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ASYMPTOTIC BEHAVIOR OF ORTHOGONAL POLYNOMIALS
CORRESPONDING TO A MEASURE WITH INFINITE
DISCRETE PART OFF AN ARC
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ABSTRACT. We study the asymptotic behavior of orthogonal polynomials. The measure
is concentrated on a complex rectifiable arc and has an infinity of masses in the region
exterior to the arc.
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1. Introduction. Kaliaguine has studied in [3] the asymptotic behavior of orthogo-
nal polynomials associated to a measure of the type 0; = &+ y;, where « is concen-
trated on a complex rectifiable arc E and is absolutely continuous with respect to the
Lebesgue measure |d&| on the arc, and y; is a finite discrete measure with masses
Ay at the points z, € Ext(E), k =1,2,...,1, that is, y; = Zf(:lAk(Szk, Ag > 0, where 62,
being the Dirac measure at the points z,. In this paper, we generalize the previous
study, when o = &+ y, where « possess the same properties as in [3] and y is con-
centrated on an infinite discrete part {zx};_; € EXt(E), y = Z;?:lAkazk- The masses
{Ax}y., satisfy

A>0, > Ap<oo. (1.1)
k=1
We note that the cases of a closed curve and a circle studied in [4, 5] are different
from the case of an arc with respect to the asymptotics of orthogonal polynomials.

2. The space H2(Q,p). Suppose that E is a rectifiable arc in the complex plane,
Q=Ext(E),G={weC/lw|>1} (cc€Q, 0 G),and 1/C(E) =lim,_ (®(z)/z) >0,
where @ : Q — G is the conformal mapping. We denote by ¥ the inverse of .

Let p(&) be an integrable nonnegative function on E. If the weight function p (&)
satisfies the Szegd condition

Llog(p(ﬁ)) |®"(C) | IdE| > —oo. (2.1)

Then one can construct the so-called Szegod function D(z) associated with the do-
main Q and the weight function p (&) with the following properties.

D(z) is analytic in Q; D(z) + 0 in Q; D(e) > 0; D(z) has boundary values on both
sides of E (a.e.) and |D.|2|®, | = p(&) (a.e. on E).

Let f(z) be an analytic function in Q, we say that f(z) € H2(Q,p) if and only if
F(¥(w))/D(¥(w)) € H%(G), and for a function F analyticin G, F € H2(G) if and only if
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F(1/w) € H*(D); w € D; D = {z € C/|z| < 1}. The space H%(D) is well known
(see [6]). Any function from H?(Q,p) has boundary values f,, f- on both sides of
E, fi,f- € L2(p). We define the norm in Hardy space by

1l = §, 1£E *p@1ds1 @.2)

Here, we take the integral on both sides of E.

3. Extremal properties of the orthogonal polynomials. We denote by P, the set
of polynomials of degree almost n. Define u(p), u*(p), my(p), my,(0y), and my (o)
as the extremal values of the following problems:

u(p) =inf {llpllfe g, ® € HA(Q,p), (o) = 1], 3.1
w(p) =inf {1 @132, : @ € HA(Q,p), @() =1, @(zi) =0, k=1,2,...}, (3.2)

my(p) = min“E |Qu(E)|°p(E)IE], Qu(z) = 2"+ - } (3.3)

1
My (07) = mm“E [Qn(®) [°p(E)IAEI+ > Ak Qn(zk) %) Quiz) = 2" +- - - } (3.4)

k=1

my (o) =min“E |Qn(®)*p(®)NAEI+ > A|Qn(20) |, Quiz) = 2"+ - - } (3.5)
k=1

We denote, respectively, by ¢ * and ¢* the extremal functions of the problems (3.1)
and (3.2). We denote by {T,ﬁ(z)} and {T,,(z)} the systems of the monic orthogonal
polynomials, respectively, associated to the measures o; and o, that is,

Ti(z)=z"+---,

l
L TLEOE p(®)IdEl+ S ATL(z)Er =0; p=0,1,2,...,n1,

k=1 (3.6)
Tu(z)=2"+---,

LTn(E)Epp(E)\dgl + ZAan(zk)EZ =0; p=0,1,2,...,n—1.
k=1

It is easy to see that the polynomials {T,ll(z)} and {T,,(z)} are, respectively, the
optimal solutions of the extremal problems (3.4) and (3.5).

LEMMA 3.1. Let ¢ € H?(Q,p) such that (o) =1 and @(zx) =0, k =1,2,..., and
let
= d(z)-d(zx) \q>(zk)|2
re= o(z1) 3.7
® I}:[l‘b(z)q)(zk)fl b (zy) (3.7

be the Blashke product, then
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(1) B€ H*(Q,p); B(®) =1; |B-(E)| =151 |1®(zx)| (a.e. on E),
(2) @/BeH*(Q,p) and (¢/B)(x) = 1.

The proof is the same as that of Lemma 3.1 given in [1].

LEMMA 3.2. The extremal functions @* and @* are connected by

2
W* =B(2)-@*,  p*(p)= (1‘[ |<I>(zk)|) uip). (3.8)
k=1

The proof is the same as that of a closed curve given in [2, Lemma 4.2]. We replace
the finite Blashke product by the infinite product B and using its properties announced
by Lemma 3.1.

4. Main results

DEFINITION 4.1. The measure o = &+ Yy belongs to the class A (and we write o € A),
if the absolutely continuous part & and the discrete part of o satisfy (in addition to
conditions (1.1) and (2.1))

(i |<I)(zk)\—1) < 0, (4.1)

k=1

An arc E is from C** class if E is rectifiable and its coordinates are x-times differen-
tiable, with «th derivatives satisfying a Lipschitz condition positive exponent.

THEOREM 4.2. Let 0 be a measure, 0 = x+ Yy, such that o € A. Then
}immn(m) =mu(0). (4.2)

PROOF. The extremal property of T;,(z) implies that

1
(@) < [ 1 T0(®) PP @)AEI+ Y Akl Tu(2)|* < a0, 43)
k=1
then
my (o) <my(0). (4.4)

On the other hand, the extremal property of T,,(z) implies that

mnm)sj ITLE) () dEI+ S Ac| TL(zi) |2
E k=1
) 4.5)
=mp(o7)+ > Ax| Th(zi) |2
k=1+1

According to the reproducing property of the kernel function K, (&,z) (see [7]), and
TL(z) € Py, we have

Th(z0) = | THO K (E 20 (©)1dE]. 4.6)
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The Scharwz inequality and the fact that [®#(&)| = 1 for € € E and K, (z,zx) € Py
imply

T (=0 1* = [ ITL® Pp®1dl - [ |Kn(E,20) 1 p(E)1dE]
E E

(4.7)
<mu(0y) - Kn (2, k).
The inequalities (1.1), (4.5), and (4.7) imply
My (0) <mp(01)+ D Axmp(01)Kn(2zk, k)
k=1
o ) 4.8)
<mpy(oy) {H sup Kn(zx,zk) > Ak:|;
k=1+1 k=1+1
so we have
"MalT) s, where 8, — 0, [ — o. (4.9)
mn(o_l)
Using (4.4) and (4.9), we obtain
My (0) <11rlnlnfmn(m) <limsupmy(0y) <myu (o), Vn, (4.10)
l—co
this implies that
%immn(m) =my(o), Vn. (4.11)
o o

THEOREM 4.3. Let o be a measure, o0 = x+Yy, such that o € A and

2
(1‘[|<1> (zi) ) vn, Vi 4.12)

Suppose that E € C%*. Then we have

mn(p)

mu(o) *(p)
nl—I'Iolo C(E)Z" =H p ’
[ e @ - Ha©) P 1ag1 —o, (4.13)

Tn(z) = C(E)"®" (2)[p*(2) +€n(2)],

where Hy (&) = ®(E) Y (E) + ™ (E)Y* (&), €n — O uniformly on the compact subsets
of Q.

PROOF. By passing to the limit when [ tends to infinity and using Theorem 4.2 and
(4.12), we obtain

2
m”(a) (1‘[]@ )m’g)’ﬁ (4.14)

This implies that

2
| ®(zk) |> Hip) = pu*(p) (4.15)
k=1

s 2542 <[]

(see Lemma 3.2).
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The extremal property of the polynomials T, (z) and the fact that [®(&)| = 1, for
& € E imply (see [2] for details)

: To(zi)

2my (o) Ty > 2n
_ . 25 A — Dtz g , 4.16
C(E)2n H[C(E)q>] o ,; c®aor | 2] (4.16)
SO 5
Tn 2my (o)
__In__ < Malo) 417
H [C(E)q)] HZ(Q,,D) C(E)Zn ( )
Equations (4.15) and (4.17) imply that
T 2
limsup||—2*— <2u*(p). (4.18)
nwp‘[C(Eyp] oy TP
Now we take the integral
= [ 1CE) T - Hu(®) (€)1
- \(%cwrm@—cb’:(mi(g)) 4.19)
E
1 2
+(3CE M@ -0m©wE®)| p©)ag,

by the triangular inequality, we have

> 1/2
p(§)|d§|>

2 (L |5 CE T (E) - L (E)

) 1/2
p<§>|d§|) (4.20)

N (j \%C<E>*"Tn<§>f¢ﬁ<§>wf<§>
E

> 172
P(E)d§|> .

sz(jﬁ \%C<E>*"Tn<§>f@"<§>w*<§>
E

Then we deduce that )

Ins4H1 Tn ]n—w* (4.21)

2 [C(E)®

H2(Q,p)

By using the parallelogram rule in H2(Q, p), we have

In<4 2Hl In +2[|*| 7 ,Hl In | (4.22)
"SRz e llnzom HH@0 T2 C(E)n 200 |’ '
SO 94
limsupl, < 4| u*(p) + 26" ()~ § 3% (0) | =0, 4.23)
n— oo

where we have used the fact that liminf,,_ ||gn||§{2(9’p) >2u*(p) = (4/3)u*(p), since
the function g, (z) = (2/3)((1/2)Tu(2)/C(E)" + ¢*(2)) € H*(Q,p), gn(®) = 1, and
9n(zx) — 0, n — oo, This yields

0< liyrginfln <limsupIl, <0, (4.24)

NnN—oo
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finally,
lim I,, = 0. (4.25)

n—oo
For the asymptotics in the region exterior to the arc E we need the Szeg6 reproduc-
ing kernel function K(&,z) (see [8, page 173]) and the fact that T,,(z)/C(E)"®"(z) €
H?2(Q,p) for all z € Q, then
Tn(2) T (8)

CEmanz) ~ Je CEyman(g) < &P (B8]

- | e e @K ED re OR G 2p(E)dE

- [ e @ - Ha @) o OKE ) + o (K€, 21} ()dE

+[ Ha@® e @RED + o OR- 62 p(B)ldE.
(4.26)

The first integral approaches 0 as n — o (part 2 of Theorem 4.3), the second one
may be transformed into the form

L @1 (E)WiE) +e" B (E)He (DK, (E.2) + 0 (§)K_(5,2) }p(§)|dE]
- }Ew*@mp@nda

+[ {21 @wi e @R E 2wt @0 @M EK.E2) o6 dE]

=yY*(z)+ Ay,
4.27)

where A,, — 0 (coefficients of an integrable function). This proves part 3. O

REMARK 4.4. It is not difficult to find families of points {Ax};_; and {zx};_, satis-
fying condition (4.12). For example if E = [—-1,+1], then

®(z) =z+Vz2 -1 (|z+Vz2-1|>1). (4.28)
We can take z; such that
1 1
®(zi) =1+ Av=op (4.29)
As weight function we take
p(&)=(1-8)""2 (4.30)
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