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Abstract. We present a natural extension of the method of averaging to fast oscillating
functional differential equations with delay. Unlike the usual approach where the analysis
is kept in an infinite-dimensional Banach space, our analysis is achieved in Rn. Our results
are formulated in classical mathematics. They are proved within Internal Set Theory which
is an axiomatic description of nonstandard analysis.
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1. Introduction. An important tool in the rigorous study of differential equations

with a small parameter is the method of averaging, which is well known for ordinary

differential equations [1, 9, 13, 14] and for functional differential equations with small

delay [6, 7, 17]. In both cases, the corresponding averaged equations are ordinary dif-

ferential equations. However, for fast oscillating functional differential equations with

large bounded delay, the method of averaging is not nearly so developed as in the two

previous cases. Among recent works devoted to this last case, we will cite the pa-

per of Hale and Verduyn Lunel [8]. Without going into details, we will emphasize, in

this work, that the authors introduce an extension of the method of averaging to ab-

stract evolutionary equations in Banach spaces. In particular, they rewrite a functional

differential equation with delay as an ordinary differential equation in an infinite di-

mensional Banach space and proceed formally from there.

In this paper, we develop an improved theory of averaging for functional differ-

ential equations with delay under smoothness hypotheses that are less restrictive

than those of [8]. Also all our analysis is kept in Rn. This is performed in Section 2.

There, we state closeness of solutions of the averaged and original equations on fi-

nite time intervals (Theorem 2.1). We also investigate the long time behaviour of the

solutions of the original equation (Theorem 2.5). The proofs of Theorems 2.1 and 2.5

are established within an axiomatic description of Robinson’s Nonstandard Analysis

(NSA) [12], namely Internal Set Theory (IST), proposed by Nelson [11]. Section 3 starts

with a short tutorial on IST. Then we present the nonstandard translates (Theorems

3.5 and 3.7) in the language of IST of Theorems 2.1 and 2.5. We end this section

with an external characterization of the uniform asymptotic stability which is the

main assumption for the validity of the result of Theorem 3.7. Finally, in Section 4

we give the proofs of Theorems 3.5 and 3.7. As ordinary differential equations and

functional differential equations with small delay are special cases of functional dif-

ferential equations with delay, the proofs developed in this section provide alternative
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proofs to the techniques of averaging on these equations found, for example, in

[13, 14].

2. The method of averaging. In this section, we present the main results on aver-

aging for functional differential equations with delay.

Suppose f :R×U →Rn is a continuous function, where U is an open subset of Rn.

Let φ : [−r ,0]→U be a continuous function, where r > 0 is a constant. Let ε > 0 be a

real parameter. Along with the functional differential equation with delay

ẋ(t)= f
(
t
ε
,x(t−r)

)
, for t > 0, x(t)=φ(t), for t ∈ [−r ,0], (2.1)

we consider the averaged equation

ẏ(t)= fo(y(t−r)), for t > 0, y(t)=φ(t), for t ∈ [−r ,0], (2.2)

where

fo(x) := lim
T→∞

1
T

∫ T

0
f(t,x)dt. (2.3)

As a first result, we give a comparison of the solutions of the averaged and the

original equations on finite time intervals.

Theorem 2.1. Assume that

(H.0) The function f is bounded on R×U .

(H.1) The continuity of f in x ∈U is uniform with respect to t ∈R+.

(H.2) For all x ∈U there exists a limit

fo(x)= lim
T→∞

1
T

∫ T

0
f(t,x)dt. (2.4)

(H.3) Equation (2.2) has a unique solution.

Let y be the solution of (2.2) and let J = [−r ,ω), 0<ω≤+∞, be its maximal interval

of definition. For any L > 0, L∈ J, and any δ > 0 there exists an ε0 = ε0(L,δ) > 0 such

that, for all ε ∈ (0,ε0] any solution x of (2.1) is defined at least on [0,L] and satisfies

‖x(t)−y(t)‖< δ for all t ∈ [0,L].

Remark 2.2. Assume that the initial time t0 
= 0. Let y(·;t0) be the solution of

(2.2) and let J = [t0−r ,t0+ω), 0<ω≤+∞, be its maximal interval of definition. The

conclusions of Theorem 2.1 become for any L > 0, L+t0 ∈ J, and any δ > 0 there exists

an ε0 = ε0(L,δ) > 0 such that, for all ε ∈ (0,ε0] any solution x(·;t0) of (2.1) is defined

at least on [t0, t0+L] and satisfies ‖x(t;t0)−y(t;t0)‖< δ for all t ∈ [t0, t0+L].
One can also precise the long time behaviour of a solution of (2.1) provided that

more is known about the solution of (2.2). To give estimate for all time, we assume that

the solution of (2.2) tends toward an equilibrium. Before this, we first recall the con-

cept of uniform asymptotic stability of equilibrium points of autonomous functional

differential equations with delay.

Consider the autonomous functional differential equation with delay

ẏ(t)= fo(y(t−r)), (2.5)
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where fo :U →Rn is a continuous function, and U is an open subset of Rn, r > 0 is a

constant. For t0 ∈R andφ : [−r ,0]→Rn a continuous function, let y(·;t0,φ) denotes
the solution of (2.5) for the initial function y(t;t0,φ)=φ(t) for t ∈ [−r ,0].

Since (2.5) is autonomous, the concepts of asymptotic stability and uniform asymp-

totic stability of equilibrium points of (2.5) coincide. Then, it is sufficient to deal di-

rectly with uniform notions.

Definition 2.3. The equilibrium point ye of (2.5) is said to be

(1) Uniformly stable (in the sense of Liapunov) if for any µ > 0, there exists η =
η(µ) > 0 with the property that for all t0 ∈ R any solution y(·;t0,φ) of (2.5) for

which ‖φ(t)−ye‖ < η for t ∈ [−r ,0], can be continued for all t > t0 and satisfies

‖y(t;t0,φ)−ye‖< µ.
(2) Uniformly attractive if there exists b0 > 0 with the respective properties:

(a) For all t0 ∈ R any solution y(·;t0,φ) of (2.5) for which ‖φ(t)−ye‖ < b0 for

t ∈ [−r ,0], can be continued for all t > t0.
(b) For every δ > 0, there exists T = T(δ) > 0 (T depends on δ but not on t0) such

that ‖y(t;t0,φ)−ye‖ < δ for t > t0+T(δ), that is, limt→∞y(t;t0,φ) = ye uniformly

in t0 ∈R.
(3) Uniformly asymptotically stable if it is uniformly stable and uniformly attractive.

Remark 2.4. The ball � of center ye and radius b0 where the attraction is uniform

will be called the basin of attraction of ye.

We now return to the averaged equation (2.2). We assume that ye is an equilibrium

point of (2.2), that is, fo(ye)= 0. As a next result of this section, we prove the validity

of the approximation of a solution x of (2.1) by the solution y of (2.2) for all (future)

time, under the additional conditions about the equilibrium point ye and the initial

function φ.

Theorem 2.5. Let the hypotheses (H.0)–(H.3) of Theorem 2.1 be true, and assume

that

(H.4) The point ye is uniformly asymptotically stable.

(H.5) The initial function φ in (2.2) lies in the basin of attraction of ye.

Let y be the solution of (2.2). Then for any δ > 0 there exists ε0 = ε0(δ) > 0 such

that, for all ε ∈ (0,ε0] any solution x of (2.1) is defined for all t ≥ 0 and satisfies

‖x(t)−y(t)‖< δ for all t ≥ 0.

3. Nonstandard results

3.1. A short tutorial on Internal Set Theory. Internal Set Theory (IST) is an ax-

iomatic description of nonstandard analysis proposed by Nelson [11]. We complete

the ordinarymathematical language (say ZFC) with a new undefinedmonadic predicate

symbol st (read standard). We call internal, the formulas of IST without any occurrence

of the predicate st in them; otherwise, we call them external. Thus internal formulas

are the formulas of ZFC. The axioms of IST are all axioms of ZFC, restricted to internal

formulas (in other words, IST is an extension of ZFC), plus three others which govern

the use of the new predicate. Thus all theorems of ZFC remain valid in IST. IST is
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a conservative extension of ZFC, that is, every internal theorem of IST is a theorem of

ZFC. There is an algorithm (a well-known reduction algorithm) to reduce any external

formula F(x1, . . . ,xn) of IST without other free variables than x1, . . . ,xn, to an internal

formula F ′(x1, . . . ,xn) with the same free variables, such that F ≡ F ′, that is, F � F ′

for all standard values of the free variables. In other words, any result which may be

formalized within IST by a formula F(x1, . . . ,xn) is equivalent to the classical property

F ′(x1, . . . ,xn), provided the parameters x1, . . . ,xn are restricted to standard values. We

give the reduction of the frequently occurring formula ∀x (∀styA⇒∀stz B) where

A and B are internal formulas

∀x(∀styA �⇒∀stzB
)≡∀z ∃finy ′ ∀x(∀y ∈y ′A �⇒ B

)
. (3.1)

A real number x is called infinitesimal, denoted by x � 0, if its absolute value |x| is
smaller than any standard strictly positive real number, limited if its absolute value |x|
is smaller than some standard real number, unlimited, denoted by x �±∞, if it is not

limited, and appreciable if it is neither unlimited nor infinitesimal. Two real numbers

x and y are infinitely close, denoted by x �y , if their difference x−y is infinitesimal.

For x and y in a standard metric space E, the notation x � y means that the

distance from x to y is infinitesimal. If there exists in that space a standard x0 such

that x � x0, the element x is called nearstandard in E and the standard point x0 is

called the standard part of x (it is unique) and is also denoted by ox. The halo of x,
denoted by hal(x), is the set, usually external, of all y such that x �y . For any subset

X of E, a point x ∈ E is called nearstandard in X if there exists a standard point x0 ∈X
such that x � x0. We recall that, if X is standard, X is open if and only if it contains

the halo of all its standard elements. The shadow of a subset X of E, denoted by oX,

is the unique standard set whose standard elements are precisely those whose halo

intersects X.

Let E and F be standard metric spaces, and g be an internal function defined on

�(g) ⊂ E and with values in F . The function g is called S-continuous at x0 ∈ �(g)
if for all x � x0, g(x) � g(x0) holds, S-continuous in E×F if it is S-continuous at

each point x ∈�(g) such that (x,g(x)) is nearstandard in E×F . For g standard, the

continuity and the S-continuity in �(g)×�(g), where �(g) is a target of g, coincide.
The shadow in E× F of the graph of an S-continuous function g is the graph of a

standard continuous function g0, called the shadow of g, and denoted by og.
In ZFC in principle all sets are defined using the only nonlogical symbol ∈. In IST

there is also the possibility to define collections with the nonlogical symbol st. Those

collections which fall outside the range of ZFC are called external sets. External sets

are often easily recognized: mostly some elementary classical property fails to hold.

For instance, the set of infinitesimal real numbers hal(0) must be external, for it con-

stitutes a bounded subset of R without lower upper bound. It happens sometimes

in classical mathematics that a property is assumed, or proved, on a certain domain,

and that afterwards it is noticed that the character of the property and the nature of

the domain are incompatible. So actually the property must be valid on a large do-

main. In nonstandard analysis, statements which affirm that the validity of a property

exceeds the domain where it was established in a direct way are called permanence

principles. Many permanence results used in nonstandard analysis are based upon
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the self-evident statement “no external set is internal.” This statement is called the

Cauchy principle. It has the following frequently used application.

Lemma 3.1 (Robinson’s lemma). If r is an internal real function such that r(t) � 0

for all limited t ≥ 0, then there exists ν �+∞ such that r(t)� 0 for all t ∈ [0,ν].

Proof. Indeed, {l∈R | l≥ 1, l limited} ⊂ {l∈R | ∀t ∈ [0, l]|r(t)|< 1/l}. The first

set is external and the second set is internal. By the Cauchy principle the inclusion

is strict.

Together with one among its corollaries, we conclude this section with another

application of Cauchy’s principle which will be used later.

Lemma 3.2. Let I be an internal set and h : I → R be an internal function such that

h(t)� 0 for all t ∈ I. Then supt∈I{h(t)} � 0.

Proof. We have {l ∈ R+ | l 
∈ hal(0)} ⊂ {l ∈ R | ∀t ∈ I |h(t)| < l}. The first set

is external, otherwise hal(0) would be internal, and the second set is internal. By the

Cauchy principle the inclusion is strict.

Lemma 3.3 (corollary of Lemma 3.2). Let a< b, b−a limited, and let g, g̃ : [a,b]→
Rn be internal integrable functions such that g(t)� g̃(t) for all t ∈ [a,b]. Then

∫ b

a
g(t)dt �

∫ b

a
g̃(t)dt. (3.2)

Remark 3.4. The interested reader is referred to [2, 3, 4, 5, 10, 11, 12, 15, 16] for

more informations on nonstandard analysis and its applications.

3.2. The averaging results. First we give nonstandard formulations of Theorem 2.1,

Remark 2.2, and Theorem 2.5. Then, by use of the reduction algorithm, we show

that the reduction of Theorem 3.5, Remark 3.6, and Theorem 3.7 are Theorem 2.1,

Remark 2.2 and Theorem 2.5, respectively.

Theorem 3.5. Let U be a standard open subset of Rn. Let f : R×U → Rn and

φ : [−r ,0]→ U be standard continuous functions. Assume that hypotheses (H.0)–(H.3)

in Theorem 2.1 hold. Let y be the solution of (2.2) and let J = [−r ,ω), 0 < ω ≤ +∞,

be its maximal interval of definition. Let ε > 0 be infinitesimal. Then for any standard

L > 0, L∈ J, any solution x of (2.1) is defined at least on [0,L] and satisfies x(t)�y(t)
for all t ∈ [0,L].

Remark 3.6. Assume that the initial time t0 
= 0. Let y(·;t0) be the solution of (2.2)

and let J = [t0 − r ,t0 +ω), 0 < ω ≤ +∞, be its maximal interval of definition. The

conclusions of Theorem 3.5 become: let ε > 0 be infinitesimal, then for any standard

L > 0, L+t0 ∈ J, any solution x of (2.1) is defined at least on [t0, t0+L] and satisfies

x(t)�y(t) for all t ∈ [t0, t0+L].
Theorem 3.7. Let U be a standard open subset of Rn. Let f : R×U → Rn and

φ : [−r ,0] → U be standard continuous functions. Let ye be a standard equilibrium

point of (2.2). Assume that hypotheses (H.0)–(H.5) in Theorem 2.5 hold. Let y be the
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solution of (2.2). Let ε > 0 be infinitesimal. Then any solution x of (2.1) is defined for all

t ≥ 0 and satisfies x(t)�y(t) for all t ≥ 0.

The proofs of Theorems 3.5 and 3.7 are postponed to Section 4. Theorem 3.5,

Remark 3.6, and Theorem 3.7 are external statements. We show that the reduction of

Theorem 3.5 (resp., Remark 3.6 and Theorem 3.7) is Theorem 2.1 (resp., Remark 2.2

and Theorem 2.5).

Reduction of Theorem 3.5. Let B be the formula “if δ > 0 then any solution x
of (2.1) is defined at least on [0,L] and satisfies ‖x(t)−y(t)‖< δ for all t ∈ [0,L]”. To
say that “any solution x of (2.1) is defined at least on [0,L] and satisfies x(t)� y(t)
for all t ∈ [0,L]” is the same as saying ∀stδ B. Then Theorem 3.5 asserts that

∀ε(∀stηε < η �⇒∀stδB
)
. (3.3)

In this formula L is standard and ε, η, and δ range over the strictly positive real

numbers. By (3.1), formula (3.3) is equivalent to

∀δ ∃finη′ ∀ε(∀η∈ η′ε < η �⇒ B
)
. (3.4)

For η′ a finite set, for all η ∈ η′ε < η is the same as ε < ε0 for ε0 = minη′, and so

formula (3.4) is equivalent to

∀δ ∃ε0 ∀ε
(
ε < ε0 �⇒ B

)
. (3.5)

This shows that for any standard L > 0, L ∈ J, the statement of Theorem 2.1 holds,

thus by transfer, it holds for any L > 0, L∈ J.

The reduction of Remark 3.6 (resp., Theorem 3.7) to Remark 2.2 (resp., Theorem 2.5)

follows almost verbatim the reduction of Theorem 3.5 to Theorem 2.1 and is left to

the reader.

3.3. Uniform asymptotic stability. As the condition (H.4) will be used in its exter-

nal form, we give the external characterizations of the notion of uniform stability and

uniform attractiveness of the equilibrium point ye of (2.5), given in Definition 2.3.

By transfer, we may assume that fo, r , and ye are standard.

Lemma 3.8. The equilibrium point ye of (2.5) is

(1) Uniformly stable if and only if for all t0 ∈ R any solution y(·;t0,φ) of (2.5)

for which φ(t) � ye for t ∈ [−r ,0], can be continued for all t > t0 and satisfies

y(t;t0,φ)� ye.

(2) Uniformly attractive if and only if it admits a standard basin of attraction, that

is, there exists a standard b0 > 0 with the property that for all t0 ∈ R any solution

y(·;t0,φ) of (2.5) for which ‖φ(t)−ye‖ < b0 for t ∈ [−r ,0], φ standard, can be

continued for all t > t0 and satisfies y(t;t0,φ)�ye for all t such that t−t0 �+∞.

Proof. (1) Let A be the formula “‖φ(t)−ye‖ |< η for t ∈ [−r ,0]” and let C be the

formula “Any solution y(·;t0,φ) of (2.5) can be continued for all t > t0 and satisfies

the inequality ‖y(t;t0,φ)−ye‖< µ.” The characterization of uniform stability in the

lemma is

∀t0∀φ
(∀stηA �⇒∀stµB

)
. (3.6)
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In this formula y(·;·,·), r , and ye are standard parameters and η, µ range over the

strictly positive real numbers. By (3.1), formula (3.6) is equivalent to

∀µ ∃finη′ ∀t0∀φ
(∀η∈ η′A �⇒ B

)
. (3.7)

For η′ a finite set, for all η∈ η′ A is the same as A for η=minη′, and so formula (3.7)

is equivalent to

∀µ ∃η ∀t0∀φ(A �⇒ B). (3.8)

This is the usual definition of uniform stability.

(2) By transfer, the uniform attractiveness of ye is equivalent to the existence of a

standard basin of attraction, that is, b0 in Remark 2.4 is standard. The characteriza-

tion of standard basin of attraction in the lemma is that for all standard continuous

function φ : [−r ,0]→U such that ‖φ(t)−ye‖< b0 for t ∈ [−r ,0], we have the prop-

erty that for all t0 ∈ R any solution y(·;t0,φ) of (2.5) can be continued for all t > t0
and satisfies

∀t0∀t
(∀stT t−t0 > T �⇒∀stδ

∥∥y(t;t0,φ)−ye
∥∥< δ

)
. (3.9)

In this formula y(·;·,φ) and ye are standard parameters and T , δ range over the

strictly positive real numbers. By (3.1), formula (3.9) is equivalent to

∀δ ∃finT ′ ∀t0∀t
(∀T ∈ T ′ t−t0 > T �⇒ ∥∥y(t;t0,φ)−ye

∥∥< δ
)
. (3.10)

For T ′ a finite set for all T ∈ T ′ t−t0 > T is the same as t−t0 > T for T =maxT ′, and
so formula (3.10) is equivalent to

∀δ ∃T ∀t0∀t
(
t−t0 > T �⇒ ∥∥y(t;t0,φ)−ye

∥∥< δ
)
. (3.11)

We have shown that for all standard continuous function φ in the basin of attraction

of ye (and consequently, by transfer, for all continuous function φ in the basin of

attraction of ye), for all t0 ∈R any solution y(·;t0,φ) of (2.5) can be continued for all

t > t0 and satisfies limt→∞y(t;t0,φ)=ye, the limit being uniform in t0.

Assume that (2.5) has the uniqueness of the solutions with prescribed initial func-

tions. Let φ : [−r ,0]→ U be continuous. For t0 ∈ R, let y(·;t0,φ) be the solution of

(2.5) for initial function y(t;t0,φ) =φ(t) for t ∈ [−r ,0]. This solution is defined on

the interval I(t0,φ) = [t0−r ,t0+β). It is well known that the function y is continu-

ous with respect to the initial function φ. The external formulation of this result is

as follows.

Lemma 3.9. Let φ and φ0 : [−r ,0]→ U be continuous, with φ0 standard. If φ(t) �
φ0(t) on [−r ,0], then for all t ∈ I(t0,φ0), t > t0, such that t−t0 is standard, we have

t ∈ I(t0,φ) and y(t;t0,φ)�y(t;t0,φ0).

Proof. The reduction of Lemma 3.9 is the usual continuity of the solutions with

respect to the initial functions.

Lemma 3.10. Assume that (2.5) has the uniqueness of the solutions with the pre-

scribed initial functions. The equilibrium point ye of (2.5) is uniformly asymptotically
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stable if and only if there exists a standarda> 0 with the property that for all t0 ∈R any

solution y(·;t0,φ) of (2.5) for which ‖φ(t)−ye‖<a for t ∈ [−r ,0], can be continued

for all t > t0 and satisfies y(t;t0,φ)�ye for all t such that t−t0 �+∞.

Proof. Assume that ye is uniformly asymptotically stable. Then it is uniformly

attractive, and so it admits a ball � of center ye and radius b0 > 0, b0 standard, as a

standard basin of attraction. Let a> 0 be standard such that the closure of the ball �′

of center ye and radius a is included in �. Let φ and φ0 : [−r ,0]→U be continuous,

φ0 standard, with φ(t) ∈ �′ and φ0(t) ∈ � for all t ∈ [−r ,0]. Assume that φ(t) �
φ0(t) for all t ∈ [−r ,0]. For t0 ∈ R, let y = y(·;t0,φ) and y0 = y0(·;t0,φ0) be the

solutions of (2.5) with the initial functions φ and φ0, respectively. By the uniform

attractiveness of ye, the solution y0 is defined for all t > t0 and satisfies y0(t) � ye

for all t−t0 �+∞. By Lemma 3.9, y(t)� y0(t) on [t0, t0+L] for all limited L > 0. By

Robinson’s lemma, there exists ν � +∞ such that y(t) � y0(t) on [t0, t0+ν]. Thus
y(t) � ye for all t ≤ t0 + ν , t − t0 � +∞, and in particular we have y(t) � ye for

all t ∈ [t0 + ν − r ,t0 + ν]. By the uniform stability of ye we have y(t) � ye for all

t > t0+ν . Hence y(t) � ye for all t such that t− t0 � +∞. Conversely, assume ye

satisfies the property in the lemma. By Lemma 3.8(2), the ball �′ is a standard basin

of attraction of ye. Hence ye is uniformly attractive. Letφ : [−r ,0]→U be continuous

with φ(t)�ye for all t ∈ [−r ,0]. For t0 ∈R, let y(·;t0,φ) be the solution of (2.5). By

hypothesis we have y(t;t0,φ)�ye for all t such that t−t0 �+∞, and by Lemma 3.9,

y(t;t0,φ) � y(t;t0,ye) = ye for all t such that t− t0 is limited. By Lemma 3.8(1), ye

is uniformly stable. Thus ye is uniformly asymptotically stable.

4. Proofs of Theorems 3.5 and 3.7

4.1. Preliminary lemmas. Hereafter we give some results we need for the proof

of Theorem 3.5. We assume throughout this section that f and φ are standard. We

suppose also that f satisfies conditions (H.0), (H.1), and (H.2) of Theorem 3.5. The

conditions (H.1) and (H.2) will be used in their following external forms

(H.1′) ∀stx0 ∈U ∀t > 0 ∀x ∈U (x � x0⇒ f(t,x)� f(t,x0)).
(H.2′) There is a standard function fo :U →Rn such that

∀stx0 ∈U ∀T �+∞
(
fo(x0

)� 1
T

∫ T

0
f
(
t,x0

)
dt
)
. (4.1)

Lemma 4.1. The function fo is continuous and we have

fo(x)� 1
T

∫ T

0
f(t,x)dt (4.2)

for all x nearstandard in U and all T �+∞.

Proof. See [14, Lemma 4, page 106].

Lemma 4.2. For all limited t > 0 and all x nearstandard in U , there is α> 0, α� 0,

such that
ε
α

∫ t/ε+α/ε

t/ε
f (τ,x)dτ � fo(x). (4.3)
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Proof. See [14, Lemma 5, page 107], with T = 1, S =α/ε and s = t/ε.

Lemma 4.3. Let L1 > 0 be standard and let x̃ be a function defined on [−r ,L1]. We

assume that x̃ is continuous on [−r ,0], x̃(t) is nearstandard in U for all t ∈ [0,L1],
and satisfies x̃(t) � x̃(tn) for all t ∈ [tn,tn+1] with 0 = t0 < ··· < tn < tn+1 < ··· <
tω ≤ L1 < tω+1 and tn+1−tn =αn � 0, where αn is determined by Lemma 4.2. Then

∫ t

0
f
(
τ
ε
,x̃(τ−r)

)
dτ �

∫ t

0
fo(x̃(τ−r))dτ ∀t ∈ [0,L1

]
. (4.4)

Proof. Let t ∈ [0,L1] and let N be a positive integer such that tN ≤ t < tN+1.
We have

∫ t

0
f
(
τ
ε
,x̃(τ−r)

)
dτ−

∫ t

0
fo(x̃(τ−r))dτ

=
∫ t

0

(
f
(
τ
ε
,x̃(τ−r)

)
−fo(x̃(τ−r)))dτ

=
N−1∑
n=0

∫ tn+1

tn

(
f
(
τ
ε
,x̃(τ−r)

)
−fo(x̃(τ−r)))dτ

+
∫ t

tN

(
f
(
τ
ε
,x̃(τ−r)

)
−fo(x̃(τ−r)))dτ

�
N−1∑
n=0

∫ tn+1

tn

(
f
(
τ
ε
,x̃(τ−r)

)
−fo(x̃(τ−r)))dτ,

(4.5)

since
∥∥∥∥∥
∫ t

tN

(
f
(
τ
ε
,x̃(τ−r)

)
−fo(x̃(τ−r)))dτ

∥∥∥∥∥

≤
∫ t

tN

(∥∥∥∥f
(
τ
ε
,x̃(τ−r)

)∥∥∥∥+∥∥fo(x̃(τ−r))∥∥)dτ
≤ 2M

(
t−tN

)≤ 2M
(
tN+1−tN

)≤ 2Mα� 0,

(4.6)

where α=max{αn} � 0 (see Lemma 3.2) and M is a bound for f and then for fo too,

M is standard.

On the other hand, it is easy to verify that x̃(τ − r) � x̃(tn − r) = cte := x̃n for

τ ∈ [tn,tn+1]. By the continuity of f , condition (H.1′), and Lemma 4.1 (the continuity

of fo) it follows, respectively, that

f
(
τ
ε
,x̃(τ−r)

)
� f

(
τ
ε
,x̃n

)
, f o(x̃(τ−r))� fo(x̃n), (4.7)

or

f
(
τ
ε
,x̃(τ−r)

)
= f

(
τ
ε
,x̃n

)
+γn(τ), f o(x̃(τ−r))= fo(x̃n)+δn(τ), (4.8)
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with

γn(τ)� 0� δn(τ). (4.9)

Hence, from (4.5), we obtain∫ t

0
f
(
τ
ε
,x̃(τ−r)

)
dτ−

∫ t

0
fo(x̃(τ−r))dτ

�
N−1∑
n=0

∫ tn+1

tn

(
f
(
τ
ε
,x̃n

)
−fo(x̃n)+γn(τ)+δn(τ)

)
dτ

=
N−1∑
n=0

∫ tn+1

tn

(
f
(
τ
ε
,x̃n

)
−fo(x̃n)

)
dτ+

N−1∑
n=0

∫ tn+1

tn

(
γn(τ)+δn(τ)

)
dτ

�
N−1∑
n=0

∫ tn+1

tn

(
f
(
τ
ε
,x̃n

)
−fo(x̃n)

)
dτ+

N−1∑
n=0

(
γn+δn

)∫ tn+1

tn
dτ

�
N−1∑
n=0

∫ tn+1

tn

(
f
(
τ
ε
,x̃n

)
−fo(x̃n)

)
dτ+(γ+δ)N−1∑

n=0

(
tn+1−tn

)

=
N−1∑
n=0

∫ tn+1

tn

(
f
(
τ
ε
,x̃n

)
−fo(x̃n)

)
dτ+(γ+δ)·tN,

(4.10)

with γn(τ) � δn(τ) � 0 for τ ∈ [tn,tn+1] and where γn+δn = supτ∈[tn,tn+1]{γ(τ)}+
supτ∈[tn,tn+1]{δ(τ)} � 0 and γ+δ=max{γn}+max{δn} � 0 (see Lemma 3.2).

Since L1 is standard and tN ∈ [0,L1], tN is limited and then (γ+δ)·tN � 0. Therefore,

∫ t

0
f
(
τ
ε
,x̃(τ−r)

)
dτ−

∫ t

0
fo(x̃(τ−r))dτ � N−1∑

n=0

∫ tn+1

tn

(
f
(
τ
ε
,x̃n

)
−fo(x̃n)

)
dτ.

(4.11)

By Lemma 4.2, we have∫ tn+1

tn

(
f
(
τ
ε
,x̃n

)
−fo(x̃n)

)
dτ =

∫ tn+αn

tn

(
f
(
τ
ε
,x̃n

)
−fo(x̃n)

)
dτ

=
∫ tn+αn

tn
f
(
τ
ε
,x̃n

)
dτ−

∫ tn+αn

tn
f o(x̃n)dτ

=
∫ tn+αn

tn
f
(
τ
ε
,x̃n

)
dτ−αn ·fo(x̃n)

= ε
∫ tn/ε+αn/ε

tn/ε
f
(
s, x̃n

)
ds−αn ·fo(x̃n), where s = τ

ε

=αn

(
ε
αn

∫ tn/ε+αn/ε

tn/ε
f
(
s, x̃n

)
ds−fo(x̃n)

)

=αn ·βn, with βn � 0.
(4.12)
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Therefore

∫ t

0
f
(
τ
ε
,x̃(τ−r)

)
dτ−

∫ t

0
fo(x̃(τ−r))dτ � N−1∑

n=0
αn ·βn

� β
N−1∑
n=0

αn, where β=max
{
βn
}

= β
N−1∑
n=0

(
tn+1−tn

)= β·tN.

(4.13)

By Lemma 3.2, β� 0 and then β·tN � 0. This implies the lemma.

Lemma 4.4. Let L1 > 0 be standard and let x be a solution of (2.1). Assume that

[0,L1] ⊂ I and x(t) is nearstandard for all t ∈ [0,L1]. Then x is S-continuous on

[0,L1] and its shadow on [0,L1] coincides with the solution y of (2.2) on this interval,

and satisfies x(t)�y(t) for all t ∈ [0,L1].

Proof. The solution x is given as

x(t)=φ(0)+
∫ t

0
f
(
τ
ε
,x(τ−r)

)
dτ, for t ∈ [0,L1]. (4.14)

As f is bounded on R×U , it is clear that x is S-continuous on [0,L1].
Let x̃ be a function which satisfies the hypotheses of Lemma 4.3 and such that

x(t)� x̃(t), ∀t ∈ [−r ,L1
]
. (4.15)

Consider now the following equality which is always true

∫ t

0
f
(
τ
ε
,x(τ−r)

)
dτ−

∫ t

0
fo(x(τ−r))dτ

=
∫ t

0

(
f
(
τ
ε
,x(τ−r)

)
−f

(
τ
ε
,x̃(τ−r)

))
dτ

+
∫ t

0

(
f
(
τ
ε
,x̃(τ−r)

)
−fo(x̃(τ−r)))dτ

+
∫ t

0

(
fo(x̃(τ−r))−fo(x(τ−r)))dτ.

(4.16)

As x(t) is nearstandard in U for any t ∈ [−r ,L1], by the continuity of f , condition
(H.1′) and (4.15), we have

f
(
t
ε
,x(t−r)

)
� f

(
t
ε
,x̃(t−r)

)
(4.17)

and by Lemma 3.3,

∫ t

0
f
(
τ
ε
,x(τ−r)

)
dτ �

∫ t

0
f
(
τ
ε
,x̃(τ−r)

)
dτ. (4.18)
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On the other hand, by Lemma 4.1 (the continuity of fo) and by (4.15), we have

fo(x̃(t−r))� fo(x(t−r)), (4.19)

and by Lemma 3.3, we obtain
∫ t

0
fo(x̃(τ−r))dτ �

∫ t

0
fo(x(τ−r))dτ. (4.20)

By Lemma 4.3, for any t ∈ [0,L1], we have
∫ t

0
f
(
τ
ε
,x̃(τ−r)

)
dτ �

∫ t

0
fo
(
x̃(τ−r)

)
dτ. (4.21)

Hence, for t ∈ [0,L1], (4.16) implies
∫ t

0
f
(
τ
ε
,x(τ−r)

)
dτ �

∫ t

0
fo(x(τ−r))dτ. (4.22)

Using (4.14) and (4.22), we obtain

x(t)=φ(0)+
∫ t

0
f
(
τ
ε
,x(τ−r)

)
dτ

�φ(0)+
∫ t

0
fo(x(τ−r))dτ.

(4.23)

Let ox be the shadow of x on [0,L1]. It is easy to see that the function z, where

z(t)=


ox(t), for t ∈ [0,L1

]
,

φ(t), for t ∈ [−r ,0], (4.24)

is a solution of (2.2). The hypothesis (H.3) insures that z = y on [−r ,L1]. Hence, we

have x(t)�y(t) for t ∈ [0,L1].

Proof of Theorem 3.5. Let L > 0 be standard in J. Since Γ = y([0,L]) is a stan-

dard compact subset of U , there exists ρ > 0, ρ standard, and K, a standard com-

pact neighborhood of Γ included in U , such that dist(Γ ,K) = inf{‖y−z‖/y ∈ Γ , z ∈
Rn−K} > ρ. Let x : I → U be a solution of (2.1). Define the set A = {L1 ∈ I∩ [0,L] |
x([0,L1]) ⊂ K}. The set A is nonempty (0 ∈ A) and bounded above by L. Let L0

be a lower upper bound of A. There is L1 ∈ A such that L0 − ε < L1 ≤ L0. Thus

x([0,L1]) ⊂ K. Hence on [0,L1] the function x is nearstandard in U . By Lemma 4.4,

we have x(t)�y(t) for t ∈ [0,L1]. Consider the interval [0,L1+ε]. Let t ∈ [0,L1+ε].
As t−r is in [−r ,L1+ε−r]⊂ [−r ,L1], x(t−r) is defined and so is

x(t)=φ(0)+
∫ t

0
f
(
τ
ε
,x(τ−r)

)
dτ. (4.25)

On the other hand, we have, for t ∈ [L1,L1 + ε], x(t) � x(L1) � y(L1) with y(L1)
nearstandard in U . Hence, on [L1,L1+ε], x is nearstandard in U . Thus, on [0,L1+ε],
x is defined and nearstandard in U . By Lemma 4.4, we have x(t)�y(t) for t ∈ [0,L1+
ε]. Hence [0,L1+ ε] ⊂ I and x([0,L1+ ε]) ⊂ K. Suppose L1+ ε ≤ L, then L1+ ε ∈ A
which is a contradiction. Thus L1 + ε > L, that is, we have x(t) � y(t) for all t ∈
[0,L]⊂ [0,L1+ε].
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Proof of Theorem 3.7. By condition (H.5) and the uniform attractiveness of ye

(see Lemma 3.8(2)), the solution y is defined for all t > 0 and satisfies y(t) � ye for

all t � +∞. Let x : I → U be a solution of (2.1). By Theorem 3.5, for all limited L > 0,

x is defined on [0,L] and the approximation x(t) � y(t) holds for all t ∈ [0,L]. By
Robinson’s lemma, there exists t1 �+∞ such that x(t)�y(t) on [0, t1]. And then we

have

x(t)�y(t)�ye, ∀t ≤ t1, t �+∞. (4.26)

It remains to prove that x is defined for all t ≥ t1 and satisfies x(t) � y(t) for all

t > t1. Assume that this is false. Then there exists s > t1 such that x(s) 
�y(s), that is,

∥∥x(s)−y(s)∥∥= 2
3
κ (4.27)

is appreciable. Since y(t)�ye for all t �+∞, we have

∥∥x(s)−ye
∥∥≤ ∥∥x(s)−y(s)∥∥+∥∥y(s)−ye

∥∥≤ 2
3
κ+ κ

3
= κ. (4.28)

Let �, the ball of center ye and radius b0 > 0, b0 standard, be the basin of attraction of

ye. We can choose s in (4.28) so that the ball �′ of center ye and radius κ is included

in �, with b0−κ appreciable. Let t2 be the first instant in time such that equality (4.27)

holds. Clearly t2 > t1.
Case 1 (t1,2 = t2−t1 �+∞). Redefine in (2.2) the initial time r = t0. Let z1(·;r ,x,t2)

denote the solution of (2.2) such that z1(t;r ,x,t2) = x(t2 − t) for t ∈ [0,r ]. By

Theorem 3.5 and Remark 3.6, for all limited L > 0, z1(·;r ,x,t2) is defined on [r ,r+L]
and satisfies z1(t;r ,x,t2) � x(t2− t) for t ∈ [r ,r +L]. By Robinson’s lemma, there

exists t1,2 � +∞, which one can choose such that r + t1,2 ≤ t1,2, with the property

that z1(t;r ,x,t2) � x(t2−t) on [r ,r +t1,2]. In particular, z1(t;r ,x,t2) � x(t2−t) on
[t1,2,r +t1,2]⊂ [0, t1,2]. Since x(t) belongs to �′ for all t ∈ [t1, t2], x(t2−t) lies in �′

for all t ∈ [0, t1,2]. This implies that z1(t;r ,x,t2) is in � for all t ∈ [t1,2,r+t1,2]. By the

uniform attractiveness of ye (see Lemma 3.10), through the transformation t � −t,
the solution of (2.2) with the initial function z1(−t;r ,x,t2) for t ∈ [−r − t1,2,−t1,2]
which coincides with z1(·;r ,x,t2) (by uniqueness; hypothesis (H.3)) is defined for

all t > −t1,2 and satisfies z1(−t;r ,x,t2) � ye for t + t1,2 � +∞. Take t = 0, then

x(t2) � z1(0;r ,x,t2) � ye. Since y(t2) � ye, this implies that x(t2) � y(t2). Which

is a contradiction with ‖x(t2)−y(t2)‖ being appreciable.

Case 2 (t1,2 = t2− t1 is limited). By the continuity of the function ‖x(t)−y(t)‖,
there exists at least t ∈ (t1, t2) such that

∥∥x(t)−y(t)∥∥= κ
2
. (4.29)

Let t3 and t4, respectively, be the first and the last instants in time such that equality

(4.29) holds. We have t1 < t3 ≤ t4 < t2. It is clear that

∥∥x(t)−y(t)∥∥< κ
2
, ∀t ∈ [t1, t3). (4.30)

It is also clear that

0<
κ
2
≤ ∥∥x(t)−y(t)∥∥≤ 2

3
κ, ∀t ∈ [t4, t2]. (4.31)
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Redefine in (2.2) the initial time t1 = t0. Let z(·;t1,x) denote the solution of (2.2)

such that z(t;t1,x)= x(t) for t ∈ [t1−r ,t1]. By (4.26) we have

z
(
t;t1,x

)= x(t)�y(t)�ye, for t ∈ [t1−r ,t1]. (4.32)

Since t4−t1 is limited, according to Theorems 3.5 and Remark 3.6

z
(
t;t1,x

)� x(t), on
[
t1, t4+L

]= [t1, t1+((t4−t1)+L)], ∀ limited L > 0. (4.33)

By Robinson’s lemma, there exists ω�+∞ such that z(t;t1,x)� x(t) on [t1, t4+ω].
Thus we have

z
(
t;t1,x

)� x(t), on
[
t1, t5

]
, where t5 = t4+ω. (4.34)

By (4.32) and the uniform stability of ye (see Lemma 3.8(1)) we deduce that

z
(
t;t1,x

)�y(t)
(�ye

)
, ∀t ≥ t1. (4.35)

Thus, by (4.34) and (4.35)

x(t)�y(t), ∀t ∈ [t1, t5]. (4.36)

Therefore t5 < t2 since ‖x(t2)−y(t2)‖ is appreciable.

Take t = t5. By (4.36) we have x(t5) � y(t5). This contradicts (4.31) since t5 ∈
[t4, t2].
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