ASYMPTOTIC BEHAVIOR OF ORTHOGONAL POLYNOMIALS CORRESPONDING TO A MEASURE WITH INFINITE DISCRETE PART OFF AN ARC

R. KHALDI and R. BENZINE

(Received 23 October 2000)

ABSTRACT. We study the asymptotic behavior of orthogonal polynomials. The measure is concentrated on a complex rectifiable arc and has an infinity of masses in the region exterior to the arc.

2000 Mathematics Subject Classification. 42C05, 30E15, 30E10.

1. Introduction. Kaliaguine has studied in [3] the asymptotic behavior of orthogonal polynomials associated to a measure of the type $\sigma_l = \alpha + \gamma_l$, where α is concentrated on a complex rectifiable arc E and is absolutely continuous with respect to the Lebesgue measure $|d\xi|$ on the arc, and γ_l is a finite discrete measure with masses A_k at the points $z_k \in \operatorname{Ext}(E)$, $k=1,2,\ldots,l$, that is, $\gamma_l = \sum_{k=1}^l A_k \delta_{z_k}$, $A_k > 0$, where δ_{z_k} being the Dirac measure at the points z_k . In this paper, we generalize the previous study, when $\sigma = \alpha + \gamma$, where α possess the same properties as in [3] and γ is concentrated on an infinite discrete part $\{z_k\}_{k=1}^\infty \in \operatorname{Ext}(E)$, $\gamma = \sum_{k=1}^\infty A_k \delta_{z_k}$. The masses $\{A_k\}_{k=1}^\infty$ satisfy

$$A_k > 0, \quad \sum_{k=1}^{\infty} A_k < \infty. \tag{1.1}$$

We note that the cases of a closed curve and a circle studied in [4, 5] are different from the case of an arc with respect to the asymptotics of orthogonal polynomials.

2. The space $H^2(\Omega, \rho)$. Suppose that E is a rectifiable arc in the complex plane, $\Omega = \operatorname{Ext}(E)$, $G = \{w \in C/|w| > 1\}$ ($\infty \in \Omega$, $\infty \in G$), and $1/C(E) = \lim_{z \to \infty} (\Phi(z)/z) > 0$, where $\Phi : \Omega \to G$ is the conformal mapping. We denote by Ψ the inverse of Φ .

Let $\rho(\xi)$ be an integrable nonnegative function on E. If the weight function $\rho(\xi)$ satisfies the Szegö condition

$$\int_{E} \log \left(\rho(\xi) \right) \left| \Phi'(\zeta) \right| |d\xi| > -\infty. \tag{2.1}$$

Then one can construct the so-called Szegö function D(z) associated with the domain Ω and the weight function $\rho(\xi)$ with the following properties.

D(z) is analytic in Ω ; $D(z) \neq 0$ in Ω ; $D(\infty) > 0$; D(z) has boundary values on both sides of E (a.e.) and $|D_{\pm}|^{-2}|\Phi'_{\pm}| = \rho(\xi)$ (a.e. on E).

Let f(z) be an analytic function in Ω , we say that $f(z) \in H^2(\Omega, \rho)$ if and only if $f(\Psi(w))/D(\Psi(w)) \in H^2(G)$, and for a function F analytic in $G, F \in H^2(G)$ if and only if

 $F(1/w) \in H^2(D)$; $w \in D$; $D = \{z \in C/|z| < 1\}$. The space $H^2(D)$ is well known (see [6]). Any function from $H^2(\Omega, \rho)$ has boundary values f_+ , f_- on both sides of E, f_+ , $f_- \in L^2(\rho)$. We define the norm in Hardy space by

$$||f||_{H^{2}(\Omega,\rho)} = \oint_{E} |f(\xi)|^{2} \rho(\xi) |d\xi|. \tag{2.2}$$

Here, we take the integral on both sides of E.

3. Extremal properties of the orthogonal polynomials. We denote by P_n the set of polynomials of degree almost n. Define $\mu(\rho)$, $\mu^*(\rho)$, $m_n(\rho)$, $m_n(\sigma_l)$, and $m_n(\sigma)$ as the extremal values of the following problems:

$$\mu(\rho) = \inf \left\{ \|\varphi\|_{H^2(\Omega,\rho)}^2 : \varphi \in H^2(\Omega,\rho), \ \varphi(\infty) = 1 \right\},\tag{3.1}$$

$$\mu^*(\rho) = \inf \left\{ \|\varphi\|_{H^2(\Omega,\rho)}^2 : \varphi \in H^2(\Omega,\rho), \ \varphi(\infty) = 1, \ \varphi(z_k) = 0, \ k = 1,2,\dots \right\}, \quad (3.2)$$

$$m_n(\rho) = \min \left\{ \int_E |Q_n(\xi)|^2 \rho(\xi) |d\xi|, \ Q_n(z) = z^n + \cdots \right\},$$
 (3.3)

$$m_n(\sigma_l) = \min \left\{ \int_E |Q_n(\xi)|^2 \rho(\xi) |d\xi| + \sum_{k=1}^l A_k |Q_n(z_k)|^2, Q_n(z) = z^n + \cdots \right\}, \quad (3.4)$$

$$m_n(\sigma) = \min \left\{ \int_E |Q_n(\xi)|^2 \rho(\xi) |d\xi| + \sum_{k=1}^\infty A_k |Q_n(z_k)|^2, \ Q_n(z) = z^n + \cdots \right\}.$$
 (3.5)

We denote, respectively, by φ^* and ψ^* the extremal functions of the problems (3.1) and (3.2). We denote by $\{T_n^l(z)\}$ and $\{T_n(z)\}$ the systems of the monic orthogonal polynomials, respectively, associated to the measures σ_l and σ , that is,

$$T_{n}^{l}(z) = z^{n} + \cdots,$$

$$\int_{E} T_{n}^{l}(\xi) \bar{\xi}^{p} \rho(\xi) |d\xi| + \sum_{k=1}^{l} A_{k} T_{n}^{l}(z_{k}) \bar{\xi}_{k}^{p} = 0; \quad p = 0, 1, 2, ..., n - 1,$$

$$T_{n}(z) = z^{n} + \cdots,$$

$$\int_{E} T_{n}(\xi) \bar{\xi}^{p} \rho(\xi) |d\xi| + \sum_{k=1}^{\infty} A_{k} T_{n}(z_{k}) \bar{\xi}_{k}^{p} = 0; \quad p = 0, 1, 2, ..., n - 1.$$
(3.6)

It is easy to see that the polynomials $\{T_n^l(z)\}$ and $\{T_n(z)\}$ are, respectively, the optimal solutions of the extremal problems (3.4) and (3.5).

LEMMA 3.1. Let $\varphi \in H^2(\Omega, \rho)$ such that $\varphi(\infty) = 1$ and $\varphi(z_k) = 0$, k = 1, 2, ..., and let

$$B(z) = \prod_{k=1}^{\infty} \frac{\Phi(z) - \Phi(z_k)}{\Phi(z)\overline{\Phi(z_k)} - 1} \frac{\left|\Phi(z_k)\right|^2}{\Phi(z_k)}$$
(3.7)

be the Blashke product, then

- (1) $B \in H^2(\Omega, \rho)$; $B(\infty) = 1$; $|B_{\pm}(\xi)| = \prod_{k=1}^{\infty} |\Phi(z_k)|$ (a.e. on E),
- (2) $\varphi/B \in H^2(\Omega, \rho)$ and $(\varphi/B)(\infty) = 1$.

The proof is the same as that of Lemma 3.1 given in [1].

LEMMA 3.2. The extremal functions φ^* and ψ^* are connected by

$$\psi^* = B(z) \cdot \varphi^*, \qquad \mu^*(\rho) = \left(\prod_{k=1}^{\infty} |\Phi(z_k)|\right)^2 \mu(\rho). \tag{3.8}$$

The proof is the same as that of a closed curve given in [2, Lemma 4.2]. We replace the finite Blashke product by the infinite product *B* and using its properties announced by Lemma 3.1.

4. Main results

DEFINITION 4.1. The measure $\sigma = \alpha + \gamma$ belongs to the class A (and we write $\sigma \in A$), if the absolutely continuous part α and the discrete part of σ satisfy (in addition to conditions (1.1) and (2.1))

$$\left(\sum_{k=1}^{\infty} |\Phi(z_k)| - 1\right) < \infty. \tag{4.1}$$

An arc E is from $C^{\alpha+}$ class if E is rectifiable and its coordinates are α -times differentiable, with α th derivatives satisfying a Lipschitz condition positive exponent.

THEOREM 4.2. Let σ be a measure, $\sigma = \alpha + \gamma$, such that $\sigma \in A$. Then

$$\lim_{l \to \infty} m_n(\sigma_l) = m_n(\sigma). \tag{4.2}$$

PROOF. The extremal property of $T_n(z)$ implies that

$$m_n(\sigma_l) \le \int_E |T_n(\xi)|^2 \rho(\xi) |d\xi| + \sum_{k=1}^l A_k |T_n(z_k)|^2 \le m_n(\sigma),$$
 (4.3)

then

$$m_n(\sigma_l) \le m_n(\sigma).$$
 (4.4)

On the other hand, the extremal property of $T_n(z)$ implies that

$$m_{n}(\sigma) \leq \int_{E} |T_{n}^{l}(\xi)|^{2} \rho(\xi) |d\xi| + \sum_{k=1}^{\infty} A_{k} |T_{n}^{l}(z_{k})|^{2}$$

$$= m_{n}(\sigma_{l}) + \sum_{k=l+1}^{\infty} A_{k} |T_{n}^{l}(z_{k})|^{2}.$$
(4.5)

According to the reproducing property of the kernel function $K_n(\xi, z)$ (see [7]), and $T_n^l(z) \in P_n$, we have

$$T_n^l(z_k) = \int_E T_n^l(\zeta) \overline{K_n(\xi, z_k)} \rho(\xi) |d\xi|. \tag{4.6}$$

The Scharwz inequality and the fact that $|\Phi(\xi)| = 1$ for $\xi \in E$ and $K_n(z, z_k) \in P_n$ imply

$$|T_{n}^{l}(z_{k})|^{2} \leq \int_{E} |T_{n}^{l}(\xi)|^{2} \rho(\xi) |d\xi| \cdot \int_{E} |K_{n}(\xi, z_{k})|^{2} \rho(\xi) |d\xi|$$

$$\leq m_{n}(\sigma_{l}) \cdot K_{n}(z_{k}, z_{k}). \tag{4.7}$$

The inequalities (1.1), (4.5), and (4.7) imply

$$m_{n}(\sigma) \leq m_{n}(\sigma_{l}) + \sum_{k=l+1}^{\infty} A_{k} m_{n}(\sigma_{l}) K_{n}(z_{k}, z_{k})$$

$$\leq m_{n}(\sigma_{l}) \left[1 + \sup_{k \geq l+1} K_{n}(z_{k}, z_{k}) \sum_{k=l+1}^{\infty} A_{k} \right], \tag{4.8}$$

so we have

$$\frac{m_n(\sigma)}{m_n(\sigma_l)} \le 1 + \delta_l, \text{ where } \delta_l \to 0, \ l \to \infty.$$
 (4.9)

Using (4.4) and (4.9), we obtain

$$m_n(\sigma) \le \liminf_{l \to \infty} m_n(\sigma_l) \le \limsup_{l \to \infty} m_n(\sigma_l) \le m_n(\sigma), \quad \forall n,$$
 (4.10)

this implies that

$$\lim_{l\to\infty} m_n(\sigma_l) = m_n(\sigma), \quad \forall n.$$
 (4.11)

THEOREM 4.3. Let σ be a measure, $\sigma = \alpha + \gamma$, such that $\sigma \in A$ and

$$\frac{m_n(\sigma_l)}{m_n(\rho)} \le \left(\prod_{k=1}^l |\Phi(z_k)|\right)^2, \quad \forall n, \forall l.$$
(4.12)

Suppose that $E \in C^{2+}$. Then we have

$$\lim_{n \to \infty} \frac{m_n(\sigma)}{C(E)^{2n}} = \mu^*(\rho),$$

$$\int_E |C(E)^{-n} T_n(\xi) - H_n(\xi)|^2 \rho(\xi) |d\xi| \to 0,$$

$$T_n(z) = C(E)^n \Phi^n(z) [\psi^*(z) + \epsilon_n(z)],$$
(4.13)

where $H_n(\xi) = \Phi^n_+(\xi)\psi^*_+(\xi) + \Phi^n_-(\xi)\psi^*_-(\xi)$, $\epsilon_n \to 0$ uniformly on the compact subsets of Ω .

PROOF. By passing to the limit when l tends to infinity and using Theorem 4.2 and (4.12), we obtain

$$\frac{m_n(\sigma)}{C(E)^{2n}} \le \left(\prod_{k=1}^{\infty} |\Phi(z_k)|\right)^2 \frac{m_n(\rho)}{C(E)^{2n}}.$$
(4.14)

This implies that

$$\limsup_{n \to \infty} \frac{m_n(\sigma)}{C(E)^{2n}} \le \left(\prod_{k=1}^{\infty} |\Phi(z_k)|\right)^2 \mu(\rho) = \mu^*(\rho) \tag{4.15}$$

(see Lemma 3.2).

The extremal property of the polynomials $T_n(z)$ and the fact that $|\Phi(\xi)| = 1$, for $\xi \in E$ imply (see [2] for details)

$$\frac{2m_n(\sigma)}{C(E)^{2n}} = \left\| \left| \frac{T_n}{\left[C(E)\Phi \right]^n} \right| \right|_{H^2(\Omega,\rho)}^2 + 2\sum_{k=1}^{\infty} A_k \left| \frac{T_n(z_k)}{\left[C(E)\Phi(z_k) \right]^n} \right| \left| \Phi(z_k) \right|^{2n}, \tag{4.16}$$

so

$$\left\| \frac{T_n}{\left[C(E)\Phi \right]^n} \right\|_{H^2(\Omega,\rho)}^2 \le \frac{2m_n(\sigma)}{C(E)^{2n}}.$$
(4.17)

Equations (4.15) and (4.17) imply that

$$\limsup_{n \to \infty} \left\| \frac{T_n}{\left[C(E)\Phi \right]^n} \right\|_{H^2(\Omega,\rho)}^2 \le 2\mu^*(\rho). \tag{4.18}$$

Now we take the integral

$$I_{n} = \int_{E} |C(E)^{-n} T_{n}(\xi) - H_{n}(\xi)|^{2} \rho(\xi) |d\xi|$$

$$= \int_{E} \left| \left(\frac{1}{2} C(E)^{-n} T_{n}(\xi) - \Phi_{+}^{n}(\xi) \psi_{+}^{*}(\xi) \right) + \left(\frac{1}{2} C(E)^{-n} T_{n}(\xi) - \Phi_{-}^{n}(\xi) \psi_{-}^{*}(\xi) \right) \right|^{2} \rho(\xi) |d\xi|,$$
(4.19)

by the triangular inequality, we have

$$\begin{split} I_{n}^{1/2} &\leq \left(\int_{E} \left| \frac{1}{2} C(E)^{-n} T_{n}(\xi) - \Phi_{+}^{n}(\xi) \psi_{+}^{*}(\xi) \right|^{2} \rho(\xi) |d\xi| \right)^{1/2} \\ &+ \left(\int_{E} \left| \frac{1}{2} C(E)^{-n} T_{n}(\xi) - \Phi_{-}^{n}(\xi) \psi_{-}^{*}(\xi) \right|^{2} \rho(\xi) |d\xi| \right)^{1/2} \\ &\leq 2 \left(\oint_{E} \left| \frac{1}{2} C(E)^{-n} T_{n}(\xi) - \Phi_{-}^{n}(\xi) \psi_{-}^{*}(\xi) \right|^{2} \rho(\xi) |d\xi| \right)^{1/2}. \end{split}$$

$$(4.20)$$

Then we deduce that

$$I_n \le 4 \left\| \frac{1}{2} \frac{T_n}{\left[C(E)\Phi \right]^n} - \psi^* \right\|_{L^2(\Omega, \mathbb{R})}^2.$$
 (4.21)

By using the parallelogram rule in $H^2(\Omega, \rho)$, we have

$$I_{n} \leq 4 \left[2 \left\| \frac{1}{2} \frac{T_{n}}{C(E)^{n}} \right\|_{H^{2}(\Omega, \rho)}^{2} + 2 \left\| \psi^{*} \right\|_{H^{2}(\Omega, \rho)}^{2} - \left\| \frac{1}{2} \frac{T_{n}}{C(E)^{n}} + \psi^{*} \right\|_{H^{2}(\Omega, \rho)}^{2} \right], \tag{4.22}$$

so

$$\limsup_{n \to \infty} I_n \le 4 \left[\mu^*(\rho) + 2\mu^*(\rho) - \frac{9}{4} \frac{4}{3} \mu^*(\rho) \right] = 0, \tag{4.23}$$

where we have used the fact that $\liminf_{n\to\infty}\|g_n\|_{H^2(\Omega,\rho)}^2\geq 2\mu^*(\rho)\geq (4/3)\mu^*(\rho)$, since the function $g_n(z)=(2/3)((1/2)T_n(z)/C(E)^n+\psi^*(z))\in H^2(\Omega,\rho)$, $g_n(\infty)=1$, and $g_n(z_k)\to 0$, $n\to\infty$. This yields

$$0 \le \liminf_{n \to \infty} I_n \le \limsup_{n \to \infty} I_n \le 0, \tag{4.24}$$

finally,

$$\lim_{n \to \infty} I_n = 0. \tag{4.25}$$

For the asymptotics in the region exterior to the arc E we need the Szegő reproducing kernel function $K(\xi, z)$ (see [8, page 173]) and the fact that $T_n(z)/C(E)^n\Phi^n(z) \in H^2(\Omega, \rho)$ for all $z \in \Omega$, then

$$\begin{split} \frac{T_{n}(z)}{C(E)^{n}\Phi^{n}(z)} &= \oint_{E} \frac{T_{n}(\xi)}{C(E)^{n}\Phi^{n}(\xi)} \overline{K(\xi,z)} \rho(\xi) |d\xi| \\ &= \int_{E} C^{-n} T_{n}(\xi) \Big\{ \Phi_{+}^{-n}(\xi) \overline{K_{+}(\xi,z)} + \Phi_{-}^{-n}(\xi) \overline{K_{-}(\xi,z)} \Big\} \rho(\xi) |d\xi| \\ &= \int_{E} \Big\{ C^{-n} T_{n}(\xi) - H_{n}(\xi) \Big\} \Big\{ \Phi_{+}^{-n}(\xi) \overline{K_{+}(\xi,z)} + \Phi_{-}^{-n}(\xi) \overline{K_{-}(\xi,z)} \Big\} \rho(\xi) |d\xi| \\ &+ \int_{E} H_{n}(\xi) \Big\{ \Phi_{+}^{-n}(\xi) \overline{K_{+}(\xi,z)} + \Phi_{-}^{-n}(\xi) \overline{K_{-}(\xi,z)} \Big\} \rho(\xi) |d\xi|. \end{split}$$

$$(4.26)$$

The first integral approaches 0 as $n \to \infty$ (part 2 of Theorem 4.3), the second one may be transformed into the form

$$\int_{E} \left\{ \Phi_{+}^{n}(\xi) \psi_{+}^{*}(\xi) + \Phi_{-}^{n}(\xi) \psi_{-}^{*}(\xi) \right\} \left\{ \Phi_{+}^{-n}(\xi) \overline{K_{+}(\xi, z)} + \Phi_{-}^{-n}(\xi) \overline{K_{-}(\xi, z)} \right\} \rho(\xi) |d\xi|
= \oint_{E} \psi^{*}(\xi) \overline{K(\xi, z)} \rho(\xi) |d\xi|
+ \int_{E} \left\{ \Phi_{+}^{n}(\xi) \psi_{+}^{*}(\xi) \Phi_{-}^{-n}(\xi) \overline{K_{-}(\xi, z)} + \psi_{-}^{*}(\xi) \Phi_{+}^{-n}(\xi) \Phi_{-}^{n}(\xi) \overline{K_{+}(\xi, z)} \right\} \rho(\xi) |d\xi|
= \psi^{*}(z) + \lambda_{n},$$
(4.27)

where $\lambda_n \to 0$ (coefficients of an integrable function). This proves part 3.

REMARK 4.4. It is not difficult to find families of points $\{A_k\}_{k=1}^{\infty}$ and $\{z_k\}_{k=1}^{\infty}$ satisfying condition (4.12). For example if E = [-1, +1], then

$$\Phi(z) = z + \sqrt{z^2 - 1} \quad \left(\left| z + \sqrt{z^2 - 1} \right| > 1 \right). \tag{4.28}$$

We can take z_k such that

$$\Phi(z_k) = 1 + \frac{1}{k^2}, \qquad A_k = \frac{1}{2^k}.$$
(4.29)

As weight function we take

$$\rho(\xi) = (1 - \xi^2)^{-1/2}. (4.30)$$

REFERENCES

- R. Benzine, Asymptotic behavior of orthogonal polynomials corresponding to a measure with infinite discrete part off a curve, J. Approx. Theory 89 (1997), no. 2, 257-265. MR 98g:42036. Zbl 882.42014.
- [2] V. Kaliaguine and R. Benzine, Sur la formule asymptotique des polynômes orthogonaux associés à une mesure concentrée sur un contour plus une partie discrète finie, Bull. Soc. Math. Belg. Sér. B 41 (1989), no. 1, 29-46 (French). MR 91f:42025. Zbl 683.42027.

- [3] V. A. Kaliaguine, A note on the asymptotics of orthogonal polynomials on a complex arc: the case of a measure with a discrete part, J. Approx. Theory **80** (1995), no. 1, 138–145. MR 95k:42042. Zbl 831.42015.
- [4] R. Khaldi and R. Benzine, *Asymptotic behavior of a class of orthogonal polynomials on the circle: case of measures with an infinite discrete part*, no. 411, Publications du Laboratoire d'Analyse Numerique et d'Optimisation, Lille, 2000.
- [5] ______, On a generalization of an asymptotic formula of orthogonal polynomials, Int. J. Appl. Math. 4 (2000), no. 3, 261–274.
- [6] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966. MR 35#1420.Zbl 142.01701.
- [7] G. Szegö, Orthogonal Polynomials, 4th ed., American Mathematical Society, Colloquium Publications, vol. 23, American Mathematical Society, Rhode Island, 1975. MR 51#8724.
- [8] H. Widom, Extremal polynomials associated with a system of curves in the complex plane, Advances in Math. 3 (1969), 127–232. MR 39#418. Zbl 183.07503.
- R. KHALDI: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ANNABA, B.P. 12 ANNABA, ALGERIA
- R. Benzine: Department of Mathematics, University of Annaba, B.P. 12 Annaba, Algeria

E-mail address: benzine@ifrance.com