an arbitrary

fixed element of G.

2. Based subgroups

Definition 2.1. A nonempty subset H of a group G is called an a-based subgroup

of G if

p,q ∈H implies pq−1a∈H. (2.1)

We use the notation H ≤a G.

The usual notion of a subgroup in the common group theoretic sense is that of an

e-based one for the identity element e of G. By definition if H is an a-based subgroup,

then a∈H.
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It is quite clear that for two distinct a,b ∈ G, an a-based subgroup need not be

b-based, as can be seen from the following example.

Example 2.2. The positive rationals, with respect to multiplication, denoted by

(Q+,·) is an identity based subgroup of (R+,·) of all positive reals, but not an r -based
subgroup of an irrational r ∈R+.
Our next proposition determines when a nonempty subsetH of a group (G,·) based

at e is an a-based subgroup for a ∈ G and is an adapted version of a result due to

Certaine [1].

Theorem 2.3. A nonempty subset H of a group G is an a-based subgroup of G if

H = Ua or aU for the subgroup U = Ha−1 (or a−1H). Conversely, if H = Ua (or aU )
for any subgroup U of G, then H is an a-based subgroup of G.

Proof. Suppose that H is an a-based subgroup. Then for p,q ∈H; pq−1a∈H, or

in other words,

p,q ∈H implies pq−1 ∈Ha−1. (2.2)

This is precisely the condition that

U =Ha−1 is a subgroup of G. (2.3)

For if u1,u2 ∈ U , then u1 = ha−1 and u2 = h′a−1; h, h′ ∈ H. Then u1u−12 =
ha−1ah′−1 = hh′−1 ∈ Ha−1 by condition (2.2). So U = Ha−1 is a subgroup of G and

Ua=H.

Conversely, suppose that H =Ua for a subgroup U of G, then for p,q ∈H, p =ua,
g =u′a, thus

pq−1a=uaa−1u′−1a=uu′−1 ∈Ua=H. (2.4)

Thus H is an a-based subgroup.

The proof when H is a left a-coset is similar. Thus the a-based subgroups are

nothing but a-cosets (left and right).

The next result is rather simple.

Proposition 2.4. For two elementsa,b and a subgroupH ofG, H isa-based implies

H is b-based, if and only if a−1b ∈ H, that is, bH = aH (or ab−1 ∈ H, i.e., Ha = Hb).
That is, if a,b ∈G and H ≤a G, then H ≤a G if and only if a−1b ∈H.

Thus for two elements a and b belonging to a subgroup H, H is a-based always

implies H is b-based. We notice that any subgroup H is an everywhere subgroup if

and only if H = G, itself, and the group consisting of a single element is only that

element based subgroup that is a nowhere subgroup.

3. Based abelianness

Definition 3.1. A subgroup H of (G,
∗
a) is called a-based abelian, if for p,q ∈H,

pa−1q = qa−1p. (3.1)
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From the definition it is clear that H is a-based abelian if

pa−1q = (p−1aq−1)−1, (3.2)

that is,

p−1aq−1pa−1q = e or ap−1aq−1pa−1q = a. (3.3)

Proposition 3.2. For a subgroup H of the group (G,·) based at e, and two distinct

elements a,b ∈H, if H is a-based abelian then H is b-based abelian also.

Proof. This follows from [2, Theorem 3.2], which asserts (H,
∗
a)	 (H,

∗
b).

Corollary 3.3. A subgroup H is abelian if and only if it is a-based, for one a∈H.

Proof. If H is a-based abelian, then for p,q ∈H, pa−1q = qa−1p, so H is a-based
abelian.

Conversely, if H is a-based abelian, then H is e-based abelian also, for the identity

element e of G; that is, H is abelian.

Thus an a-based abelian group G, for a ∈ G, is exactly an abelian group in the

common group theoretic sense.

Next we examine this concept for an a-based subgroup H of (G,·).
Proposition 3.4. An a-based subgroup H is a-based abelian if and only if H =Ua

(or aU ) for an abelian subgroup U of G.

Proof. By Theorem 2.3,H is an a-based subgroup if and only ifH has the required

stated form. Now, for h1,h2 ∈H, h1 =u1a and h2 =u2a. So h1a−1h2 = h2a−1h1 gives

u1aa−1u2a=u2aa−1u1a, (3.4)

that is, u1u2 =u2u1. So U is abelian.

Conversely U is abelian, gives u1u2a=u2u1a for an a∈G which gives h1a−1h2 =
h2a−1h1 for h1 =u1a and h2 =u2a. Thus H =Ua is a-based abelian.

4. Based normality

Definition 4.1. A subgroup H of G is called a-based normal, denoted by H�a G, if
for any x ∈G,

ax−1ha−1x ∈H ∀h∈H. (4.1)

From the definition, it is clear that

(a) a subgroup H is a-based normal, if a(xH)a−1 ⊆ Hx, that is, the inner auto-

morphism by a of G, translates a left coset into a right coset,

(b) a subgroup H is everywhere normal if Ha−1x ⊆ xa−1H for every pair of ele-

ments a,x ∈G, that is, Hab ⊆ baH for all a,b ∈G.

Remark 4.2. (i) IfG is abelian, all subgroups are everywhere normal. Thus it follows

from the example in Section 2 that an a-based normal subgroup need not be an a-
based subgroup (for an irrational a in that example), as a need not belong to H.

Conversely, every element is that element based (trivial) normal subgroup in the group



412 M. A. ALBAR AND S. A. HUQ

based at that element. Thus, it becomes more natural to consider an a-based subgroup
which is a-based normal as well. When we wish to indicate this, we write H �a︸︷︷︸G,
meaning H is an a-based subgroup for which condition (i) holds.

(ii) If every pair of elements (a,x) of the group G is inverse commuting (i.e., the

inverse of one commutes with the other), then every normal subgroup of G is every-

where normal.

One now asks when is a subgroup a-based normal for an a ∈ G? The answer is as
follows.

Theorem 4.3. If G is a group, a ∈ G and H a subgroup of G then H�a G, if and
only if

(i) H�G,
(ii) [a−1,G]⊆H, where [a−1,G]⊆H means [a−1,x]∈H for every x ∈G.

Proof. Let H�a G, then for all x ∈ G and all h ∈ H, ax−1ha−1x ∈ H, that is,

ax−1hxa−1a−1x ∈ H or (xa−1)−1h(xa−1)[a−1,x] ∈ H. Choosing h = e, this gives

for all x ∈G, [a−1,x]∈H. This is (ii).

Conversely, for all x ∈ G, h ∈ H, (xa−1)−1h(xa−1) ∈ H. Next let y ∈ G, then for

all h∈H,

y−1hy = (yaa−1)−1h(yaa−1)∈H and therefore H�G. (4.2)

Conversely, let H satisfy (i) and (ii). Then by (i) for all x ∈G and all h∈H,

(
xa−1

)−1h(xa−1)∈H, (4.3)

and by (ii) [
a−1,x

]∈H; (4.4)

thus (xa−1)−1h(xa−1)[a−1,x]∈H. That is, ax−1ha−1x ∈H and so H�a G.

Corollary 4.4. Let G be a subgroup, a∈G and H a subgroup of G, then H�a G, if
and only if

(i) H�G,
(ii) the coset Ha is in the center of G/H.

It follows immediately that a normal subgroup H of G is everywhere normal if and

only if the derived group G′ = [G,G]⊆H, that is, if and only if G/H is abelian.

As we noticed, the normal closure [a−1,G] of [a−1,G] is an a-based normal sub-

group of G. This is called the a-derived subgroup of G. In fact this is the smallest

a-based normal subgroup of G.
Notice that the derived group G′�G and [a−1,G] ⊆ G′; in fact [a−1,G]t ⊆ G′ for

t ∈G.

Definition 4.5. A groupG is called a-solvable (of class k), for an a∈G, if [a−1,Gk]
⊆Gk+1 = 1.

Obviously, every subgroup of an a-solvable subgroup is a-solvable, and every solv-

able group is everywhere solvable.
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Returning again to based normality, we notice that if in Definition 4.1, we assume

that (i) holds for only a fixed x ∈G, we call H�a G, relative to the element x ∈G. With

this convention we conclude that if H�a G, relative to b ∈G, then H �
b−1G, relative to a.

Theorem 4.6. For any a∈G,
(i) H�a G, H�G implies HK�a G,
(ii) A�a G, B�a G implies A∩B�a G, (this remains valid when a is replaced by a︸︷︷︸),
(iii) if further a∈H, then K�a G, H a-subgroup of G implies H∩K�a H.

Proof. Since the proofs are routine verification as in common group theory, we

exhibit typically the proof of (i).

To see (i), notice HK is a normal subgroup, since H and K are, and

[
a−1,G

]⊆H ⊆HK. (4.5)

Finally, we exhibit a characterization of a-based subgroups which are a-based nor-

mal as well. Our result is an adapted version of our previous result [2, Theorem 8.1]

for this case, though the proof is completely new.

Theorem 4.7. An a-based subgroup H is a-based normal (H �a︸︷︷︸G) if and only if

H =Ua (= aU) where U�G.

Proof. Notice that H is an a-based subgroup if and only if H =Ua (or aU ) where
U is a subgroup by Theorem 2.3.

Now if H is an a-based normal subgroup, then for any x ∈G,

ax−1Ha−1x ⊆H, (4.6)

that is, ax−1Ux ⊆H =Ua, thus ax−1Uxa−1 ⊆U or in other words

(
xa−1

)−1Uxa−1 ⊆U. (4.7)

Showing U �G, as in the proof of Theorem 4.3, since Ua = aU , the result is true for
aU also.

Conversely, if H =Ua, where U�G, then

ax−1Ha−1x = ax−1Uaa−1x for u∈U

= ax−1ux

= au′ for u′ = x−1ux ∈U

∈ aU =Ua=H.

(4.8)

5. Based direct product. Let (Ai)i∈I be a family of groups with respect to multipli-

cation. Let ki ∈Ai, then we define the based direct product
∏

(ki)i∈I Ai, as follows.

For (ai)i∈I , (bi)i∈I , define

(ai)i∈I
( ∗
ki
)
i∈I
(
bi
)
i∈I , by

(
ai
∗
kibi

)
i∈I . (5.1)
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This makes πAi a direct product based at (ki)i∈I usually denoted by
∏

(ki)i∈I Ai.

Notice that, the inverse [(ai)i∈I]−1 = [a−1
i
∗
ki
]i∈I , where a−1

i
∗
ki

denote the inverse of ai

with respect to the multiplication based at ki [2].
With this definition of product, usual group theoretic concepts could be extended

to hold at an arbitrary point. A simplest theorem of this nature is as follows.

Theorem 5.1. Ai �ai︸︷︷︸Bi implies
∏

(ai)i∈I Ai �
(ai)i∈I︸ ︷︷ ︸

∏
(ai)i∈I Bi, where ai ∈Ai for each i.

6. Homomorphisms

Definition 6.1. Let G and H be two groups; a ∈ G, b ∈ H. We call a mapping

φ :G→H, a homomorphism, if for g1,g2 ∈G,

φ
(
g1

∗
ag2

)
=φ(g1)

∗
bφ(g2), (6.1)

that is,

φ
(
g1a−1g2

)=φ(g1)b
−1
φ′(g2). (6.2)

Choosing g1 = g2 = a, we have b = φ(a), that is, the homomorphism preserves the

base point.

Proposition 6.2. If φ :G→H is a homomorphism, then

(i) K �a︸︷︷︸G implies Kφ �
b︸︷︷︸Gφ,

(ii) K �
b︸︷︷︸H implies K−1φ �a︸︷︷︸G, can then be formulated.

7. Based commutators. For two elements p,q of G, we define for a fixed element

a∈G, an a-based commutator of p, and q by

[p,q]a = ap−1aq−1pa−1q. (7.1)

Thus [p,q]e for the identity e, is the usual commutator.

From the definition, it is immediate

[p,q]−1a = q−1ap−1qa−1pa−1. (7.2)

Thus

a[p,q]−1a a= [q,p]a. (7.3)

Also,

[p,p]a = a. (7.4)

Notice

[p,q]a =
[(
pa−1

)
,
(
qa−1

)]
ea. (7.5)

Besides these, we record the general commutator identities as follows.

Theorem 7.1 (see [2]). (i) [p,qa−1r]a = [p,r]aa−1([p,q]a)r .
(ii) [pa−1q,r]a = ([p,r]a)qa−1[q,r]a, where xp = p−1∗

a
a−1xa−1p, where p−1∗

a
is the

a-based inverse of p.
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Proof. As usual, we exhibit the proof of (ii). The left-hand side of (ii)

[pa−1q,r]a = a
(
pa−1q

)−1ar−1(pa−1q)a−1r
= aq−1ap−1ar−1pa−1qa−1r .

(7.6)

Also the right-hand side

q−1∗
a
a−1[p,r]aa−1qa−1[q,r]a = aq−1ap−1ar−1pa−1ra−1qa−1aq−1ar−1qa−1r

= aq−1ap−1ar−1pa−1qa−1r .
(7.7)

This completes the proof.

Obviously, if [p,q]a = a for any p,q and a∈G, then G is a-based abelian therefore

abelian by Corollary 3.3 of Proposition 3.2.

It is now quite clear how one generalizes various other concepts. For example, in

G, two sets S and S′ are a-based conjugate, for an a ∈ G, if there exists an x ∈ G,
such that ax−1Sa−1x = S′. If this is true for every a ∈ G, we obtain an everywhere

conjugate pair of sets.

The study of a︸︷︷︸ -based normalizer, a︸︷︷︸ -based centralizer, and so forth, follows

the direction of a︸︷︷︸ -based normal subgroups (a-based subgroups which are a-based
normal) and their everywhere counterparts are then a matter of routine. We leave

these as exercises.

Remark 7.2. (a) Let F be a free group on a set S of symbols. Adjoin a symbol a to

S to get S∪{a}. The free group on S∪{a} could be considered as a free group on S
based at a, denoted by Fa and any two such Fa and Fb are isomorphic for different

symbols a,b.
If a,b ∈ S, there is no difference between Fa, Fb, or F . Thus a free group on a set S

could be considered freely based at every point of S, that is everywhere free on S.
(b) Though we have studied (G,

∗
a) in terms of the usual (G,·)= (G,

∗
e) for the iden-

tity e, with which we are familiar, it was quite possible to study the situation in terms

of (G,
∗
b) based at b.

For example a version of Theorem 4.3 states that “An a-based subgroup Ha�a G∗
a
, if

and only if Ha�a G∗
a
and [b−1∗

a
,G∗

a
]a ⊆Ha.”

We are content to leave our reader to these entertaining exercises again. In a subse-

quent paper, we look forward to use our results in differential geometry to study how

a principal fiber bundle at any point in a group could be located through that at the

identity. Behavior of topological groups under change of base points appears to be

an interesting area of study. The group theory where any element of the group could

play the role of the identity is of interest to computer science as well.

One notices that our situation generalizes suitably to other algebraic structures.
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