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SUBDIRECT PRODUCTS OF SEMIRINGS
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Abstract. Bandelt and Petrich (1982) proved that an inversive semiring S is a subdirect
product of a distributive lattice and a ring if and only if S satisfies certain conditions.
The aim of this paper is to obtain a generalized version of this result. The main pur-
pose of this paper however, is to investigate, what new necessary and sufficient condi-
tions need we impose on an inversive semiring, so that, in its aforesaid representation
as a subdirect product, the “ring” involved can be gradually enriched to a “field.” Finally,
we provide a construction of full E-inversive semirings, which are subdirect products of
a semilattice and a ring.
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1. Introduction. In this paper, by a semiring we mean a nonempty set S together

with two binary operations, “+” and “·” (usually denoted by juxtaposition) such that,

(S,+) is a commutative semigroup and (S,·) is a semigroup which are connected by

ring-like distributivity. In particular, if x+x = x ·x for all x ∈ S then it is called a

monosemiring [5]. An inversive semiring S is a semiring in which (S,+) is an inverse

semigroup, that is, for each a ∈ S there is a unique element a′ ∈ S such that a+
a′ +a = a and a′ +a+a′ = a′. It is well known [3] that for any a,b ∈ S, (ab)′ =
a′b = ab′, (a′)′ = a, and (a+b)′ = a′+b′. Note that for an inversive semiring (S,+,·)
the semigroup (S,+) is a strong semilattice of abelian groups. A semiring S is called

an idempotent semiring if x+x = x ·x = x for all x ∈ S. We denote by E+(S) and

E·(S), the set of all additive and multiplicative idempotents of S, respectively. We

point out that, with respect to the operations of (S,+,·), E+(S) is a subsemiring of

S which is also an ideal of S. A semiring S is called E-inversive, if for every a ∈ S,

there exists x ∈ S such that a+x ∈ E+(S). A k-ideal I of a semiring S is an ideal

of S such that if a ∈ I, x ∈ S, and a+x ∈ I, then x ∈ I. A subsemiring H of the

direct product of two semiring S and T is called a subdirect product of S and T if

the two projection mappings π1 :H → S given by π1(s,t)= s and π2 :H → T given by

π2(s,t) = t are surjective. A semiring R which is isomorphic to a subdirect product

H of S and T is also called a subdirect product of S and T . In the present paper,

the structure of an inversive semiring is analyzed and a generalization of a result by

Bandelt and Petrich [1] is obtained. Then some necessary and sufficient conditions

for an inversive semiring to be a subdirect product of different special classes of

semirings are furnished. Finally, a particular construction of an E-inversive semiring

as a subdirect product is given.

2. Subdirect products. Towards the generalization of the result by Bandelt and

Petrich [1] we first prove the following lemma.

http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com


540 P. MUKHOPADHYAY

Lemma 2.1. Let S be an inversive semiring. We define

σ = {(a,b)∈ S×S : a+e= b+e for some e∈ E+(S)}. (2.1)

Then σ is the least ring congruence on S.

Proof. Straightforward.

Theorem 2.2. An inversive semiring S is a subdirect product of a ring and an ad-

ditively idempotent semiring if and only if E+(S) is a k-ideal of S.

Proof. Let S be a subdirect product of a ring R and an additively idempotent

semiring T . Then E+(S) = ({OR}×T)∩S. Let a ∈ S be such that a+e = f for some

e,f ∈ E+(S). Then e = (OR,t1) and f = (OR,t2) for some t1, t2 ∈ T . Then clearly

a∈ ({OR}×T)∩S = E+(S) and hence E+(S) is a k-ideal of S. Conversely, let E+(S) be

a k-ideal of S. We define ψ : S �→ (S/σ ×E+(S)) by ψ(a)= (aσ,a+a′) where σ is as

defined in Lemma 2.1. Through a routine calculation it can be shown that ψ is a well

defined homomorphism and the corresponding projection mappings are surjective.

Also ψ is injective. Indeed, let ψ(a) =ψ(b) so that aσ = bσ and a+a′ = b+b′ for

a,b ∈ S. Then a+e = b+e for some e ∈ E+(S) so that a+b′ +e = b+b′ +e ∈ E+(S)
whence a+b′ ∈ E+(S) as E+(S) is a k-ideal. Hence a+b′ = a′+b and also a+b′ = (a+
b′)+(a′+b)= a+a′+b+b′ = b+b′ so that, a= a+a′+a= a+b′+b = b+b′+b = b,

whenceψ is a monomorphism. It then follows that S is a subdirect product of the ring

S/σ and the additively idempotent semiring E+(S).

Corollary 2.3 [1]. An inversive semiring S is a subdirect product of a distributive

lattice and a ring if and only if S satisfies the following conditions:

A(1) a(a+a′)= a+a′,
A(2) a(b+b′)= (b+b′)a,

A(3) a+(a+a′)b = a for all a,b ∈ S, and

A(4) a∈ S, a+b = b for some b ∈ S implies a+a= a.

Proof. It is easy to verify that E+(S) is a distributive lattice with respect to the

operations of (S,+,·) if and only if S satisfies A(1), A(2), and A(3). Indeed, let E+(S)
be a distributive lattice with respect to the operations of (S,+,·). We first prove that,

for all a,b ∈ S, (a+a′)(b+b′) = a(b+b′) = (a+a′)b. In fact, (a+a′)(b+b′) =
ab+a′b+ab′ +a′b′ = ab+ (ab)′ + (ab)′ + ((ab)′)′ = (ab+ (ab)′)+ (ab+ (ab)′) =
ab+ (ab)′ = ab+a′b = (a+a′)b. Again, (a+a′)(b+b′) = ab+ (ab)′ = ab+ab′ =
a(b+b′). Now we see that, a+a′ = (a+a′)(a+a′) (since a+a′ ∈ E+(S))= a(a+a′);
a(b+b′) = (a+a′)(b+b′) = (b+b′)(a+a′) = (b+b′)a; and, (a+a′)+ (a+a′)b =
(a+a′)+(a+a′)(b+b′)= (a+a′) which gives a+a′ +a+(a+a′)b = a+a′ +a, that

is, a+ (a+a′)b = a; for all a,b ∈ S. Conversely, let conditions A(1), A(2), and A(3)

hold for S. We point out that, for any e ∈ E+(S), e = e′; whence we have e2 = ee =
e(e+e) = e(e+e′) = e+e′ = e+e = e. Again, ef = e(f +f) = e(f +f ′) = (f +f ′)e =
(f +f)e = fe for all e,f ∈ E+(S). Also, e+ef = e+ (e+e)f = e+ (e+e′)f = e and

e(e+f)= ee+ef = e+ef = e for all e,f ∈ E+(S). Consequently, E+(S) is a distributive

lattice with respect to the operations of (S,+,·). Further, E+(S) is a k-ideal of S if and

only if S satisfies A(4). Indeed, let E+(S) be a k-ideal of S and let a+b = b for some
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a,b ∈ S. Then, a+ b+ b′ = b+ b′ implies a+ (b+ b′) ∈ E+(S) as b+ b′ ∈ E+(S),
whence a∈ E+(S) as E+(S) is a k-ideal of S. Conversely, let condition A(4) hold for S.

Let a+e = f for some e,f ∈ E+(S), and a ∈ S. Since we see, a+e+e+f = e+f +f
gives a+e+f = e+f , by A(4) we have a+a= a, that is, a∈ E+(S) proving that E+(S)
is a k-ideal of S. Hence the corollary follows by Theorem 2.2.

The following corollaries occur immediately.

Corollary 2.4. An inversive semiring S is a subdirect product of an idempotent

semiring and a ring if and only if S satisfies A(1) and A(4).

Corollary 2.5. An inversive semiring S is a subdirect product of a commutative

idempotent semiring and a ring if and only if S satisfies A(1), A(2), and A(4).

Now we establish some necessary and sufficient conditions that an inversive semir-

ing needs to satisfy so that it can be represented as a subdirect product of certain

particular classes of semirings and rings. Let S be a subdirect product of an addi-

tively idempotent semiring T and a ring R. It can be easily verified that if S is an

inversive semiring, then (a,r)∈ S implies (a,−r)∈ S for every a∈ E+(T), r ∈ R and

conversely. We now prove the following.

Theorem 2.6. An inversive semiring S is a subdirect product of a commutative

idempotent semiring T and a ring R with identity if and only if S satisfies A(1), A(2),

A(4), and condition

B(1) there exists b ∈ E·(S)\E+(S) such that

a+ba= a+ab = 2a+(a+a′)(b+b′) ∀a∈ S. (2.2)

Proof. By Corollary 2.5, S is a subdirect product of a commutative idempotent

semiring T and a ring R if and only if S satisfies A(1), A(2), and A(4). We show that R
is a ring with identity 1 if and only if S satisfies B(1).

Suppose that R has an identity 1. Let a∈ S; then a= (α,x) for some α∈ T and x ∈
R. Then a′ = (α,−x)∈ S. Now, since 1∈ R, there exists some β∈ T such that (β,1)∈
S; let b = (β,1) ∈ E·(S)\E+(S). Now, a+ab = (α,x)+ (α,x)(β,1) = (α+αβ,2x);
a+ ba = (α,x)+ (β,1)(α,x) = (α+αβ,2x); and 2a+ (a+a′)(b+ b′) = 2(α,x)+
(α,0R)(β,0R) = (α+αβ,2x), whence a+ab = a+ba = 2a+(a+a′)(b+b′) which is

precisely B(1).

Conversely, let the condition B(1) hold. Letx ∈ R be arbitrary; thena= (α,x)∈ S for

some α ∈ T . By B(1) there exists b = (β,y) ∈ S (say) such that (β,y) ∈ E·(S)\E+(S)
and (α,x)+ (α,x)(β,y) = 2(α,x)+ (α,0R)(β,0R), that is, (α+αβ,x +xy) = (α+
αβ,2x) whence x+xy = 2x, that is, xy = x. Similarly, it can be shown that yx = x.

Combining these two we get xy = x =yx. It follows that y is the identity of R.

Theorem 2.7. An inversive semiring S is a subdirect product of a commutative

idempotent semiring T and a regular ring R if and only if S satisfies A(1), A(2), A(4),

and condition

B(2) for any a∈ S, there exists b ∈ S such that

a+aba= 2a+(a+a′)(b+b′). (2.3)
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Proof. In view of Corollary 2.5, it is sufficient to prove that the ring R is regular if

and only if S satisfies B(2). Suppose that R is a regular ring. Let a∈ S; then a= (α,x)
for some α ∈ T and x ∈ R. Then there exists y ∈ R such that xyx = x. Then for

some β ∈ T ,(β,y) ∈ S; let b = (β,y). We see that a′ = (α,−x), b′ = (β,−y). Now,

a+aba= (α,x)+(α,x)(β,y)(α,x)= (α,x)+(αβα,xyx)= (α+αβ,2x)= 2(α,x)+
(αβ,0R)= 2(α,x)+(α,0R)(β,0R)= 2a+(a+a′)(b+b′) which proves B(2).

Conversely, let x ∈ R; then a = (α,x) ∈ S for some α ∈ T . Now, by B(2) there

exists b = (β,y)∈ S, for some β∈ T and y ∈ R such that (α,x)+(α,x)(β,y)(α,x)=
2(α,x)+(α,0R)(β,0R)whencex+xyx=2x which impliesxyx = x, proving, thereby,

the regularity of R.

Corollary 2.8. An inversive semiring S is a subdirect product of a distributive

lattice D and a regular ring R if and only if S satisfies A(1), A(2), A(4), and the condition

B(2)* for any a∈ S, there exists some b ∈ S such that a+aba= 2a.

Proof. Let S be an inversive semiring such that S is a subdirect product of a

distributive lattice D and a regular ring R. Then from Corollary 2.3 and Theorem 2.7

we find that S satisfies all the conditions A(1), A(2), A(3), A(4), B(2), and hence B(2)*.

Conversely, if S is an inversive semiring satisfying the conditions A(1), A(2), A(4),

and B(2)*; we observe that it also satisfies A(3). Indeed, let a+a′ = e for some a ∈ S.

Then from B(2)* we have e+ebe= 2e= e, whence by A(2) it implies e+eeb = e, that is,

e+eb = e (by A(1)), that is, a+a′ +(a+a′)b = a+a′ which implies a+(a+a′)b = a.

It now suffices to show that the regularity of R follows from B(2)*. Indeed, let x ∈ R;

then a = (α,x) ∈ S for some α ∈ D. By B(2)*, there exists b = (β,y) ∈ S for some

β∈D and y ∈ R such that (α,x)+(α,x)(β,y)(α,x)= 2(α,x) whence x+xyx = 2x
and xyx = x showing that R is a regular ring.

Theorem 2.9. A commutative inversive semiring S is a subdirect product of a com-

mutative idempotent semiring T and an integral domain R if and only if S satisfies A(1),

A(2), A(4), B(1), and the condition

B(3) ab ∈ E+(S) for a,b ∈ S implies, either a∈ E+(S) or b ∈ E+(S).

Proof. By Corollary 2.5, a commutative inversive semiring S is a subdirect product

of a commutative idempotent semiring T and a commutative ring R if and only if S
satisfies A(1), A(2), and A(4). By Theorem 2.6, R is a ring with identity if and only if S
also satisfies B(1). We now show that R does not admit divisors of zero if and only if

S satisfies B(3). Suppose that R does not admit divisors of zero. Let a ∈ S such that

a = (α,x) for some α ∈ T , x ∈ R, and b ∈ S such that b = (β,y) for some β ∈ T and

y ∈ R where ab ∈ E+(S). This implies (α,x)(β,y)∈ E+(S), that is, (αβ,xy)= (γ,0R)
for some γ ∈ T whence xy = 0R , that is, either x = 0R or y = 0R , that is, a∈ E+(S) or

b ∈ E+(S) which is precisely B(3).

Conversely, let x,y ∈ R such that xy = 0R ; then a = (α,x) ∈ S and b = (β,y) ∈ S
for some α,β∈ T . Now, we see that ab = (α,x)(β,y)= (αβ,0R)∈ E+(S)whence from

B(3) we get, either (α,x) ∈ E+(S) or (β,y) ∈ E+(S), that is, either x = 0R or y = 0R .

Consequently, R is free from divisors of zero.

Combining Theorems 2.7 and 2.9 we get the following result.
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Theorem 2.10. A commutative inversive semiring S is a subdirect product of a

commutative idempotent semiring T and a field F if and only if S satisfies the conditions

A(1), A(2), A(4), B(1), B(2), and B(3).

Now, we establish a certain class of E-inversive semiring as a particular type of

subdirect product of a monosemiring and a ring. In the light of Mitsch [4], we give the

following definitions.

Definition 2.11. A subdirect product T of a semiring S and a ring R is called full,

if (e,0R)∈ T for all e∈ E+(S).

Definition 2.12 [2]. A subdirect product T of a semiring S and a ring R is called

inversive, if (e,r)∈ T implies (e,−r)∈ T for every e∈ E+(S), r ∈ R.

Clearly, a subdirect product S of a distributive lattice and a ring is inversive if and

only if S is an inversive semiring; whereas any subdirect product of a distributive

lattice and a ring is full.

Theorem 2.13. Let Y be a semilattice and R a ring. Suppose that there is a mapping

f from (Y ,≤) into the semilattice (u(R),⊆) of all subsemirings with 0R , ordered by

inclusion, which is order inverting and satisfies R =⋃α∈Y αf . Then

S = {(α,a)∈ Y ×R | a∈αf}, (2.4)

with the operations defined by

(α,a)⊕(β,b)= (αβ,a+b), (
α,a

)·(β,b)= (αβ,ab), (2.5)

is an E-inversive semiring, which is a full subdirect product of the commutative idem-

potent monosemiring (Y ,+,·) and the ring R. Conversely, every such semiring can be

constructed in this way.

Proof. The set S is a semiring with the aforesaid operations. Indeed, (α,a),(β,b)∈
S imply that a ∈ αf ⊆ (αβ)f ,b ∈ βf ⊆ (αβ)f so that ab,a+b ∈ (αβ)f and hence

(αβ,ab),(αβ,a+b)∈ S. Further, it is easy to see that,

(α,a)·[(β,b)⊕(γ,c)]= (α,a)·(β,b)⊕(α,a)·(γ,c). (2.6)

Now from the condition,
⋃
α∈Y αf = R, we see that, S is E-inversive. In fact, for any

(α,a)∈ S we have for (β,−a)∈ S such that (α,a)⊕(β,−a)= (αβ,0R)∈ E+(S). Again,

since αf ≠ φ for all α ∈ Y and since
⋃
α∈Y αf = R, we see S is a subdirect product

of the monosemiring Y and the ring R. It is a full subdirect product, since every

αf ∈u(R) is a subsemiring of R containing 0R , hence 0R ∈αf and so (α,0R)∈ S, for

every α∈ Y .

Conversely, let S be a full subdirect product of a commutative idempotent mono-

semiring Y and a ring R. We define αf = {a ∈ R | (α,a) ∈ S} for every α ∈ Y . It is

a routine matter to check that αf as defined above is a subsemiring of R containing

0R . So the mapping f : Y → u(R) given by α � αf is defined. We point out that

the commutative idempotent monosemiring Y can be seen as a semilattice (Y ,≤) by

defining the partial order “≤” by α≤ β if and only if α=αβ for α,β∈ Y . If α≤ β in Y
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andx ∈ βf , thenα=αβ and (β,x)∈ S, hence (α,x)= (αβ,x)= (α,0R)⊕(β,x)∈ S by

hypothesis and so x ∈αf which implies βf ⊆αf , that is, f is order inverting. Since S
is a subdirect product of Y and R,

⋃
α∈Y αf = R is satisfied. In fact,

⋃
α∈Y αf ⊆ R holds

trivially. To check the reverse inclusion let r ∈ R be arbitrary. Since S is a subdirect

product of Y and R, there exists some γ ∈ Y , such that (γ,r)∈ S, that is, r ∈ γf and

r ∈⋃α∈Y αf . Now it is evident that S = {(α,a)∈ Y ×R | a∈αf}.

Corollary 2.14. Let Y be a semilattice and R a ring. Suppose that there is a map-

ping f from (Y ,≤) into the semilattice (U(R),⊆) of all subrings, ordered by inclusion,

which is order inverting and satisfies R =⋃α∈Y αf . Then

S = {(α,a)∈ Y ×R | a∈αf}, (2.7)

with the operations defined by

(α,a)⊕(β,b)= (αβ,a+b), (α,a)·(β,b)= (αβ,ab), (2.8)

is a semiring, which is an inversive subdirect product of the commutative idempotent

monosemiring (Y ,+,·) and the ring R. Conversely, every such semiring can be con-

structed in this way.

Proof. In view of Theorem 2.13 it is sufficient to prove that S is inversive if and

only if αf is a subring of R for each α∈ Y . Let αf be a subring for each α∈ Y . Now,

for some a ∈ R,(α,a) ∈ S implies a ∈ αf whence we must have −a ∈ αf and hence

(α,−a)∈ S showing that S is inversive. The converse is straightforward.

Theorem 2.15. Let Y be a distributive lattice and R a ring. Suppose that there is a

mapping f from (Y ,≤) into the lattice (u(R),⊆) of all subsemirings with 0R , ordered

by inclusion, such that

(i) f is order inverting,

(ii) αf +βf ⊆ (α+β)f for all α,β∈ Y ,

(iii) R =⋃α∈Y αf .

Then

S = {(α,a)∈ Y ×R | a∈αf}, (2.9)

with the operations defined by

(α,a)⊕(β,b)= (α+β,a+b), (α,a)·(β,b)= (αβ,ab), (2.10)

is an E-inversive semiring which is a subdirect product of the distributive lattice Y and

the ring R. Conversely, each such semiring can be constructed in this way.

Proof. The semiring S is closed under the aforesaid operation of “addition” ⊕.

Indeed, (α,a),(β,b)∈ S imply that a∈αf , b ∈ βf , so that a+b ∈αf+βf ⊆ (α+β)f
whence (α+β,a+b)∈ S. The rest of the proof of this part follows from Theorem 2.13.

Conversely, let S be a subdirect product of a distributive lattice Y and a ring R. We

define αf = {a ∈ R | (α,a) ∈ S} for every α ∈ Y . Let x ∈ αf and y ∈ βf for some

α,β ∈ Y ; then (α,x),(β,y) ∈ S whence (α+β,x+y) ∈ S so that we have x+y ∈
(α+ β)f proving thereby αf + βf ⊆ (α+ β)f . The rest of the proof is similar to

Theorem 2.13 and hence is omitted.
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