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Abstract. We study a generalized inverse eigenvalue problem (GIEP), Ax = λBx, in which
A is a semi-infinite Jacobi matrix with positive off-diagonal entries ci > 0, and B =
diag(b0,b1, . . .), where bi ≠ 0 for i = 0,1, . . . . We give an explicit solution by establishing
an appropriate spectral function with respect to a given set of spectral data.
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1. Introduction. Inverse eigenvalue problems, that concern the reconstruction of

matrices from a prescribed set of spectral data, are very important subclass of inverse

problems that arise in mathematical modeling. There have been challenging work

in this area in the last 20 years. Inverse eigenvalue problems mostly are connected

to the theory of orthogonal polynomials. An inverse eigenvalue problem appears to

be more challenging whence the objective matrix is a specifically structured matrix.

Jacobi matrices are among those interesting structured matrices concerned with three

term recurrence relations. In this paper we study the generalized inverse eigenvalue

problem Ax = λBx, in which A is a semi-infinite Jacobi matrix of the form

A=




a0 c0 0 ··· ··· ···
c0 a1 c1 0 ··· ···
0 c1 a2 c2 0 ···
...

...
...

...
...

...


 , (1.1)

B = diag(b0,b1, . . .), where bi ≠ 0, and ci > 0, for i = 0,1, . . . . Using the definition of

positive definite sequence given by Ahiezer and Krein [1], we establish an explicit

formula for recovering the Jacobi matrix A via a given set of spectral data and a di-

agonal matrix B. We use the usual approach of dealing with this type of problems,

that is, the orthogonal polynomials. In this paper, we only discuss the infinite dimen-

sional version of GIEP. The finite dimensional case of this problem has been studied

by many authors, see for example [4] for the classical case Ax = λx, and [2, 3] for the

generalized case Ax = λBx.

2. Three term recurrence relation and spectral function. Let yn(λ) be a solution

of
cnyn+1(λ)=

(
bnλ−an

)
yn(λ)−cn−1yn−1(λ), n= 0,1, . . . ,

y−1(λ)= 0, c−1y0(λ)= 1,
(2.1)
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where {an}n≥0 is an arbitrary sequence of real numbers, {bn}n≥0, and {cn}n≥0 are

sequences of nonzero real numbers with cn > 0, for n = 0,1, . . . . A complex number

λ is said to be an eigenvalue of the recurrence relation (2.1) if there is a nonzero

solution y(λ)= (y0(λ),y1(λ), . . .) satisfying the recurrence relation (2.1). In this case

y(λ) = (y0(λ),y1(λ), . . .)T is the eigenvector corresponding to λ. If λr is an

eigenvalue and y(r) = (y0(λr ),y1(λr ), . . .)T is the corresponding eigenvector, then

the number

ρr =
{ ∞∑
n=0

bn
∣∣yn(λr )∣∣2

}
(2.2)

is called the normalization constant. The set of all eigenvalues and normalization con-

stants of the recurrence relation (2.1) are denoted by σ(A,B) and ρ(A,B), respectively.

Definition 2.1. A spectral function τ(λ) associated with the recurrence formula

(2.1) is to be nondecreasing, right continuous, satisfying the boundedness requirement

∫∞
−∞
λ2ndτ(λ) <∞, n= 0,1, . . . , (2.3)

for all n, and the orthogonality

∫∞
−∞
yp(λ)yq(λ)dτ(λ)= b−1

p δpq, p,q = 0,1, . . . . (2.4)

Theorem 2.2. There is at least one spectral function for the recurrence relation

(2.1).

Proof. See [2, Theorem 5.2.1].

Theorem 2.3. For every λ, the recurrence relation (2.1) has at least one nontrivial

solution of summable square, in the sense that,

∞∑
0

bn
∣∣yn(λ)∣∣2 <∞. (2.5)

Proof. See [2, Theorems 5.4.2, 5.6.1].

Definition 2.4. Let {yn(λ)}n≥0 be an arbitrary solution of the recurrence relation

(2.1). If

∞∑
0

bn
∣∣yn(λ)∣∣2 <∞ (2.6)

for some λ ∈ C, then we say that the limit-circle case holds for the recurrence rela-

tion (2.1).

Theorem 2.5. Suppose that the limit circle case holds for one value λ= λ0 ∈ C. Then

this is true for all λ∈ C.
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Proof. See [2, Theorem 5.6.1].

3. Eigenvalues in the limit-circle case. Assuming the limit-circle case to hold, we

take it all solutions of (2.1) are summable square in the sense of Theorem 2.3, and

uniformly so in any finite λ-region. We therefore have that

∞∑
0

bn
∣∣yn(λ)∣∣2 < η(λ), (3.1)

where η(λ) is some function which is bounded for bounded λ. Adopting some fixed

real µ as an eigenvalue, we define the eigenvalues as the zeros of

(λ−µ)
∞∑
0

bnyn(λ)yn(µ). (3.2)

By (3.1), the function (3.2) is an entire function of λ. It does not vanish identically,

since its derivative is not zero when λ = µ. Hence its zeros will have no finite limit.

Moreover, these zeros will be real, being the limits of the zeros

(λ−µ)
m∑
0

bnyn(λ)yn(µ)= cm−1
{
ym(λ)ym−1(µ)−ym(µ)ym−1(λ)

}
, (3.3)

the zeros of the later are real [1, Theorem 4.3.1], and the zeros of (3.2) are the limits

of the zeros of (3.3), by Rouche’s theorem.

Having defined the eigenvalues λr as the roots of

lim
m→∞cm−1

{
ym(λ)ym−1(µ)−ym(µ)ym−1(λ)

}= 0, (3.4)

we may define as a spectral function a step function whose jumps are at the λr and

are of amount

1
ρr
=
{ ∞∑

0

bn
∣∣yn(λr )∣∣2

}−1

. (3.5)

More formally, we can express this spectral function as follows

τ(λ)=
∑
λr≤λ

1
ρr
. (3.6)

Remark 3.1. In general, we may have continuous spectrum for the recurrence re-

lation (2.1). If we consider the discrete Schrödinger operator

Hyn =yn+1+yn−1+anyn, (3.7)

where, lim|an| = 0, as n→∞, then H has continuous spectrum (cf. [5]).
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Remark 3.2. Note that we can display the recurrence relation (2.1) as

Ay = λBy, (3.8)

where

A=




a0 c0 0 ··· ··· ···
c0 a1 c1 0 ··· ···
0 c1 a2 c2 0 ···
...

...
...

...
...

...


 , (3.9)

B = diag
(
b0,b1, . . .

)
, (3.10)

y(λ)= (y0(λ),y1(λ), . . .
)T . (3.11)

Lemma 3.3. Let A and B be the matrices given by (3.9) and (3.10), and let y(λ) be

the vector given by (3.11). Let {λr}r≥0 and {ρr}r≥0 be the sequence of eigenvalues and

the normalization constants, respectively. Then

(i) If i≠ j then y(λi) is orthogonal to y(λj) in the sense that

∞∑
p=0

bpyp
(
λi
)
yp
(
λj
)= ρiδij. (3.12)

(ii) If p,q ≥ 0 then

∞∑
r=0

yp(λr )yq
(
λr
)
ρ−1
r = b−1

p δpq. (3.13)

The property (ii) is called the dual orthogonality.

Proof. See [2, page 133].

4. Infinite dimensional GIEP

Problem 4.1. Let B = diag(b0,b1, . . .) be a given diagonal real matrix, where bi ≠ 0

for i= 0,1, . . . , and let {λi} and {ρi} be real numbers such that λiρi > 0, for i= 0,1, . . . .
We find a positive definite semi-infinite Jacobi matrix A that satisfies (3.8) with

(i) σ(A,B)= {λ0,λ1, . . .},
(ii) ρ(A,B)= {ρ0,ρ1, . . .}.

We call Problem 4.1 infinite dimensional GIEP. It is easy to see that if there is a solution

for GIEP then λiρi > 0, for i= 0,1, . . . . For, if λi ∈ σ(A,B), andy(i) is the corresponding

eigenvector, then

0<y(i)
T
Ayi = λiy(i)T By(i) = λiρi, for i= 0,1, . . . . (4.1)
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Lemma 4.2. Equation (2.4) with p ≠ q is equivalent to

∫∞
−∞
yp(λ)λq dτ(λ)= 0, 0≤ q ≤ p−1. (4.2)

Proof. See [2, Theorem 4.6.1].

Definition 4.3. Let τ(λ) be the spectral function defined by (3.6). The scalars

µj =
∫∞
−∞
λj dτ(λ), j = 0,1, . . . (4.3)

are called the moments of τ(λ).
Note that formula (4.3) is equivalent to

µj =
∞∑
0

λjr
ρr
, j = 0,1, . . . , (4.4)

and since λrρr > 0, the odd moments µ2n+1 are all positive.

Definition 4.4. Let τ(λ) be the spectral function defined by (3.6), and let µj be

the moments of τ(λ) given by (4.4). We define Mn and ∆n by

Mn =




µ0 µ1 ··· µn−1

µ1 µ2 ··· µn
...

...
...

...

µn−1 µn ··· µ2n−2


 ,

∆n = det
(
Mn
)
, ∆0 = 1.

(4.5)

Lemma 4.5. Let Aij be the determinant of the matrix obtained from Mn by deleting

row i and column j. If n= 1 we set A11 = 1. Then

∆n+1 = µn
n∑
k=1

(−1)kµn−1+kA1k

+µn+1

n∑
k=1

(−1)k+1µn−1+kA2k+···

+µn+r
n∑
k=1

(−1)r+kµn−1+kAr+1+k+···

+µ2n−1

n∑
k=1

(−1)n−1+kµn−1+kAnk+µ2n∆n.

(4.6)

Proof. The proof follows by induction on n.

5. Positive definite sequences. In this section we use the concept of positive def-

inite sequences given by Aheizer and Krein [1] to prove that the sequence of the

moments of the spectral function τ(λ) is a positive definite sequence.



518 KAZEM GHANBARI

Definition 5.1. Let J = (a,b) (−∞ ≤ a < b ≤ ∞) be an interval in R. An infinite

sequence {sk}k≥0 is said to be a positive definite sequence on J if for every nonnegative

polynomial Rn(λ) = p0+p1λ+p2λ2+···+pnλn in J, the sequence {sk}k≥0 satisfies

the property
n∑
j=0

pjsj > 0, for n= 0,1,2, . . . . (5.1)

Theorem 5.2. Let {rn}n≥1 be a sequence of positive real numbers and let ξ1 < ξ2 <
··· be a sequence of real numbers such that

∑
riξki <∞, for all k≥ 0. Put

sk =
∞∑
i=1

riξki , k= 0,1, . . . . (5.2)

Then, the sequence {sk}k≥0 is positive definite in every interval (a,b) satisfying −∞≤
a< ξ1 < ξ2 < ···< b ≤∞.

Proof. Let ϕ(λ) be any real nonnegative polynomial in the interval (a,b), say,

ϕ(λ)=∑n
0 pkλk. We have

n∑
k=0

pksk =
n∑
k=0

∞∑
i=1

pkriξki =
∞∑
i=1

ri

( n∑
k=0

pkξki

)
=

∞∑
i=1

riϕ
(
ξi
)
> 0. (5.3)

Thus the proof is complete.

Corollary 5.3. Let {λi}i≥0 and {ρi}i≥0 be the eigenvalues and the normalization

constants, respectively. If λiρi > 0 for i≥ 0, then {µi}i≥1 is a positive definite sequence.

Proof. We define the real numbers

rk = λk−1

ρk−1
, k≥ 1, ξk = λk−1, k≥ 1. (5.4)

If we set

sk =
∞∑
1

riξki , k= 0,1, . . . , (5.5)

then rk > 0 for k≥ 1. Thus, by Theorem 5.2, the sequence {sk}k≥0 is positive definite.

By formula (4.3), sk = µk+1, (k= 0,1, . . .) hence {µi}i≥1 is a positive definite sequence.

Definition 5.4. An infinite real quadratic form

∞∑
i,k=0

aikξiξk,
(
aik = aki

)
(5.6)

is said to be positive if all its partial sums

n∑
i,k=0

aikξiξk,
(
n= 0,1, . . .

)
(5.7)

are positive.



AN INFINITE DIMENSIONAL GENERALIZED INVERSE EIGENVALUE PROBLEM 519

Theorem 5.5. The sequence {sn}n≥0 is positive definite in the interval (−∞,∞) if

the infinite quadratic form
∞∑

i,k=0

si+kξiξk (5.8)

is positive.

Proof. See [1, page 3, Theorem 1].

Theorem 5.6. Let {λi}i≥0 and {ρi}i≥0 be the eigenvalues and the normalization

constants of Problem 4.1. Let λiρi > 0, and let {µi}i≥0 be a sequence of moments given

by (4.4). Then the quadratic form

∞∑
i,k=0

µi+k+1ξiξk (5.9)

is positive.

Proof. Since λiρi > 0, by Corollary 5.3, the sequence {µ}i≥1 is positive definite.

By Theorem 5.5, the infinite quadratic form

∞∑
i,k=0

µi+k+1ξiξk (5.10)

is positive.

Theorem 5.7. Let {λi}i≥0 and {ρi}i≥0 be the eigenvalues and the normalization

constants of Problem 4.1. Let λiρi > 0, and let {µi}i≥0 be a sequence of moments given

by (4.4). Then

det




µ1 µ2 ··· µn
µ2 µ3 ··· µn+1

...
...

...
...

µn µn+1 ··· µ2n−1


> 0, (5.11)

for n= 1,2, . . . .

Proof. By Theorem 5.6, the quadratic form

∞∑
i,k=0

µi+k+1ξiξk (5.12)

is positive. Then, the determinants of the principal submatrices are positive, that is,

det




µ1 µ2 ··· µn
µ2 µ3 ··· µn+1

...
...

...
...

µn µn+1 ··· µ2n−1


> 0, (5.13)

for n= 1,2, . . . .
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6. Construction of a solution for Problem 4.1. In this section, we give an explicit

solution for Problem 4.1, if the limit circle case holds for the recurrence relation (2.1).

Theorem 6.1. Let τ(λ) be the spectral function defined by (3.6), and let B =
diag(b0,b1, . . .) be given real matrix, where {bn}n≥0 is a sequence of nonzero real num-

bers. If the relation

bn∆n∆n+1 > 0 (6.1)

holds for all n ≥ 0, then there exists a countable set of orthogonal polynomials

{yn(λ)}n≥0 in the sense of dual orthogonality property (3.13), and the polynomials

are determined up to change of sign. Moreover, the polynomials {yn(λ)}n≥0 are dense

in L2
τ .

Proof. For the first part, we seek polynomials of the form

yn(λ)= βn
(
λn+

n−1∑
k=0

αnkλk
)
, k= 0,1, . . . , (6.2)

where y0(λ)= β0 and βn ≠ 0. Using (3.13) and (4.3) we get

β2
0 =

1
µ0b0

= ∆0

b0∆1
, (6.3)

that is positive by assumption. It follows from (6.2) that

(
yn(λ)

)2 = β2
n

[
λ2n+

n−1∑
k=0

αnkλn+k
]
+βnyn(λ)

n−1∑
k=0

αnkλk, n= 1,2, . . . . (6.4)

Combining (3.13), (4.2), and (6.4), it follows that

b−1
n = β2

n

(
µ2n+

n−1∑
k=0

αnkµn+k

)
. (6.5)

This gives βn in terms of αnk and the moments. To determine αnk, we substitute

yn(λ) given by (6.2) in (4.2) and we obtain

µn+k+
n−1∑
k=0

αnkµn+k = 0, (6.6)

where 0≤ k≤n−1 and n= 1,2, . . . . Using matrix notation, we have

Mn
(
αn0,αn1, . . . ,αn,n−1

)T = (−µn,−µn+1, . . . ,−µ2n−1
)T . (6.7)
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Therefore

αnr =
∑n
k=1(−1)k+rµn−1+kAr+1,k

∆n
, (6.8)

where 0≤ r ≤n−1 and n= 1,2, . . . . Substituting (4.6) in (6.8), we get

∆n+1 =∆n
(
µ2n+

n−1∑
k=0

αnkµn+k

)
. (6.9)

Using (6.5) in (6.9) we obtain

β2
n =

∆n
∆n+1bn

(6.10)

that is positive by the assumption, and this completes the proof. For the second part

see [2, page 141].

Theorem 6.2. Let the assumptions of Theorem 6.1 hold. Then, the Jacobi matrix A
of the form

A=




a0 c0 0 ··· ··· ···
c0 a1 c1 0 ··· ···
0 c1 a2 c2 0 ···
...

...
...

...
...

...


 , (6.11)

given by

a0 = b0α1,0, an = bn
(
αn,n−1−αn+1,n

)
, n= 1,2, . . . ,

αnr =
∑n
k=1 (−1)k+rµn−1+kAr+1,k

∆n
, 0≤ r ≤n−1, n= 1,2, . . . ,

cn = bnβnβn+1
, βn = ∆n

∆n+1bn
, n= 0,1, . . . ,

(6.12)

is a solution for Problem 4.1, which assumes τ(λ) as its spectral function, where

y(λ)= (y0(λ),y1(λ), . . .
)T , yn(λ)= βn

(
λn+

n−1∑
r=0

αnrλr
)
, n= 0,1, . . . . (6.13)

Moreover, the matrix A is positive definite in the sense of Definition 5.4.

Proof. Substituting yn(λ) given by (6.2) in the recurrence relation (2.1) and com-

paring the corresponding coefficients of the powers of λ, we obtain

a0 =−b0α1,0, cnβn+1 = bnβn, (6.14)

cnβn+1αn+1,n+anβn = bnβnαn,n−1, n≥ 1. (6.15)
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By substituting (6.14) in (6.15) we get

an = bn
(
αn,n−1−αn+1,n

)
, (6.16)

which completes the first part of the proof. In order to prove A is positive defi-

nite, by Definition 5.4, it suffices to prove that the determinants of leading principal

submatrices of A are all positive. Let Dn be the determinant of the n×n leading

submatrix of A in the upper left corner of A. It is easy to check by induction that

Dn = b0b1 ···bn−1(−1)nαn,0. (6.17)

This is equivalent to

Dn = b0�0

�1

b1�1

�2
··· bn−1�n−1

�n
(−1)nαn,0�n. (6.18)

By using (6.8) we obtain

(−1)nαn,0�n = det




µ1 µ2 ··· µn
µ2 µ3 ··· µn+1

...
...

...
...

µn µn+1 ··· µ2n−1


 . (6.19)

Therefore, combining (6.19) with the assumption of Theorem 6.1 implies thatDn>0

if and only if

det




µ1 µ2 ··· µn
µ2 µ3 ··· µn+1

...
...

...
...

µn µn+1 ··· µ2n−1


> 0, (6.20)

which is true by Theorem 5.7, for n= 1,2, . . . . This completes the proof.
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