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1. Introduction. Let S be a finite étale extension of a commutative Noetherian ring

R (a finitely generated projective separable extension of R). A twisted form of S (in the

Zariski topology) is a finite étale extension T of R with RP ⊗S � RP ⊗T as RP -algebras
for each prime ideal P of R. In this case S is locally isomorphic to T . If Q ⊂ P are

prime ideals of R and RP ⊗S � RP ⊗T , then RQ⊗S � RQ⊗T so prime can be replaced

by maximal in the definition of the twisted form. In this paper, we study the set of

isomorphism classes of twisted forms of S. We especially concentrate on the case

where S � R[t]/(p(t)), where p(t) is a separable polynomial in R[t]. Throughout this
paper, R denotes a commutative Noetherian ring.

We first observe the well-known facts that if R is an integrally closed domain, then

there are no twisted forms of S and in general the twisted forms of S are in bijective

correspondence with H1(X,Aut(�)), where AutR(�) is the sheaf of automorphisms

on X = Spec(R) associated to AutR(S). We check that H1(X,Aut(�)) is unchanged

modulo a nilpotent ideal.

With some hypotheses on the sheaf AutR(�), when R is a one-dimensional domain

or if R is a reduced one-dimensional ring with connected spectrum,H1(X,Aut(�)) fits
into a Mayer-Vietoris sequence which makes computations possible. These computa-

tions are the point of this article. For infinitelymany prime numbersp, qwe give a class

of examples of integral domains R and separable polynomials tp−q ∈ R[t] with the

cardinality of the set of isomorphism classes of twisted forms of S � R[t]/(p(t)) equal
to (p−1)!. When p = 3 these twisted forms T are isomorphic to algebras T �⊕2

j=0Ijtj

with t3 = q and I is a fractional ideal with I3 = R. We give an example of twisted forms

that do not have this structure. We also give one-dimensional rings over which finite

étale extensions may not have either a primitive element nor a normal basis but which

are twisted forms of extensions which do. We also give a separable polynomial which

is irreducible over R but factors into linear factors at each localization RP of R and

modulo each maximal ideal of R.

2. Mayer-Vietoris sequences and examples. Let R be a commutative Noetherian

ring and S a finite étale R-algebra. Let X = Spec(R) be the space of prime ideals of R
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with the Zariski topology and �X the associated sheaf of rings on X, � the sheaf of �X -

algebras associated to S (see [5, pages 70 and 130]). For each open set U ⊂X associate

to U the group of R-algebra automorphisms Aut�(U)(�(U)), and if V ⊂ U associate

the natural restriction Aut�(U)(�(U))→Aut�(V)(�(V)). We begin by recording for the

readers convenience that AutR(�) forms a sheaf on X and give some of its properties

(see also [3]).

Lemma 2.1. Let S be a finite étale R-algebra.
(a) If U is an open set in X and {Vi} is an open cover of U , and if σ ∈Aut�(U)(�(U))

satisfies 1⊗σ = 1 in Aut�(Vi)(�(Vi)) for all i, then σ = 1 in Aut�(U)(�(U)).
(b) If U is an open set in X and {Vi} is an open cover of U , and if σi ∈Aut�(Vi)(�(Vi))

with restrictions σi = σj in Aut�(Vi∩Vj)(�(Vi ∩ Vj)), then there is an element σ ∈
Aut�(U)(�(U)) whose restriction to Aut�(Vi)(�(Vi)) is σi.

Lemma 2.2. Let S,T be finite étale R-algebras and P a prime ideal in R. Let σ :

RP ⊗S → RP ⊗T be an RP -algebra homomorphism. Then there is an open set U in X
with P ∈ U and an �(U)-algebra homomorphism τ : �(U)⊗ S → �(U)⊗T such that

1⊗τ = σ ∈AlgRP (RP ⊗S,RP ⊗T). If σ is an isomorphism then U can be chosen so τ is

an isomorphism.

If S,T are finite étale R-algebras and RP ⊗S � RP ⊗T for all prime ideals P of R we

say that S and T are locally isomorphic or that T is a twisted form of S. If T is a twisted

form of S then Lemma 2.2 implies there is an open cover � = {Ui} of X and isomor-

phisms σi : �(Ui)⊗S → �(Ui)⊗T for all i. Define an element a ∈ Z1(�,Aut(�)) by
assigning to the index pair i,j the automorphism a(i,j)= σ−1i σj ∈Aut�(Ui∩Uj)(�(Ui∩
Uj)⊗S). Passing to the limit over all covers of X gives an injection from the set of

isomorphism classes of twisted forms of S to H1(X,Aut(�)). By descent, (see [7, 2.2,

page 110] or [8, page 19]), this assignment is onto so H1(X,Aut(�)) classifies the

twisted forms of S. In the next result we point out that, as with the Brauer group,

there are no nontrivial twisted forms in the geometrically irreducible case.

Proposition 2.3. IfR is an integrally closed domain and S is a finite étaleR-algebra,
then H1(X,Aut(�))= {1}.
Proof. We can write S = S1⊕···⊕Sk, where each Si has a connected spectrum.

By [6, Theorem 4.3] or [8, Proposition 3.19, page 28], each Si is an integrally closed

domain. Let K be the quotient field of R. Then K⊗S =⊕ki=1K⊗Si, where each K⊗Si is
a finite-dimensional separable field extension of K, and Si is the integral closure of R
in K⊗Si. Let σ ∈AutK(K⊗S), then since the image of an integral element is integral,

σ |S ∈AutR(S) and σ = 1⊗σ |S . Therefore, the natural map AutR(S)→AutK(K⊗S) is a
bijection which implies that the sheaf Aut(�) is constant. Therefore, H1(X,Aut(�))=
{1}.
Corollary 2.4. LetR be an integrally closed domain and S,T finite étaleR-algebras.

If Rp⊗S � RP ⊗T as RP -algebras for each P ∈ Spec(R), then S � T as R-algebras.

Lemma 2.5. Let S be a finite étale R-algebra, I an ideal in R, and ρ : AutR(S) →
AutR/I(S/I) the natural map.
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(a) If R has a connected spectrum then ρ is a one-to-one map.

(b) If I is nilpotent then ρ is a bijection map.

Proof. (a) Assume first that S is connected and Galois over R. Then AutR(S) =
Galois group of S over R = the Galois group of S/IS over R/I ⊂AutR/I(S/IS) so ρ is a

one-to-one map in this case. If S is connected but not necessarily Galois, imbed S in a

connected Galois extension N of R (see [2, Theorem 3.2.9]). Every R-automorphism of

S extends to an automorphism ofN , and any two such extensions differ by an element

of H = {σ ∈ AutR(N) | σ |S = 1} (see [2, Chapter 3]). By flatness, S/IS is a subalgebra

of N/IN and H is the subgroup of the Galois group of N/IN over R/I fixing S/IS.
If τ , σ ∈ AutR(S) with extensions τ̄, σ̄ to N and with the natural image of τ = σ in

AutR/I(S/IS), then τ̄−1σ̄ ∈H so τ = σ on S and ρ is a one-to-one map in this case.

If R is connected then S = Se1⊕···⊕Sm with eiej = eiδi,j , Sei connected for all

i,j. Let σ ∈ AutR(S) and assume σ induces the identity automorphism on S/IS.
Then σ(ei) = ei for all i since ei + IS ≠ ej + IS for any i ≠ j. Therefore σ induces

(σ1, . . . ,σm) ∈ ×iAutR(Sei). Since σ is the identity on each of these summands, by

the previous paragraph σ is the identity on S and ρ is a one-to-one map.

(b) We can write R = R1⊕···⊕Rk, where each Ri has a connected spectrum. Then

there are the corresponding decompositions S = S1 ⊕ ··· ⊕ Sk and I = I1 ⊕ ··· ⊕ Ik
with Ij a nilpotent ideal of Rj (in particular, no Ij = Rj and AutR(S) = ×jAutRj (Sj),
AutR/I(S/IS)=×jAutR/Ij (Rj⊗S/Ij(Rj⊗S))). Thus we can assume R is connected.

If I is nilpotent, then IS is nilpotent and idempotents can be lifted modulo a nilpo-

tent ideal, so R/I has a connected spectrum and if S is connected then S/IS is con-

nected. Assume S is connected and Galois. Then AutR(S) = the Galois group of S over

R = the Galois group S/IS over R/I = AutR/I(S/IS) so ρ is bijective in this case. If

S/R is Galois, then S = Se1⊕···⊕Sem with eiej = eiδi,j , Sei connected, Sei � Sej for
all i,j, and each Sei Galois over R with Galois group of order n = rank(Sei). Thus
|AutR(S)| =m!nm. Since idempotents can be lifted modulo I, we get the same count

for |AutR/I(S/IS)|, so by part (a), ρ is onto in this case.

If S/R is finite étale, there is a Galois extension N of R containing S constructed in

the following way. Write S = Se1⊕···⊕Sem as above and let L be a connected Galois

extension of R containing all the Sei. Let N = Le1⊕···⊕Lem. Let τ̄ ∈ AutR/I(S/IS).
Then one can extend τ̄ to γ̄ ∈ AutR/I(N/IN) which corresponds, by the paragraph

above, to γ ∈AutR(N). Then (γ(S)+IS)/I = S/I so γ(S)⊂ S. Therefore γ|S ∈AutR(S)
and ρ(γ|S)= τ̄ . Thus ρ is a bijection in every case.

Corollary 2.6. Let X = Spec(R), I the nil radical of R and Xred = Spec(R/I). If S
is a finite étale R-algebra, then H1(X,Aut(�)) and H1(Xred,Aut(�/��)) are bijective

with one another.

Proof. By Lemma 2.5, X =Xred and Aut(�)=Aut(�/��).

Example 2.7. (a) Let R denote the real numbers and C the complex numbers. Let

R = R⊕R and S = C⊕C. Let σ be complex conjugation. Then (1,1) = (1,σ) on the

first summand but (1,1)≠ (1,σ) so the map AutR(S)→ AutR/I(S/IS) is not always a

one-to-one map.

(b) Let R be the localization of C[x] at (x) and let p(t) = t3+ (x+1) ∈ R[t]. Let
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S = R[t]/(p(t)). Since p(t) is irreducible, AutR(S) = C3 (the cyclic group of order 3)

but R/(x)= C and S/(x)S = C⊕C⊕C has C-automorphism group S3 (the symmetric

group on three letters). It is not always the case that AutR(S)→AutR/I(S/IS) is onto.

Mayer-Vietoris I. Let R be a one-dimensional integral domain with module finite

integral closure R̄ and conductor c = {x ∈ R | R̄ ·x ⊂ R}. Let S be a finite étale R-
algebra. Assume the following.

(a) If P is a maximal ideal in R containing c then there is only one maximal ideal Q
in R̄ lying over P .

(b) If P is a maximal ideal in R containing c then the natural map AutR(S) →
AutR/P (S/PS) is surjective.

(c) R̄⊗S � R̄(n), where n= rankR(S).
Then there is an exact sequence of pointed sets

1 �→AutR(S)
α
�������������������������������������������→AutR̄(R̄⊗S)×AutR/c

(
R/c⊗S)

β
����������������������������������������→AutR̄/c

(
R̄/c⊗S) γ

�����������������������������������������→H1(X,Aut(�)
)
�→ 1.

(2.1)

Sketch of the proof. We define explicitly the maps in the sequence. Checking

exactness at each term is then a straightforward computation.

The map α is given as α(σ) = (1⊗ σ,1⊗ σ). The map β is given as β(τ,ρ) =
(1⊗τ)(1⊗ρ)−1.

Let P1, . . . ,Pk be the maximal ideals of R lying over c. Using hypothesis (a), let

Q1, . . . ,Qk be the maximal ideals in R̄ lying over c with Qi∩R = Pi (1 ≤ i ≤ k). Then
c = ∩iPfii = ∩Qeii so R/c = ⊕R/Pfi and R̄/c = ⊕R̄/Qei . Moreover, AutR/c(S/cS) =
×iAutR/Pfi (R/P

fi
i ⊗S) and AutR̄/c(R̄/c⊗S) = ×iAutR̄/Qei (R̄/Qei ⊗S). If (. . . , σ̄i, . . .) ∈

AutR̄/c(R̄/c ⊗ S) then by hypothesis (c) and Lemma 2.5, AutR̄(R̄ ⊗ S) = Sn =
AutR̄/Qeii

(R̄/Qeii ⊗S) so there exists σi ∈ AutR̄(R̄⊗S) with σi a lift of σ̄i. Let �= {Uj}
be a cover of X = Spec(R) with Pi ∈ Uj if and only if i = j. Assign to Uj the identity

automorphism if no Pi is in Uj . Since Ui∩Uj does not contain any points lying over

c, Aut�(Ui∩Uj)(�(Ui∩Uj))= Sn and therefore contains the element a(i,j)= σ−1i σj . It
is now easy to check a∈ Z1(�,Aut(�)) is a 1-cocycle and a different choice of cover

gives an equivalent cocycle modulo coboundaries, so γ is defined by γ(. . . , σ̄i, . . .) =
|a| ∈H1(X,Aut(�)).

Mayer-Vietoris II. Let R be a reduced ring with X = Spec(R) connected. Let

I1, . . . , Iq be the set ofminimal prime ideals ofR and R̄ =⊕qj=1R/Ij . Assume dimR/Ij = 1

for all j. Identify R with its natural image in R̄ and let c = {x ∈ R | R̄ ·x ⊂ R} be the

conductor. Let Y = Spec(R̄). Let S be a finite étale R-algebra.
(a) Assume for each maximal ideal Q in R̄ lying over c the natural map AutR(S)→

AutR̄/Q(R̄/Q⊗S) is a surjection.

Then there is an exact sequence of pointed sets

1 �→AutR(S)
α
�������������������������������������������→AutR̄(R̄⊗S)×AutR/c

(
R/c⊗S)

β
����������������������������������������→AutR̄/c

(
R̄/c⊗S) γ

�����������������������������������������→H1(X,Aut(�)
) δ
���������������������������������������→H1(Y ,Aut(R̄⊗�)

)
.

(2.2)
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Sketch of the proof. As in Mayer-Vietoris I, we give the maps explicitly, then

checking exactness is a straightforward computation. The map α is defined as α(σ)=
(1⊗σ,1⊗σ). The map β is β(τ,ρ)= (1⊗τ)(1⊗ρ)−1.

Let P1, . . . ,Pm be themaximal ideals inR lying over c andQi,j themaximal ideals in R̄
lying over c where the projection ofQi,j onR/Ij is proper. Write c=∩mk=1Pfkk =∩i,jQ

ei,j
i,j .

ThenAutR̄(R̄⊗S)=×qj=1AutR/Ij (R/Ij⊗S), AutR/c(R/c⊗S)=×mk=1AutR/Pfkk (R/P
fk
k ⊗S),

and AutR̄/c(R̄/c⊗S)=×i,jAutR̄/Qei,ji,j (R̄/Q
ei,j
i,j ⊗S). Let (. . . , σ̄i,j , . . .)∈AutR̄/c(R̄/c⊗S)=

×i,jAutR̄/Qei,ji,j (R̄/Q
ei,j
i,j ⊗S). By hypothesis (a) there is σi,j ∈AutR/Ii (R/Ii⊗S) which re-

duces to σ̄i,j . For a fixed i, {σi,j} determines an element σi ∈AutR̄(R̄⊗S) where we let

σi be the identity in AutR/Ik(R/Ik⊗S) if k is not any j. Let �= {Ui} be an open cover of

X = Spec(R) where Pi ∈Uj if and only if i= j. Let γ(. . . , σ̄i,j , . . .)= |a| ∈H1(X,Aut(�))
where a ∈ Z1(�,Aut(�)) is given by a(i,k) = σ−1i σk ∈ Aut�(Ui∩Uk)(�(Ui ∩Uk)⊗ S).
Note,σ−1i σk is defined sinceUi∩Uk contains no Pj so �(Ui∩Uj)⊗S=�(Ui∩Uj)⊗R̄ R̄⊗S.
It is clear that the definition of γ is independent of the choice of cover and our as-

signment gives a well-defined map.

Let � = {Ui} be an open cover of X constructed as above and let π : Y → X be

given by restriction. Let Vi = π−1(Ui) so � = {Vi} is an open cover of Y . Given a ∈
Z1(�,Aut(�)), let δ(a)∈ Z1(�,Aut(R̄⊗�)) by δ(a)(i,j)= a(i,j). This assignment is

well defined since �X(Ui∩Uj)= �Y (Vi∩Vj).
Note 2.8. If each R/Ij in Mayer-Vietoris II is integrally closed, H1(Y ,(R̄⊗�))= {1}

by Proposition 2.3. This is the case in all the following examples.

Example 2.9. LetQ denote the rational numbers, let p,q be prime integers, and let

ω be a primitive complex pth root of 1. Let F=Q(ω) andR=F[x,y]/(xp−qyp(y−1)p).
If q is irreducible in Z[ω] then by Eisenstein’s criterion xp−qyp(y−1)p is irreducible
in F[x,y] so R is a one-dimensional Noetherian integral domain. Note that q is irre-

ducible in Z[ω] whenever p � q−1, p ≠ q. Let S = R[t]/(tp−q). Then S is a finite étale

R-algebra which is connected since tp−q is irreducible in F[t] and R/(x,y)= F . Iden-
tify x,y with their images in R. The integral closure R̄ of R is R(x/y(y−1)) and since

(x/y(y−1))p = q, tp−q = Πp−1i=0 (t−ωi(x/(y(y−1)))) ∈ R̄[t] so R̄⊗S � R̄(p). The
maximal ideals lying over c in R are (x,y) and (x,y−1) and the only maximal ideal in

R̄ lying over (x,y) is (y), the only maximal ideal in R̄ lying over (x,y−1) is (y−1).
Since R/(x,y) � F , and R/(x,y −1) � F , and tp −q is irreducible in F[t], R satis-

fies the hypothesis of Mayer-Vietoris I. But AutR(S)= Cp , the cyclic group of order p.
AutR̄(R̄⊗S) = Sp , the symmetric group on p-letters. AutR/c(R/c⊗S) = Cp ×Cp and

AutR̄/c(R̄/c⊗S)= Sp×Sp so for this example the Mayer-Vietoris I sequence becomes

1 �→ Cp �→ Sp×
(
Cp×CP

)
�→ Sp×Sp �→H1(X,Aut(�)

)
�→ 1. (2.3)

Let K = {(τρ−1,τσ−1) | τ ∈ Sp, ρ,σ ∈ Cp}. Then H1(X,Aut(�)) is bijective with the

coset space Sp×Sp/K and has order (p−1)!. In particular, when p = 2 there are no

nontrivial twisted forms, when p = 3 there is exactly one nontrivial twisted form, and

so forth.
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Example 2.10. (a) Let R be a Noetherian domain with quotient field K, assume R
contains a primitiventh root of 1 and I is a fractional R-ideal in K with In = R. Assume

p(t)= tn−a∈ R[t] is a separable polynomial, and S = R[t]/(p(t)), L=K[t]/(p(t)).
Then the subset T =⊕n−1j=0 Ijtj of L is a twisted form of S.

(b) Let R be a reduced Noetherian ring with minimal prime ideals I1, . . . , Iq and as-

sume the dimension of each R/Ij is one. Let K =⊕R/Ij . Assume R contains a primitive

nth root of 1 and I is a finitely generated R-submodule of K with In = R. Assume

p(t) = tn−a ∈ R[t] is a separable polynomial and S = R[t]/(p(t)), L = K[t]/(p(t)).
Then the subset T =⊕n−1j=0 Ijtj of L is a twisted form of S.

Note 2.11. In Example 2.9 if p = 3 and q = 2 then the nontrivial twisted form T
is constructed as in Example 2.10 where the ideal I = (y,y−1x), as one can check

by showing the associated cocycle in H1(X,Aut(�)) is not a coboundary. Notice T is

free as an R-module. Let �(S) be the set of isomorphism classes of twisted forms

of S which are free as R-modules and assume S is free as an R-module. Then there

is an exact sequence of pointed sets 1→ �(S)→ H1(X,Aut(�))→ H1(X,Gl(�)). The
types of examples given in Example 2.10 all lie in �(S), but we give in Example 2.12 a

twisted form of S whose image in H1(X,Gl(�)) is not the identity.

Example 2.12. Let R = R[x,y]/(y − 1)(y − x2) and R̄ = R[x,y]/(y − 1) ⊕
R[x,y]/(y−x2), whereR is the set of the real numbers. ThenR={(p(x,y),q(x,y))∈
R̄ | p(1,1) = q(1,1); p(−1,1) = q(−1,1)}. Let I = {(p(x,y),q(x,y)) ∈ R̄ | p(1,1)=
q(1,1); p(−1,1)=−q(−1,1)}. Then I is an R-submodule of R̄, I2 = R, and RP⊗I � RP
for all prime ideals P of R. Let p(t)= t2+1, let S = R[t]/(t2+1), and take T = R⊕It.
Then T is a twisted form of S and T is not a free R-module by cancellation [9] so T
is a nontrivial twisted form of S. Notice that T is a Galois extension of R with Galois

group of order two induced by complex conjugation but since T is not free, T does

not have either a normal basis or a primitive element.

Example 2.13. Consider T as constructed in Example 2.12 and let w2+1∈ T[w].
Then q(w) = w2 + 1 is irreducible in T[w] but for each prime ideal Q of T , q(w)
is reducible in TQ[w]. This gives an example of an irreducible separable polynomial

over a connected commutative ring which factors into linear factors over the local-

ization at every prime ideal or modulo each maximal ideal. If r(w) = w2 − 1 then

S1 = R[w]/(q(w)) is not isomorphic to S2 = R[w]/(r(w)) since S2 � R⊕R but S1
and S2 are locally isomorphic. This is an example of two separable polynomials that

are locally isomorphic but not isomorphic (in the sense of [4]).

Example 2.14. Let R = Q[x,y]/(y − 1)(y −x2) as in Example 2.12. Let p(t) =
t3 − 3t + 1 and S = R[t]/(p(t)). Using the Mayer-Vietoris sequence for the Picard

group, [1] or [5], one can check the torsion part of the Picard group is C2. But Mayer-

Vietoris II gives H1(X,Aut(�))= C3 so if T is a nontrivial twisted form of S, then T is

not isomorphic to R⊕It⊕It2 for any fractional ideal of R with I3 = R.

Example 2.15. If R is as in Example 2.14 and p(t) = t3 −2, then one can check

that p(t) is separable and p(t) factors into linear factors modulo each minimal prime
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ideal of R but p(t) is irreducible in R[t]. Hypothesis (a) of Mayer-Vietoris II fails to

hold for this example.
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