COMMON FIXED POINT THEOREMS IN 2 NON-ARCHIMEDEAN MENGER PM-SPACE

RENU CHUGH and SUMITRA

(Received 17 May 1999)

ABSTRACT. We introduce the concept of a 2 non-Archimedean Menger PM-space and prove a common fixed point theorem for weak compatible mappings of type (A).

2000 Mathematics Subject Classification. 47H10, 54H25.

1. Introduction. Cho et al. [1] proved a common fixed point theorem for compatible mappings of type (A) in non-Archimedean (NA) Menger PM-space. The aim of this paper is to generalize the results of Cho et al. [1] for weak compatible mappings of type (A) in a 2 NA Menger PM-space.

We first give some definitions and notations.

DEFINITION 1.1. Let *X* be any nonempty set and *D* the set of all left-continuous distribution functions. An ordered pair (X, F) is said to be a 2 non-Archimedean probabilistic metric space (briefly 2 NA PM-space) if *F* is a mapping from $X \times X \times X$ into *D* satisfying the following conditions where the value of *F* at $x, y, z \in X \times X \times X$ is represented by $F_{x,y,z}$ or F(x, y, z) for all $x, y, z \in X$ such that

- (i) $F_{x,y,z}(t) = 1$ for all t > 0 if and only if at least two of the three points are equal.
- (ii) $F_{x,y,z} = F_{x,z,y} = F_{z,y,x}$.
- (iii) $F_{x,y,z}(0) = 0.$
- (iv) If $F_{x,y,s}(t_1) = F_{x,s,z}(t_2) = F_{s,y,z}(t_3) = 1$, then $F_{x,y,z}(\max\{t_1, t_2, t_3\}) = 1$.

DEFINITION 1.2. A *t*-norm is a function $\Delta : [0,1] \times [0,1] \times [0,1] \rightarrow [0,1]$ which is associative, commutative, nondecreasing in each coordinate, and $\Delta(a,1,1) = a$ for every $a \in [0,1]$.

DEFINITION 1.3. A 2 NA Menger PM-space is an ordered triplet (X, F, Δ) , where Δ is a *t*-norm and (X, F) is a 2 NA PM-space satisfying the following condition

$$F_{x,y,z}(\max\{t_1, t_2, t_3\}) \\ \ge \Delta(F_{x,y,s}(t_1), F_{x,s,z}(t_2), F_{s,y,z}(t_3)) \quad \forall x, y, z \in X, \ t_1, t_2, t_3 \ge 0.$$
(1.1)

DEFINITION 1.4. Let (X, F, t) be a 2 NA Menger PM-space and t a continuous t-norm, then (X, F, t) is Hausdorff in the topology induced by the family of neighborhoods

$$\{U_{x}(\epsilon,\lambda,a_{1},a_{2},...,a_{n}); x,a_{i} \in X, \epsilon > 0, i = 1,2,...,n, n \in \mathbb{Z}^{+}\},$$
(1.2)

where \mathbb{Z}^+ is the set of all positive integers and

$$U_{x}(\epsilon, \lambda, a_{1}, a_{2}, \dots, a_{n}) = \{ y \in X; F_{x, y, a_{i}}(\epsilon) > 1 - \lambda, 1 \le i \le n \}$$

= $\cap_{i=1}^{n} \{ y \in X; F_{x, y, a_{i}}(\epsilon) > 1 - \lambda, 1 \le i \le n \}.$ (1.3)

DEFINITION 1.5. A 2 NA Menger PM-space (X, F) is said to be of type $(C)_g$ if there exists a $g \in \Omega$ such that

$$g(F_{x,y,z}(t)) \le g(F_{x,y,a}(t)) + g(F_{x,a,z}(t)) + g(F_{a,y,z}(t)) \quad \forall x, y, z, a \in X, \ t \ge 0, \ (1.4)$$

where $\Omega = \{g \mid g : [0,1] \rightarrow [0,\infty) \text{ is continuous, strictly decreasing, } g(1) = 0, \text{ and } g(0) < \infty\}.$

DEFINITION 1.6. A 2 NA Menger PM-space (X, F, Δ) is said to be of type $(D)_g$ if there exists a $g \in \Omega$ such that

$$g(\Delta(t_1, t_2, t_3)) \le g(t_1) + g(t_2) + g(t_3) \quad \forall t_1, t_2, t_3 \in [0, 1].$$

$$(1.5)$$

REMARK 1.7. If 2 NA Menger PM-space (X, F, Δ) is of type $(D)_g$, then (X, F, Δ) is of type $(C)_g$.

Throughout this paper, let (X, F, Δ) be a complete 2 NA Menger PM-space with a continuous strictly increasing *t*-norm Δ . Let $\phi : [0, \infty) \rightarrow [0, \infty)$ be a function satisfying the condition $(\Phi) \phi$ is upper semi-continuous from right and $\phi(t) < t$ for all t > 0.

LEMMA 1.8. If a function $\phi : [0, \infty) \to [0, \infty)$ satisfies the condition (Φ) , then we get (1) For all $t \ge 0$, $\lim_{n\to\infty} \phi^n(t) = 0$, where $\phi^n(t)$ is the nth iteration of $\phi(t)$.

(2) If $\{t_n\}$ is a nondecreasing sequence of real numbers and $t_{n+1} \le \phi(t_n)$, n = 1, 2, ...Then $\lim_{n\to\infty} t_n = 0$. In particular, if $t \le \phi(t)$ for all $t \ge 0$, then t = 0.

LEMMA 1.9. Let $\{y_n\}$ be a sequence in X such that $\lim_{n\to\infty} F_{y_n,y_{n+1},a}(t) = 1$ for all t > 0. If the sequence $\{y_n\}$ is not a Cauchy sequence in X, then there exist $\epsilon_0 > 0$, $t_0 > 0$, and two sequences $\{m_i\}$ and $\{n_i\}$ of positive integers such that

- (i) $m_i > n_i + 1$ and $n_i \to \infty$ as $i \to \infty$.
- (ii) $F_{\mathcal{Y}_{m_i},\mathcal{Y}_{n_i},a}(t_0) < 1 \epsilon_0 \text{ and } F_{\mathcal{Y}_{m_i-1},\mathcal{Y}_{n_i},a}(t_0) \ge 1 \epsilon_0, i = 1, 2, \dots$

DEFINITION 1.10. Let $A, S : X \to X$ be mappings, A and S are said to be compatible if

$$\lim_{n \to \infty} g(F_{ASx_n, SAx_n, a}(t)) = 0 \quad \forall t > 0, \ a \in X,$$

$$(1.6)$$

when $\{x_n\}$ is a sequence in *X* such that

$$\lim_{n \to \infty} Ax_n = z = \lim_{n \to \infty} Sx_n \quad \text{for some } z \in X.$$
(1.7)

DEFINITION 1.11. Let $A, S : X \to X$ be mappings, A and S are said to be compatible of type (A) if

$$\lim_{n \to \infty} g(F_{ASx_n, SSx_n, a}(t)) = 0 = \lim_{n \to \infty} g(F_{SAx_n, AAx_n, a}(t)) \quad \forall t > 0, \ a \in X,$$
(1.8)

when $\{x_n\}$ is a sequence in *X* such that

$$\lim_{n \to \infty} Ax_n = z = \lim_{n \to \infty} Sx_n \quad \text{for some } z \in X.$$
(1.9)

DEFINITION 1.12. Let $A, S : X \to X$ be mappings, A and S are said to be weak compatible of type (A) if

$$\lim_{n \to \infty} g(F_{ASx_n, SSx_{n,a}}(t)) \ge \lim_{n \to \infty} g(F_{SAx_n, SSx_{n,a}}(t)),$$

$$\lim_{n \to \infty} g(F_{SAx_n, AAx_{n,a}}(t)) \ge \lim_{n \to \infty} g(F_{ASx_n, AAx_{n,a}}(t)) \quad \forall t > 0, \ a \in X,$$

(1.10)

whenever $\{x_n\}$ is a sequence in *X* such that

$$\lim_{n \to \infty} Ax_n = z = \lim_{n \to \infty} Sx_n \quad \text{for some } z \in X.$$
(1.11)

PROPOSITION 1.13. Let $A, S : X \to X$ be continuous mappings. If A and S are compatible of type (A), then they are weak compatible of type (A).

PROOF. Suppose that *A* and *S* are compatible of type (*A*). Let $\{x_n\}$ be a sequence in *X* such that

$$\lim_{n \to \infty} Ax_n = z = \lim_{n \to \infty} Sx_n \quad \text{for some } z \in X,$$
(1.12)

then

$$\lim_{n \to \infty} g(F_{SAx_n, SSx_n, a}(t)) = 0$$

$$\leq \lim_{n \to \infty} g(F_{ASx_n, SSx_n, a}(t))$$

$$\Rightarrow \lim_{n \to \infty} g(F_{ASx_n, SSx_n, a}(t)) \geq \lim_{n \to \infty} g(F_{SAx_n, SSx_n, a}(t)).$$
(1.13)

Similarly, we can show that

$$\lim_{n \to \infty} g(F_{SAx_n, AAx_n, a}(t)) = 0$$

$$\geq \lim_{n \to \infty} g(F_{ASx_n, AAx_n, a}(t)).$$
(1.14)

Therefore, A and S are weak compatible of type (A).

PROPOSITION 1.14. Let $A, S : X \to X$ be weak compatible mappings of type (A). If one of A and S is continuous, then A and S are compatible of type (A).

PROOF. Let $\{x_n\}$ be a sequence in *X* such that

$$\lim_{n \to \infty} Ax_n = z = \lim_{n \to \infty} Sx_n \quad \text{for some } z \in X.$$
(1.15)

Suppose *S* is continuous so $SSx_n, SAx_n \rightarrow Sz$ as $n \rightarrow \infty$. Since *A* and *S* are weak compatible of type (*A*), so we have

$$\lim_{n \to \infty} g(F_{AS_{X_n}, SS_{X_n, a}}(t)) \ge \lim_{n \to \infty} g(F_{SA_{X_n}, SS_{X_n, a}}(t))$$
$$= \lim_{n \to \infty} g(F_{S_{Z,SZ, a}}(t)) = 0.$$
(1.16)

Thus

$$\lim_{n \to \infty} g(F_{ASx_n, SSx_n, a}(t)) = 0.$$
(1.17)

Similarly,

$$\lim_{n \to \infty} g(F_{SAx_n, AAx_n, a}(t)) = 0.$$
(1.18)

Hence A and S are compatible of type (A).

)

PROPOSITION 1.15. Let $A, S : X \to X$ be continuous mappings. Then A and S are compatible of type (A) if and only if A and S are weak compatible of type (A).

Note that Proposition 1.15 is a direct consequence of Propositions 1.13 and 1.14.

PROPOSITION 1.16. Let $A, S : X \to X$ be mappings. If A and S are weak compatible of type (A) and Az = Sz for some $z \in X$. Then SAz = AAz = ASz = SSz.

PROOF. Suppose that $\{x_n\}$ is a sequence in *X* defined by $x_n = z$, n = 1, 2, ..., and Az = Sz for some $z \in X$. Then we have $Ax_n, Sx_n \to Sz$ as $n \to \infty$. Since *A* and *S* are weak compatible of type (*A*) so

$$\lim_{n \to \infty} g(F_{ASx_n, SSx_n, a}(t)) \ge \lim_{n \to \infty} g(F_{SAx_n, SSx_n, a}(t)),$$

$$\lim_{n \to \infty} g(F_{SAx_n, AAx_n, a}(t)) \ge \lim_{n \to \infty} g(F_{ASx_n, AAx_n, a}(t)).$$
(1.19)

Now

$$\lim_{n \to \infty} g(F_{SAz,AAz,a}(t)) = \lim_{n \to \infty} g(F_{SAx_n,AAx_n,a}(t)) \ge \lim_{n \to \infty} g(F_{ASx_n,AAx_n,a}(t))$$
$$= g(F_{ASz,SSz,a}(t)).$$
(1.20)

Since Sz = Az, then SAz = AAz. Similarly, we have ASz = SSz. But Az = Sz for $z \in X$ implies that AAz = ASz = SAz = SSz.

PROPOSITION 1.17. Let $A, S : X \to X$ be weak compatible mappings of type (A) and let $\{x_n\}$ be a sequence in X such that $\lim_{n\to\infty} Ax_n = z = \lim_{n\to\infty} Sx_n$ for some $z \in X$, then

(1) $\lim_{n\to\infty} ASx_n = Sz$ if *S* is continuous at *z*.

(2) SAz = ASz and Az = Sz if A and S are continuous at z.

PROOF. Suppose that *S* is continuous and $\{x_n\}$ is a sequence in *X* such that

$$\lim_{n \to \infty} Ax_n = z = \lim_{n \to \infty} Sx_n \quad \text{for some } z \in X, \tag{1.21}$$

so

$$SSx_n \to Sz \quad \text{as } n \to \infty.$$
 (1.22)

Since *A* and *S* are weak compatible of type (*A*), we have

$$g(F_{ASx_n,Sz,a}(t)) = \lim_{n \to \infty} g(F_{ASx_n,SSx_n,a}(t))$$

$$\geq \lim_{n \to \infty} g(F_{SAx_n,SSx_n,a}(t)) \longrightarrow 0 \quad \text{as } n \longrightarrow \infty$$
(1.23)

for all t > 0 which implies that $ASx_n \rightarrow Sz$ as $n \rightarrow \infty$.

(2) Suppose that *A* and *S* are continuous at *z*. Since $Ax_n \to z$ as $n \to \infty$ and *S* is continuous at *z*, by Proposition 1.17(1) $ASx_n \to Sz$ as $n \to \infty$. On the other hand, since $Sx_n \to z$ as $n \to \infty$ and *A* is also continuous at *z*, $ASx_n \to Az$ as $n \to \infty$. Thus Az = Sz by the uniqueness of the limit and so by Proposition 1.16, SAz = AAz = ASz = SSz. Therefore, we have ASz = SAz.

THEOREM 1.18. Let $A, B, S, T : X \to X$ be mappings satisfying (i) $A(X) \subset T(X), B(X) \subset S(X),$

- (ii) the pairs A, S and B, T are weak compatible of type (A),
- (iii) *S* and *T* is continuous,
- (iv) $g(F_{Ax,By,a}(t)) \le \phi(\max\{g(F_{Sx,Ty,a}(t)), g(F_{Sx,Ax,a}(t)), g(F_{Ty,By,a}(t)), (1/2)(g(F_{Sx,By,a}(t)) + g(F_{Ty,Ax,a}(t)))\}),$

for all t > 0, $a \in X$ where a function $\phi : [0, \infty) \to [0, \infty)$ satisfies the condition (Φ) . Then by (i) since $A(X) \subset T(X)$, for any $x_0 \in X$, there exists a point $x_1 \in X$ such that $Ax_0 = Tx_1$. Since $B(X) \subset S(X)$, for this x_1 , we can choose a point $x_2 \in X$ such that $Bx_1 = Sx_2$ and so on, inductively, we can define a sequence $\{y_n\}$ in X such that

$$y_{2n} = Ax_{2n} = Tx_{2n+1}, \quad y_{2n+1} = Bx_{2n+1} = Sx_{2n+2}, \quad \text{for } n = 0, 1, 2, \dots$$
 (1.24)

First we prove the following lemma.

LEMMA 1.19. Let $A, S : X \to X$ be mappings satisfying conditions (i) and (iv), then the sequence $\{y_n\}$ defined by (1.24), such that

$$\lim_{n \to \infty} g(F_{\mathcal{Y}_n, \mathcal{Y}_{n+1}}(t)) = 0 \quad \forall t > 0, \ a \in X,$$

$$(1.25)$$

is a Cauchy sequence in X.

PROOF. Since $g \in \Omega$, it follows that $\lim_{n\to\infty} (F_{y_n,y_{n+1},a}(t)) = 0$ for all a > 0, $a \in X$ if and only if $\lim_{n\to\infty} g(F_{y_n,y_{n+1},a}(t)) = 0$ for all t > 0. By Lemma 1.9, if $\{y_n\}$ is not a Cauchy sequence in X, there exist $\epsilon_0 > 0$, $t_0 > 0$, and two sequences $\{m_i\}, \{n_i\}$ of positive integers such that

(A) $m_i > n_i + 1$ and $n_i \to \infty$ as $i \to \infty$,

(B) $g(F_{y_{m_i},y_{n_i},a}(t_0)) > g(1-\epsilon_0)$ and $g(F_{y_{m_i}-1,y_{n_i},a}(t_0)) \le g(1-\epsilon_0)$, i = 1, 2, ..., since g(t) = 1-t. Thus we have

$$g(1-\epsilon_{0}) < g(F_{\mathcal{Y}_{m_{i}},\mathcal{Y}_{n_{i}},a}(t_{0}))$$

$$\leq g(F_{\mathcal{Y}_{m_{i}},\mathcal{Y}_{n_{i}},\mathcal{Y}_{m_{i}-1}}(t_{0})) + g(F_{\mathcal{Y}_{m_{i}},\mathcal{Y}_{m_{i}-1}},a(t_{0})) + g(F_{\mathcal{Y}_{m_{i}-1},\mathcal{Y}_{n_{i}},a}(t_{0})) \qquad (1.26)$$

$$\leq g(F_{\mathcal{Y}_{m_{i}},\mathcal{Y}_{n_{i}},\mathcal{Y}_{m_{i}-1}}(t_{0})) + g(F_{\mathcal{Y}_{m_{i}},\mathcal{Y}_{m_{i}-1},a}(t_{0})) + g(1-\epsilon_{0}).$$

As $i \to \infty$ in (1.26), we have

$$\lim_{n \to \infty} g(F_{\mathcal{Y}_{m_i}, \mathcal{Y}_{n_i}, a}(t_0)) = g(1 - \epsilon_0).$$

$$(1.27)$$

On the other hand, we have

$$g(1-\epsilon_0) < g(F_{\mathcal{Y}_{m_i},\mathcal{Y}_{n_i},a}(t_0)) \\ \leq g(F_{\mathcal{Y}_{m_i},\mathcal{Y}_{n_i},\mathcal{Y}_{n_i+1}}(t_0)) + g(F_{\mathcal{Y}_{m_i},\mathcal{Y}_{n_i+1},a}(t_0)) + g(F_{\mathcal{Y}_{n_i+1},\mathcal{Y}_{n_i},a}(t_0)).$$
(1.28)

Now, consider $g(F_{y_{m_i},y_{n_i+1},a}(t_0))$ in (1.28), assume that both n_i and m_i are even. Then

by (iv), we have

$$g(F_{y_{m_{i}},y_{n_{i}+1},a}(t_{0})) = g(F_{Ax_{m_{i}},Bx_{n_{i}+1},a}(t_{0}))$$

$$\leq \phi(\max\{g(F_{Sx_{m_{i}},Tx_{n_{i}+1},a}(t_{0})), g(F_{Tx_{n_{i}+1},Bx_{n_{i}+1},a}(t_{0})), g(F_{Fx_{n_{i}+1},Bx_{n_{i}+1},a}(t_{0})), \frac{1}{2}(g(F_{Sx_{m_{i}},Bx_{n_{i}+1},a}(t_{0})) + g(F_{Tx_{n_{i}+1},Bx_{n_{i}+1},a}(t_{0})))\})$$

$$= \phi(\max\{g(F_{y_{m_{i}-1},y_{n_{i}},a}(t_{0})), g(F_{y_{n_{i}},y_{n_{i}+1},a}(t_{0})), g(F_{y_{m_{i}},y_{m_{i}+1},a}(t_{0})), \frac{1}{2}(g(F_{y_{m_{i}-1},y_{m_{i}},a}(t_{0})), g(F_{y_{n_{i}},y_{m_{i}},a}(t_{0})), g(F_{y_{n_{i}},y_{m_{i}},a}(t_{0})), g(F_{y_{n_{i}},y_{m_{i}},a}(t_{0})), \frac{1}{2}(g(F_{y_{m_{i}-1},y_{n_{i}+1},a}(t_{0})) + g(F_{y_{n_{i}},y_{m_{i}},a}(t_{0})))\}).$$

$$(1.29)$$

By (1.27), (1.28), and (1.29), letting $i \to \infty$ in (1.29), we have

$$g(1-\epsilon_0) \le \phi(\max\{g(1-\epsilon_0), 0, 0, g(1-\epsilon_0)\}) = \phi(g(1-\epsilon_0)) < g(1-\epsilon_0), \quad (1.30)$$

which is a contradiction. Therefore, $\{y_n\}$ is a Cauchy sequence in *X*.

Now, we prove our main theorem.

If we prove $\lim_{n\to\infty} g(F_{y_n,y_{n+1},a}(t)) = 0$ for all t > 0, then by Lemma 1.19, the sequence $\{y_n\}$ defined by (1.24) is a Cauchy sequence in *X*.

First we prove $\lim_{n\to\infty} g(F_{y_n,y_{n+1},a}(t)) = 0$ for all t > 0. In fact, by Theorem 1.18(iv) and (1.24), we have

$$\begin{split} g(F_{y_{2n},y_{2n+1},a}(t)) &= g(F_{Ax_{2n},Bx_{2n+1},a}(t)) \\ &\leq \phi(\max\{g(F_{Sx_{2n},Tx_{2n+1},a}(t)), g(F_{Tx_{2n},Bx_{2n+1},a}(t)), \\ &\quad g(F_{Sx_{2n},Ax_{2n},a}(t)), g(F_{Tx_{2n},Bx_{2n+1},a}(t)), \\ &\quad \frac{1}{2}(g(F_{Sx_{2n},Bx_{2n+1},a}(t)) + g(F_{Tx_{2n+1},Ax_{2n},a}(t)))\}) \\ &= \phi(\max\{g(F_{y_{2n-1},y_{2n},a}(t)), g(F_{y_{2n},y_{2n+1},a}(t)), \\ &\quad g(F_{y_{2n-1},y_{2n},a}(t)), g(F_{y_{2n},y_{2n+1},a}(t)), \\ &\quad \frac{1}{2}(g(F_{y_{2n-1},y_{2n},a}(t)) + g(F_{y_{2n},y_{2n+1},a}(t)), \\ &\quad g(F_{y_{2n-1},y_{2n},a}(t)) + g(F_{y_{2n},y_{2n+1},a}(t)), \\ &\quad g(F_{y_{2n-1},y_{2n},a}(t)) + g(F_{y_{2n},y_{2n+1},a}(t))\}) \end{split}$$

if $g(F_{y_{2n-1},y_{2n},a}(t)) \leq g(F_{y_{2n},y_{2n+1},a}(t))$ for all t > 0, then by Theorem 1.18(iv), $g(F_{y_{2n},y_{2n+1},a}(t)) \leq \phi(g(F_{y_{2n},y_{2n+1},a}(t)))$ and thus, by Lemma 1.8, $g(F_{y_{2n},y_{2n+1},a}(t)) = 0$ for all t > 0. Similarly, we have $g(F_{y_{2n+1},y_{2n+2},a}(t)) = 0$, thus we have $\lim_{n \to \infty} g(F_{y_n,y_{n+1},a}(t)) = 0$ for all t > 0. On the other hand, if $g(F_{y_{2n-1},y_{2n},a}(t)) \geq g(F_{y_{2n},y_{2n+1},a}(t))$, then by Theorem 1.18(iv), we have

$$g(F_{y_{2n},y_{2n+1},a}(t)) \le \phi(g(F_{y_{2n-1},y_{2n},a}(t))) \quad \forall t > 0.$$
(1.32)

480

Similarly,

$$g(F_{y_{2n+1},y_{2n+2},a}(t)) \le \phi(g(F_{y_{2n},y_{2n+1},a}(t))) \quad \forall t > 0,$$
(1.33)

hence

$$g(F_{\mathcal{Y}_{n},\mathcal{Y}_{n+1},a}(t)) \le \phi(g(F_{\mathcal{Y}_{n-1},\mathcal{Y}_{n},a}(t))) \quad \forall t > 0, \ n = 1, 2, 3, \dots,$$
(1.34)

therefore by Lemma 1.8,

$$\lim_{n \to \infty} g(F_{y_n, y_{n+1}, a}(t)) = 0 \quad \forall t > 0,$$
(1.35)

which implies that $\{y_n\}$ is a Cauchy sequence in *X* by Lemma 1.19. Since (X, F, Δ) is complete, the sequence $\{y_n\}$ converges to a point $z \in X$ and so the subsequences $\{Ax_{2n}\}, \{Bx_{2n+1}\}, \{Sx_{2n}\}, \text{ and } \{Tx_{2n+1}\} \text{ of } \{y_n\}$ also converge to the limit *z*.

Now, suppose that *T* is continuous. Since *B* and *T* are weak compatible of type (*A*), by Proposition 1.17, BTx_{2n+1} , TTx_{2n+1} tend to Tz as *n* tends to ∞ . Putting $x = x_{2n}$ and $y = Tx_{2n+1}$ in Theorem 1.18(iv), we have

$$g(F_{Ax_{2n},BTx_{2n+1},a}(t)) \leq \phi(\max\{g(F_{Sx_{2n},TTx_{2n+1},a}(t)),g(F_{Sx_{2n},Ax_{2n},a}(t)),g(F_{TTx_{2n+1},BTx_{2n+1},a}(t)), (1.36) \\ \frac{1}{2}(g(F_{Sx_{2n},BTx_{2n+1},a}(t))+g(F_{TTx_{2n+1},Ax_{2n},a}(T)))\}) \quad \forall t > 0.$$

Letting $n \to \infty$ in (1.36), we get

$$g(F_{z,Tz,a}(t)) \leq \phi(\max\{g(F_{z,Tz,a}(t)), g(F_{z,z,a}(t)), g(F_{Tz,Tz,a}(t)), \frac{1}{2}(g(F_{z,Tz,a}(t)) + g(F_{Tz,z,a}(t)))\})$$

$$= \phi(g(F_{z,Tz,a}(t))) \quad \forall t > 0,$$
(1.37)

which means that $g(F_{z,Tz,a}(t)) = 0$ for all t > 0 by Lemma 1.8 and so we have Tz = z. Again replacing x by x_{2n} and y by z in Theorem 1.18(iv), we have

$$g(F_{Ax_{2n},Bz,a}(t)) \leq \phi(\max\{g(F_{Sx_{2n},Tz,a}(t)),g(F_{Sx_{2n},Ax_{2n},a}(t)),g(F_{Tz,Bz,a}(t)),\\ \frac{1}{2}(g(F_{Sx_{2n},Bz,a}(t))+g(F_{Tz,Ax_{2n},a}(t)))\}) \quad \forall t > 0.$$
(1.38)

Letting $n \to \infty$ in (1.38), we get

$$g(F_{z,Bz,a}(t)) \leq \phi(\max\{g(F_{z,z,a}(t)), g(F_{z,Bz,a}(t)), g(F_{z,Bz,a}(t)), \frac{1}{2}(g(F_{z,Bz,a}(t)) + g(F_{z,z,a}(t)))\}) \quad \forall t > 0,$$
(1.39)

which implies that $g(F_{z,Bz,a}(t)) \le \phi(g(F_{z,Bz,a}(t)))$ for all t > 0 and so we have Bz = z. Since $B(x) \subset S(X)$, there exists a point $w \in X$ such that Bz = Sw = z. By using condition Theorem 1.18(iv) again, we have

$$g(F_{Aw,z,a}(t)) = g(F_{Aw,Bz,a}(t))$$

$$\leq \phi(\max\{(F_{Sw,Tz,a}(t)), g(F_{Sw,Aw,a}(t)), g(F_{Tz,Bz,a}(t)), \frac{1}{2}(g(F_{Sw,Bz,a}(t)) + g(F_{Tz,Aw,a}(t)))\})$$

$$\leq \phi(g(F_{Aw,z,a}(t))) \quad \forall t > 0,$$
(1.40)

which means that Aw = z. Since *A* and *S* are weak compatible mappings of type (*A*) and Aw = Sw = z, by Proposition 1.16, Az = ASw = SSw = Sz. Again by using Theorem 1.18(iv), we have Az = z.

Therefore, Az = Bz = Sz = Tz = z, that is, *z* is a common fixed point of the given mappings *A*, *B*, *S*, *T*. The uniqueness of the common fixed point *z* follows easily from Theorem 1.18(iv).

REMARK 1.20. In Theorem 1.18, if *S* and *T* are continuous, then by Proposition 1.15, the theorem is true even though the pairs A, S and B, T are compatible of type (*A*) instead of the condition (ii).

Application

THEOREM 1.21. Let (X, F, t) be a complete 2 NA Menger PM-space and A, B, S, and T be the mappings from the product $X \times X$ to X such that

$$A(X \times \{y\}) \subseteq T(X \times \{y\}), \qquad B(X \times \{y\}) \subseteq S(X \times \{y\}), g(F_{A(T(x,y),y),T(A(x,y),y),a}(t)) \leq g(F_{A(x,y),T(x,y),a}(t)), g(F_{B(S(x,y),y),S(B(x,y),y),a}(t)) \leq g(F_{B(x,y),S(x,y),a}(t)),$$
(1.41)

for all t > 0. If S and T are continuous with respect to their direct argument and

$$g(F_{A(x,y),B(x',y'),a}(t)) \leq \phi(\max\{g(F_{S(x,y),T(x',y'),a}(t)), \\g(F_{S(x,y),A(x,y),a}(t)), g(F_{T(x',y'),B(x',y'),a}(t)), \\\frac{1}{2}(g(F_{S(x,y),B(x',y'),a}(t)) + g(F_{T(x',y'),A(x,y),a}(t)))\})$$

$$(1.42)$$

for all t > 0 and x, y, x', y' in *X*, then there exists only one point *b* in *X* such that

$$A(b, y) = S(b, y) = B(b, y) = T(b, y) \quad \forall y \text{ in } X.$$
(1.43)

PROOF. By (1.42),

$$g(F_{A(x,y),B(x',y'),a}(t)) \leq \phi(\max\{g(F_{S(x,y),T(x',y'),a}(t)), \\g(F_{S(x,y),A(x,y),a}(t)),g(F_{T(x',y'),B(x',y'),a}(t)), \\\frac{1}{2}(g(F_{S(x,y),B(x',y'),a}(t)) + g(F_{T(x',y'),A(x,y),a}(t)))\})$$

$$(1.44)$$

for all t > 0, therefore by Theorem 1.18, for each y in X, there exists only one x(y) in X such that

$$A(x(y), y) = S(x(y), y) = B(x(y), y) = T(x(y), y) = x(y),$$
(1.45)

for every y, y' in X

$$g(F_{x(y),x(y'),a}(t)) = g(F_{A(x(y),y),A(x(y'),y'),a}(t))$$

$$\leq \phi(\max\{g(F_{A(x,y),A(x',y'),a}(t)), g(F_{T(x',y'),A(x',y'),a}(t)), g(F_{A(x,y),A(x',y'),a}(t)), g(F_{A(x',y'),A(x',y'),a}(t)), g(F_{A(x',y'),A(x',y'),a}(t)), g(F_{A(x',y'),A(x,y),a}(t)), g(F_{A(x',y'),A(x,y),a}(t)))\})$$

$$= g(F_{x(y),x(y'),a}(t)). \qquad (1.46)$$

This implies that x(y) = x(y') and hence $x(\cdot)$ is some constant $b \in X$ so that

$$A(b, y) = b = T(b, y) = S(b, y) = B(b, y) \quad \forall y \text{ in } X.$$

$$(1.47)$$

REFERENCES

 Y. J. Cho, K. S. Ha, and S.-S. Chang, *Common fixed point theorems for compatible mappings* of type (A) in non-Archimedean Menger PM-spaces, Math. Japon. 46 (1997), no. 1, 169–179. CMP 1 466 131. Zbl 888.47038.

Renu Chugh: Department of Mathematics, Maharshi Dayanand University, Rohtak-124001, India

E-mail address: anujtele@ndb.vsnl.net.in

Sumitra: Department of Mathematics, Maharshi Dayanand University, Rohtak-124001, India

E-mail address: mastak@del2.vsnl.net.in