
IJMMS 26:9 (2001) 547–560
PII. S0161171201005166

http://ijmms.hindawi.com
© Hindawi Publishing Corp.
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Abstract. Let A= (ank) be an infinite matrix with all ank ≥ 0 and P a bounded, positive
real sequence. For normed spaces E and Ek the matrix A generates paranormed sequence
spaces such as [A,P]∞((Ek)), [A,P]0((Ek)), and [A,P](E) which generalize almost all the
existing sequence spaces, such as l∞, c0, c, lp, wp , and several others. In this paper,
conditions under which these three paranormed spaces are separable, complete, and r -
convex, are established.
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1. Introduction. The study of sequence spaces is generally initiated by problems

in summability theory, Fourier series and power series. During the third decade of the

present century, sequence spaces were studied with more insight and vision through

the application of functional analysis. Rich settings for the analytic approach to the

study of sequence spaces have already been provided by pioneers like Banach (see [1]),

Köthe and Toeplitz (see [6, 7, 8]). Consequently, the study of sequence spaces is now

generally regarded as a branch of linear topological spaces. But it is not hard to realize

that it has more intimate relation with the summability theory and matrix transfor-

mation than any other area.

One of the classic problems in the theory of sequence spaces is to transform one

sequence space into another and study the behavior pattern of the transformed se-

quences related to the original space. A decisive break with the classical approach

is made in this paper by introducing vector-valued sequences in place of sequences

of numbers. We study the sequence spaces which are generated by infinite matri-

ces. These spaces are linear topological spaces, the topologies of which are induced

by paranorms. The paranormed sequence spaces were introduced by Borwien (see

[2, 3]), Bourgin (see [4]), Simons (see [16, 17]), and later, Maddox (see [9, 10, 11, 12,

13, 14]) developed it in considerable details. We study certain topological properties

like separability, completeness, and r -convexity of these generalized paranormed se-

quence spaces. In fact, all the corresponding results related to the sequence spaces

c0, lp, c, l∞, and wp follow as special cases of the theorems established here. Stated

otherwise, sequence spaces are studied in this paper with a new approach and insight.

2. Preliminaries. Let N be the set of natural numbers and C the set of complex

numbers. Throughout this paper, we assume that E and Ek, for all k∈N, are normed

linear spaces. The zero element of a normed linear space is denoted by θ and the unit

matrix is denoted by I. Also, we assume that for the sequence P = (pk), pk ≥ 0, for all
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k∈N and for the matrixA= (ank), ank ≥ 0 for alln,k∈N. If P is a bounded sequence,

we write pk = O(1) and M = max(1,supkpk). It should be noted that all the results

remain valid, if we assume that E and Ek are seminormed or p-normed spaces, while

Theorem 4.10 is established for seminormed spaces. The conditions under which the

vector-valued sequence spaces are r -convex, when each Ek is p-normed, are yet to be

explored.

The following spaces are frequently used:

[A,P]∞
((
Ek
))=

{
x = (xk)∈∏Ek

∣∣∣ sup
n

∑
k
ank‖xk‖pk <∞

}
,

[A,P]0
((
Ek
))=

{
x=(xk)∈∏Ek

∣∣∣ ∑
k
ank‖xk‖pk exists, ∀n∈N and �→0 as n �→∞

}
,

[A,P](E)=
{
x = (xk) ∣∣ xk ∈ E, ∀k and ∃l∈ E such that

∑
k
ank‖xk−l‖pk exists ∀n∈N and �→ 0 as n �→∞

}
.

(2.1)

These spaces are called vector-valued sequence spaces generated by infinite matrices.

In the special case, when A= I (resp., the Cesaro matrix (C,1)), [A,P]∞((Ek)) reduces

to l∞(P,Ek) (resp.,w∞(P,Ek)). The space l(P,Ek) is obtained by considering the matrix

A= (ank), where ank = 1, for all k, 1≤ k≤ n and ank = 0, for all k > n. Similarly, we

have the following spaces:

[I,P](E)= c(P,E), [I,P]0
((
Ek
))= co(P,(Ek)),[

(C,1),P
]

0

((
Ek
))=w0

(
P,
(
Ek
))
,

[
(C,1),P

]
(E)=w(P,E). (2.2)

These representations are not unique, because we can also write [B,P]0((Ek)) =
l(P,(Ek)), where B = (bnk) is the matrix defined as bnk = 1, if k > n and bnk = 0,

if 1 ≤ k ≤ n. Similarly, the spaces w(P,E), w0(P,E), and w∞(P,(Ek)) can be repre-

sented as [D,P](E), [D,P]0((Ek)), and [D,P]∞((Ek)), respectively, where D = (dnk)
is the matrix defined by dnk = 2−(n−1), if 2n−1 ≤ k < 2n and dnk = 0, otherwise. A

few decades ago, Maddox introduced [A,P]0 (resp., [A,P], [A,P]∞) which is a spe-

cial case of [A,P]0((Ek)) (resp., [A,P](E), [A,P]∞((Ek))), when Ek = C , for all k ≥ 1.

The conditions under which the three spaces [A,P]0, [A,P], and [A,P]∞ are linear

paranormed can be found in [12]. These results hold without any substantial change

for the vector-valued sequence spaces [A,P]0((Ek)), [A,P](E), and [A,P]∞((Ek)). If

pk =O(1), then each of these three spaces are linear topological spaces, the topology

being induced by a paranorm g defined by

g(x)= sup
n


∑

k
ank‖xk‖pk




1/M

, (2.3)

where M = max(1,supkpk). In this paper, we limit our attention to paranormed se-

quence spaces generated by infinite matrices and consequently, we assume for the

remainder of the paper that pk =O(1), unless otherwise indicated.
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3. Lemmas. The following lemmas are used in proving the theorems of this paper.

Lemma 3.1 [9]. A linear topological space is r -convex for some r > 1 if and only if X
is the only neighborhood of the origin.

Lemma 3.2 [5]. Let x, y, λ, µ be complex numbers. Then

|x+y|p ≤ |x|p+|y|p, if 0<p ≤ 1,(|λx|+|µy|)p ≤ |λ||x|p+|µ||y|p, if p ≥ 1, |λ|+|µ| ≤ 1.
(3.1)

Lemma 3.3 [15]. If x is a complex number with 0 < |x| ≤ 1, 0 < p ≤ r , and a > 1,

then

|x|p < |x|r (1+a loga)+aπ, (3.2)

where 1/π+r/p = 1.

Lemma 3.4 [11]. The spacew∞(p) is paranormed by g(x)= supn[
∑
kank|xk|pk]1/M ,

where M =max(1,supkpk) if and only if 0< infkpk ≤ supkpk <∞.

Lemma 3.5. Let E be a nontrivial space. Then [A,P](E) ⊆ [A,P]∞(E) if and only if

α= supn
∑
kank <∞.

Lemma 3.6. Let B = (bnk) be any matrix of zeros and ones and let r be any positive

number. If B is any column finite matrix and

[
B,(r)

]
∞
((
Ek
))⊆ [B,P]∞((Ek)), (3.3)

where (r) = (r ,r ,r , . . .), then there exists an integer i > 1 such that supn
∑
s(n) a

πk
i <

∞, where 1/πk+r/pk = 1, for k∈N and s(n)= {k | bnk = 1, pk < r}, for each n∈N.

Lemma 3.7. The space l∞(P,(Ek)) is a linear topological space if and only if

infkpk > 0.

The analogue of Lemmas 3.5, 3.6, and 3.7 for the spaces [A,P]∞, [B,P]∞, and l∞(P)
can be found in [9, 10, 12], respectively.

4. Main results. This section deals with the results established in this paper. The

necessary and sufficient conditions for separability, completeness, and r -convexity

of the vector-valued sequence spaces [A,P]0((Ek)), [A,P](E), and [A,P]∞((Ek)) are

obtained in Sections 4.1, 4.2, and 4.3, respectively.

4.1. A topological space is said to be separable, if it has a countable dense subset. In

this subsection, we obtain necessary and sufficient conditions for separability of the

spaces [A,P]0((Ek)) and [A,P](E). In general, the space [A,P]∞((Ek)) is not separable,

since as a special case of this space l∞ is not separable.

Theorem 4.1. Let limn→∞ank = 0 and Lk = supnank > 0, for each fixed k∈N. Then

[A,P]0((Ek)) is separable if and only if each Ek is separable.

Proof. (⇐). Suppose that each Ek is separable. Let � be the set of all finite se-

quences in
∏
k Ek. Then it can be easily shown that � is dense in [A,P]0

(
(Ek)

)
. Next,
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we show that � has a countable dense subset. Since each Ek is separable, we can find

a countable dense subset Fk ⊆ Ek, for each k ∈ N. Let F denote the set of all finite

sequences in
∏
k Fk. Clearly, F is a countable subset of �. Also, if y = (y1,y2, . . . ,yr ,

0,0,0, . . .)∈�, we choose zk ∈ Fk such that

‖yk−zk‖pk < ε, (4.1)

for each 1 ≤ k≤ r .

Let z = (z1,z2, . . . ,zr ,0,0,0, . . .)∈ F . Since limn→∞ank = 0, for each fixed k∈N,

[
g(y−z)]M = sup

n

r∑
k=1

ank‖yk−zk‖pk < εµ, (4.2)

where µ = supn
∑r
k=1ank is a finite constant (depending on the sequence y). Hence, it

follows that [A,P]0((Ek)) is separable.

(⇒). Conversely, let D be a countable dense subset in [A,P]0((Ek)). For each fixed

r ∈N, letDr = {yr |y = (yk)∈D}. We show thatDr is dense in Er . Let x ∈ Er . Define

a sequence xr by

xrk =

x, if k= r ,

0, if k≠ r .
(4.3)

Then, xr ∈ [A,P]0((Ek)), since limn→∞anr = 0. For a given ε > 0, we can choose

y = (yk)∈ F such that

g(y−x)r = sup
n

[∑
k
ank‖yk−xk‖pk

]1/M

<
[
εpr Lr

]1/M. (4.4)

Therefore,

sup
n

[
anr‖yr −x‖pr

]
< εpr Lr , (4.5)

which implies that ‖yr −x‖< ε. This completes the proof of Theorem 4.1.

Köthe [6, 7] obtained the necessary and sufficient condition for the separability of

lp(E), for 1 < p < ∞. This can be deduced from the following corollary which is a

direct consequence of Theorem 4.1.

Corollary 4.2. The space lp((Ek)) (also, c0(P,(Ek)),w0(P,(Ek)) is separable if and

only if each Ek is separable. In particular, each of lp(E),cp(E), and wp(E)) is separable

if and only if E is separable.

Theorem 4.3. Let L = infkpk > 0, H = supn
∑
kank <∞, limn→∞ank = 0, for each

fixed k∈N and �r = supnanr ≥ 0, for at least one r ∈N. Then, [A,P](E) is separable

if and only if E is separable.

Proof. (⇐). Let B = (xi) be a countable dense subset of E and let F denote the

set of all ultimately constant sequences of elements of B, that is, all sequences of the

type yr = (xi1 ,xi2 , . . . ,xir ,u,u,u,. . .), where xi1 , . . . ,xir and u are in B and i1, . . . , ir ,r
are in N. It is clear that F ⊆ [A,P](E) is countable. Hence, it suffices to show that F is

dense in [A,P](E).
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Let y = (yk)∈ [A,P](E) and let 0< ε < 1. For each k∈N, choose xik ∈ B such that

∥∥yk−xik∥∥pk ≤ εM. (4.6)

Then, there exists l∈ E such that

lim
n→∞

∑
k
ank

∥∥ykl ∥∥pk = 0. (4.7)

So, we can find k0 ∈N, for which

sup
n∈N

∞∑
k=k0+1

ank‖yk−l‖pk ≤ εM, (4.8)

and b ∈ B such that

‖l−b‖L ≤ εM/(M−1). (4.9)

Define z = (zk) by

zk =

x

i
k, if 1≤ k≤ k0,

b, if k > k0.
(4.10)

Clearly, z ∈ F . Also, it follows from (4.6) and Minkowski’s inequality that

sup
n∈N

[∑
k
ank‖yk−zk‖pk

]1/M

≤ sup
n∈N

[∑
k=1

k0ank
∥∥yk−xik∥∥pk

]1/M

+sup
n∈N

[ ∞∑
k=k0+1

ank‖yk−b‖pk
]1/M

≤ µ1/M ε+sup
n∈N

[ ∞∑
k=k0+1

ank‖yk−l‖pk
]1/M

+sup
n∈N

[ ∞∑
k=k0+1

ank‖l−b‖pk
]1−(1/M)

,

(4.11)

since pk ≤M and M ≥ 1.

Now, considering the inequalities in (4.8), (4.9), and since l≤ pk we can have

g(y−z)≤ µ1/M ε+ε+µ1/M sup
k
εpk/L. (4.12)

This proves that [A,P](E) is separable.

(⇒). Conversely, let [A,P](E) be separable with a countable dense subsetD=(yi)i∈N,

where yi = (yik)k∈N for each i∈N.

For x ∈ E, let xr denote the sequence

xrk =

x, if k= r ,

0, otherwise.
(4.13)

Clearly, xr ∈ [A,P](E). Then, as in Theorem 4.1, we can show that the set G = {yir |
r ∈N} is dense in E. This completes the proof of Theorem 4.3.

Corollary 4.4. Let pk be as in Theorem 4.3 andA= (ank) a nonnegative, nonzero,

and regular matrix. Then, [A,P](E) is separable if and only if E is separable. In partic-

ular, c(P,E) and w(P,E) are separable if and only if E is separable.
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4.2. A paranormed space is said to be complete, if every Cauchy sequence con-

verges. This subsection deals with the completeness of the generalized sequence

spaces [A,P]∞((Ek)), [A,P]0((Ek)), and [A,P](E). In Theorem 4.5(i), we show that

completeness of each space Ek implies completeness of [A,P]0((Ek)) and [A,P]∞((Ek)),
while in part (ii) (resp., (iii)), conditions for which completeness of [A,P]∞((Ek)) (resp.,

[A,P]0((Ek))) implies completeness of each Ek are established. Finally, in Theorem 4.8,

completeness of [A,P](E) is discussed.

Theorem 4.5. Let Lk = supnank ≥ 0, for each k∈N. Then the following statements

are true:

(i) The spaces [A,P]0((Ek)) and [A,P]∞((Ek)) are complete, whenever the spaces

Ek are complete for each k∈N.

(ii) The spaces Ek, for each k∈N are complete, whenever [A,P]∞((Ek)) is complete

and Lk = supnank <∞, for each k∈N.

(iii) The spaces Ek, for each k∈N are complete, whenever [A,P]0((Ek)) is complete

and limn→∞ank = 0.

Proof. (i) Let xi = (xik)k∈N be a Cauchy sequence in [A,P]∞((Ek)). For a given

ε≥ 0, let i0 be such that

sup
n

∑
k
ank

∥∥xik−xjk∥∥pk ≤ εM, (
i,j ≥ i0

)
. (4.14)

If k is such that Lk ≥ 0, then

Lk
∥∥xik−xjk∥∥pk ≤ εM, ∀i,j > i0, (4.15)

which shows that (xik)i∈N is a Cauchy sequence in Ek, for each k. Let

yk =

limi→∞xik, if Lk > 0,

any element of Ek, if Lk = 0.
(4.16)

Then, it follows from (4.11) that

sup
n

∑
k
ank

∥∥xik−yk∥∥pk ≤ εM, ∀i > i0. (4.17)

Hence, y = (yk) ∈ [A,P]∞((Ek)) and xi → y in [A,P]∞((Ek)), as i→∞. This proves

the completeness of [A,P]∞((Ek)). The completeness of [A,P]∞((Ek)) can be proved

by using a similar argument.

(ii) Let [A,P]∞((Ek)) be complete and k ∈ N be fixed such that 0 < Lk <∞. If x =
(xk) is a Cauchy sequence in Ek and for each r ∈N, yr denotes the sequence whose

r th term is xr and all other terms are zero, then yr ∈ [A,P]∞((Ek)). Moreover, the

sequence yi whose ith term is yi for each i∈N is a Cauchy sequence in [A,P]∞((Ek)),
because

g
(
yi−yj)= sup

n

[
ank‖xi−xj‖pk

]1/M = [Lk‖xi−xj‖pk]1/M, (4.18)

which converges to zero as i,j → ∞. Since [A,P]∞((Ek)) is complete, there exists

z = (zk)∈ [A,P]∞((Ek)) such that

g
(
yi−z) �→ 0, as i �→∞. (4.19)
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This implies that

Lk‖xi−zk‖pk �→ 0, as i �→∞. (4.20)

Hence, xi→ zk, as i→∞. This establishes the completeness of Ek. The proof of (iii) is

similar to the proof of (ii). This completes the proof of Theorem 4.5.

Corollary 4.6. Each Ek is complete if and only if any of the spaces l(P,(Ek)),
c0(P,(Ek)), w0(P,(Ek)), and l∞(P,(Ek)) is complete. In particular, c0, lp, l∞, and wp

0

are complete.

Corollary 4.7. Let limn→∞ank = 0 and Lk = supnank > 0, for some k ∈ N. Then,

Ek is complete, whenever [A,P](E) is complete.

Proof. This follows from part (iii) of Theorem 4.5 upon noting that [A,P]0(E) is

complete, whenever [A,P](E) is complete.

The next theorem establishes the conditions for the completeness of [A,P](E),
whenever E is complete.

Theorem 4.8. Let supn
∑
kank <∞. Then, completeness of E implies that [A,P](E)

is complete, whenever any of the following conditions hold:

(i) limn→∞
∑
kank = 0,

(ii) limsupn
∑
kank > 0 and infkpk = L > 0.

We omit the proof of Theorem 4.8, since the proof is exactly similar to that given

by Maddox (see [12, Theorem 5]). However, the removal of the restriction infkpk > 0 is

possible in some special cases such as c(P,E) and w(P,E). In fact, the next theorem

shows that part (ii) of Theorem 4.8 holds for these two spaces without the restriction

infkpk > 0. So it generalizes a result of Maddox (see [12, Theorem 6]).

Theorem 4.9. (i) The space c(P,E) is complete if and only if E is complete.

(ii) The space w(P,E) is complete if and only if E is complete.

Proof. (i) Let (xi) be a Cauchy sequence in c(P,E). So, for each xi in c(P,E), there

exists li ∈ E such that

∥∥xik−li∥∥pk �→ 0, as k �→∞ for each i∈N. (4.21)

Then, as in Theorem 4.8(ii), we can find x ∈ l∞(P,E) such that g(xi−x)→ 0, as i→∞.

So it suffices to show that x ∈ c(P,E). The case infkpk > 0 can be deduced from

Theorem 4.8 as a special case, when the matrix A= I.
Let infkpk = 0 and qk = pk/M , for each k∈N. Choose an integer i0 such that

g
(
xi−xi0)< 1

6
, ∀i > i0. (4.22)

Taking i > i0 and k sufficiently large, we get

∥∥xik−li∥∥qk < 1
6
,

∥∥xi0k −li0∥∥qk < 1
6
. (4.23)

So it follows that

sk =
∥∥li−li0∥∥qk < 1

2
, (4.24)
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for each k∈N. But, since infk qk = 0, it follows that sk > 1/2, for infinitely many k∈N,

unless li = li0 , for all sufficiently large i. This implies that (li) is ultimately a constant

sequence. Hence,

∥∥xk−li0∥∥pk/M ≤ ∥∥xik−xk∥∥pk/M+∥∥xik−li∥∥pk/M+∥∥li−lio∥∥pk/M, (4.25)

which converges to zero as k→∞, implying that x ∈ c(P,E).
Conversely, let c(P,E) be complete. Let x = (xn) be a Cauchy sequence in E and

let yn denote the sequence whose first term is xn and all other terms are zero.

Clearly, yn ∈ c(P,E), for all n ∈ N and (yi) is a Cauchy sequence in c(P,E). Since

c(P,E) is complete, there exists z = (zk) in c(P,E) such that g(y−z)→ 0, as i→∞.

This implies that

‖xi−z1‖ �→ 0, as i �→∞, (4.26)

and therefore, E is complete.

(ii) Let (xi) be a Cauchy sequence in w(P,E) with li as the strong Cesaro limit

of xi, for each i ∈ N. Then by Theorem 4.8(ii), there exists x ∈ w∞(P,E) such that

g(xi−x)→ 0, as i→∞. So it suffices to show that x ∈w(P,E). Choose i0 for which

2−r
∑

2r≤k<2r+1

∥∥xik−xjk∥∥pk < ε, ∀i,j > i0. (4.27)

Since for each fixed i,j > i0, there exists r0 such that

2−r
∑

2r≤k<2r+1

∥∥xik−li∥∥pk < ε, 2−r
∑

2r≤k<2r+1

∥∥xik−lj∥∥pk < ε, (4.28)

it follows that

2−r
∑

2r≤k<2r+1

∥∥li−lj∥∥pk < 3Mε, (4.29)

for each i,j > i0 and all r > r0. Also, for 3Mε < 1/2,

∥∥li−lj∥∥< 1, ∀i,j > i0, (4.30)

which implies that

∥∥li−lj∥∥µ < ∑
2r≤k<2r+1

2−r
∥∥li−lj∥∥pk < 3Mε, (4.31)

for all i,j > i0, where µ = supkpk. So (li) is a Cauchy sequence in E. Since E is complete,

there exists l ∈ E such that li → l, as i→∞, for some l ∈ E. It now remains to show

that xk→ l[w(P,E)]. If we denote by Nr(α) the number of k in the interval [2r ,2r+1)
such that pk < α, then we have the following two possibilities:

inf
α>0

limsup
r→∞

2−rNr (α)= 0 (4.32)

or

inf
α>0

limsup
r→∞

2−rNr (α) > 0. (4.33)
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In the case (4.32), for given ε > 0, there existsα0 > 0 such that limsupr→∞2−rNr (α0) <
ε/2. Therefore, 2−rNr (α0) < ε, for all sufficiently large values of r . Now choose i so

large that ∥∥li−l∥∥<min
(
1,ε1/α0

)
. (4.34)

Hence, for all sufficiently large r ,

2−r
∑

2r≤k<2r+1

∥∥l−li∥∥pk ≤ 2−r
∑

pk<α0

∥∥li−l∥∥pk+2−r
∑

pk≥α0

∥∥li−l∥∥pk

< 2−r
∑

pk<α0

1+2−r
∑

pk≥α0

ε < 2−rNr
(
α0
)+ε < 2ε,

(4.35)

which implies that

2−r
∑

2r≤k<2r+1

∥∥l−li∥∥pk �→ 0, as r �→∞. (4.36)

Since for any i∈N,


2−r

∑
2r≤k<2r+1

‖xk−l‖pk



1/M

≤ g(x−xi)+

2−r

∑
2r≤k<2r+1

∥∥xik−li∥∥pk



1/M

+

2−r

∑
2r≤k<2r+1

∥∥l−li∥∥pk



1/M

,

(4.37)

by choosing i,r sufficiently large, it can be shown that xk→ l[w(P,E)].
In the case (4.33), if we choose β= infα>0 limsupr→∞2−rNr (α) > 0, then there exists

r1 such that 2−rNr (1) > β, for r = r1 and there exists r2 such that 2−rNr (1/2) > β,

for r = r2 and so on. In fact, this determines a sequence of integers r1 < r2 < r3 < ··· ,
such that

2−rNr
(

1
s

)
> β, (4.38)

for each r = rs and each s ∈N. By inequalities (4.29) and (4.30), there exists an integer

t = t(β) such that

2−r
∑

2r≤k<2r+1

∥∥li−lj∥∥pk < β
2
, (4.39)

for sufficiently large r and ‖li−lj‖< 1, for all i > t. Now we must have li = lt , for all

i > t. Because, otherwise we have ‖li−lt‖> 1/2, for some i > t, which implies that

2−r
∑

2r≤k<2r+1

∥∥li−lt∥∥pk ≥2−r
∑

pk<1/s

∥∥li−lt∥∥pk

≥2−rNr
(

1
s

)∥∥li−lt∥∥1/S > β
∥∥li−lt∥∥> β

2
,

(4.40)

for sufficiently large i and r = rs . This contradicts (4.39). Therefore, it follows from

(4.37) that xk → l[w(P,E)], that is, w(P,E) is complete. The proof of the converse

part of (ii) is similar to the converse part of (i).
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4.3. A subset V of a linear topological space X is said to be absolutely r -convex (we

say r -convex for brevity), if λx+µy ∈ V whenever x,y ∈ V and λ,µ are scalars such

that |λ|r +|µ|r ≤ 1. A linear topological space X is said to be r -convex, if the family of

all r -convex neighborhoods of θ form a neighborhood base. This section establishes

the results related to the r -convexity of the spaces [A,P]∞((Ek)) and [A,P]0((Ek)).
Maddox and Roles (see [15, Theorem 4]) have already obtained necessary and sufficient

conditions for the r -convexity of [A,P]∞, which is a special case of Theorem 4.10. Note

that by Lemma 3.1, we need to consider only the case 0< r ≤ 1, while characterizing

the r -convexity of the space [A,P]∞((Ek)).

Theorem 4.10. Let A be a column finite matrix and suppose that there exists a

constant α> 0 such that for each n and k with 0< supnank <∞ and ank > 0, we have

ank ≥αsupnank. If 0< r ≤ 1, then the following are equivalent:

(i) The space [A,P]∞((Ek)) is r -convex.

(ii) [µ,(r)]∞((Ek))⊆[µ,P]∞((Ek)), where µ=(hnk) is the matrix defined by hnk=1,

if 0< supnank <∞, ank > 0, and hnk = 0, otherwise.

(iii) There exists an integer i > 1 such that

sup
n

∑
s(n)

iπk <∞, (4.41)

where s(n)= {k | ank > 0, pk < r , supnank <∞}, for eachn∈N and 1/πk+r/pk = 1,

for each k∈N.

Proof. Since it follows immediately from Lemma 3.6 that (ii) implies (iii), we only

show (i) implies (ii) and (iii) implies (i).

(i)⇒(ii). Let x ∈ [µ,(r)]∞((Ek)). Then there exists v ≥ 1 such that

sup
n

∑
k
hnk‖xk‖r ≤ v. (4.42)

Since [A,P]∞((Ek)) is r -convex, there exist an r -convex neighborhood U of the origin

and a real numberd> 0 such that s(d)⊆U⊆s(1). Let k∈N be such that 0<supnank<
∞. Define the sequence (yk) byyk = [dM/supnank]1/pk(0,0,0, . . . ,xk/‖xk‖,0,0, . . .), if

xk ≠ 0 andyk = (0,0,0, . . .), ifxk = 0. Clearly, (yk)∈ s(d)⊆U . Writing λk = ‖xk‖v−1/r

for each k ∈ N and
∑̃
k for any finite sum over k for which hmk = 1, m ≥ 1 being a

fixed integer, we see that

∑̃
k
|λ|r =

∑̃
k
hmk‖xk‖rv−1 ≤ 1. (4.43)

Then it follows from the r -convexity of U that
∑
k λkyk ∈U . Since U ⊆ s(1), we have

∑̃
k
amk|λ|pk

[
dM

supnank

]
≤ 1, (4.44)

which implies that ∑̃
k
hmk|λ|pk ≤α−1d−M, (4.45)
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for each finite sum over k for which hmk = 1. Now, since v ≥ 1,

∑̃
k
hmk‖xk‖pk ≤ vM/rα−1d−M. (4.46)

This is true for every m ∈ N. So it follows that x ∈ [µ,P]∞((Ek)) and consequently,

(ii) follows.

(iii)⇒(i). Suppose that (4.41) holds. To show the r -convexity of [A,P]∞((Ek)), we

construct an r -convex neighborhood base at θ ∈ [A,P]∞((Ek)). For each k ∈ N, let

qk =maxk(r ,pk) and for each 0<d< 1, define

U1(d)=
{
x ∈ [A,P]∞

((
Ek
)) ∣∣∣ sup

n

∑
k

(
ank‖xk‖pk

)qk/pk ≤ d
}
,

U2(d)=
{
x ∈ [A,P]∞

((
Ek
)) ∣∣∣ sup

n,k

(
ank‖xk‖pk

)qk/pk ≤ d
}
,

(4.47)

and U(d)=U1(d)∩U2(d). If x,y ∈U(d) and |λ|r +|µ|r ≤ 1, then by considering the

cases qk < 1 and qk ≥ 1 separately and applying Lemma 3.2, we obtain

‖λxk+µyk‖qk ≤ |λ|r‖xk‖qk+|µ|r‖yk‖qk . (4.48)

Therefore, we have

sup
n

∑
k

[
ank‖λxk+µyk‖pk

]qk/pk ≤ (|λ|r +|µ|r )d≤ d, (4.49)

which implies that λx+µy ∈ U1(d). Similarly, we show that λx+µy ∈ U2(d). Hence

U(d) is r -convex. Since s(d1/M) ⊆ U(d) whenever 0 < d < 1, it follows that U(d) is

a neighborhood of θ. To prove that the set of all the U(d), for 0 < d < 1, form a

neighborhood base at θ, it suffices to show that for each ε > 0, there exist 0 < d < 1

such that U(d) ⊆ s(ε). Let t(n) = {k ∈ s(n) | pk < r/2}. Since −1 ≤ πk < 0, for each

k ∈ t(n), it follows from (4.41) that t(n) is a finite set for each n. Let u(n) be the

number of elements in t(n). Since

∑
s(n)

iπk ≥
∑
t(n)

i−1 = i−1u(n), (4.50)

for each n, it follows that µ1 = supnu(n) < ∞. If x ∈ U(d) for some 0 < d < 1,

observe that ∑
pk≥r

ank‖xk‖pk =
∑
pk≥r

[
ank‖xk‖pk

]qk/pk ≤ d,
∑

pk<r/2
ank‖xk‖pk ≤ sup

n,k
‖xk‖pk

∑
pk<r/2

1≤ dµ1 .
(4.51)

Also, since qk = r for r/2≤ pk < r , it follows from Lemma 3.3 that

∑
r/2≤pk<r

ank‖xk‖pk =
∑

r/2≤pk<r

(
a1/pk
nk ‖xk‖

)pk

≤
∑

r/2≤pk<r

(
a1/pk
nk ‖xk‖r

)
(1+T logT)+

∑
r/2≤pk<r

Tpik ,
(4.52)
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for each T > 1. If r/2≤ pk < r , then πk <−1, so that∑
r/2≤pk<r

(jT)πk ≤ j−1
∑
s(n)

Tπk , (4.53)

for any positive integer j. Therefore, supn
∑
r/2≤pk<r T

πk can be made arbitrarily small

by a suitable choice of T and by the fact that µ1 <∞. For a given ε > 0 choose T > 1

such that

sup
n

∑
r/2≤pk<r

iπk <
(
ε
2

)M
, (4.54)

and choose 0<d< 1 such that

d
(
2+µ1+T logT

)
<
(
ε
2

)M
. (4.55)

Then,

g(x)≤

 ∑
pk≥r

ank‖xk‖pk+
∑

pk<r/2
ank‖xk‖pk+

∑
r/2≤pk<r

ank‖xk‖pk



1/M

≤
[
d+µ1 d+(1+T logT)d+

(
ε
2

)M]1/M

< ε,

(4.56)

which shows that x ∈ s(ε).
This completes the proof of Theorem 4.10.

Unlike other properties, r -convexity of the sequence space [A,P]∞((Ek)) does not

depend on the r -convexity of the space Ek.

Remark 4.11. In Theorem 4.10 we may replace the sequence space [A,P]∞((Ek)),
leaving the rest unchanged. The new result is still valid.

Corollary 4.12. The following statements are equivalent:

(i) l(P,(Ek)) is r -convex;

(ii) 0< r ≤ 1 and l((r),(Ek))⊆ l(P,(Ek));
(iii) 0< r ≤ 1 and there exists an integer i > 1such that∑

k
iπk <∞, (4.57)

where 1/pk+r/πk = 1 for each k and the summation is over k such that pk < r .

The proof is analogous to a result in [14, Theorem 1], which is special case of

Theorem 4.10.

Corollary 4.13. The following statements are equivalent:

(i) w∞(P,((Ek))) is r -convex.

(ii) 0 < r ≤ 1, 0 < infkpk, and [B,(r)]∞((Ek)) ⊆ [B,P]∞((Ek)), where bnk = 1 for

2n−1 ≤ k < 2n and bnk = 0 otherwise.

(iii) 0< r ≤ 1, infkpk > 0, and there exists an integer i > 1 such that

sup
n

∑
s(n)

iπk <∞, (4.58)

where s(n)= {k | 2n−1 ≤ k < 2n, pk < r} and 1/πk+r/pk = 1.
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Proof. Letw∞(P,((Ek))) be r -convex. Then by Lemma 3.4, 0< infkpk≤supkpk<∞.

Sincew∞(p,(Ek)) is not the only neighborhood of the origin, by Lemma 3.1, 0< r ≤ 1.

The rest of the proof of this corollary follows from Theorem 4.10 with A=D, where

D = (dnk) is the matrix defined by

dnk =

2n−1, if 2n−1 ≤ k < 2n for each n,

0, otherwise.
(4.59)

Here we make use of the fact that both the matrices D and the Cesaro matrix (C,1)
generate the same paranorm topology on w∞(P,(Ek)) (cf. [15, page 70]).

Corollary 4.14. The space l∞(P,(Ek)) is 1-convex if and only if infkpk > 0.

Proof. By Lemma 3.7, l∞(P,Ek) is a linear topological space if and only if infkpk >
0. The rest of the proof can be deduced from Theorem 4.10 by putting A= I and i= 2

in (4.41).

By Remark 4.11, we have the following result.

Corollary 4.15. The sequence space c0(P,(Ek)) is 1-convex.

There are several other topological properties of the vector-valued sequence spaces

[A,P]∞((Ek)), [A,P]0((Ek)), and [A,P](E), which still remain to be investigated. The

construction of continuous duals and Köthe-Toeplitz duals of these spaces will also

be interesting, since these spaces generalize the existing sequence spaces. Needless to

say, there can be many applications of these three generalized sequence spaces in the

study of topological and geometric properties of all our real and complex sequences.
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