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ABSTRACT. Let A = (ayx) be an infinite matrix with all a,;x > 0 and P a bounded, positive
real sequence. For normed spaces E and Ej the matrix A generates paranormed sequence
spaces such as [A,P]« ((Ex)), [A,Plo((Ex)), and [A,P](E) which generalize almost all the
existing sequence spaces, such as lw, co, ¢, lp, wp, and several others. In this paper,
conditions under which these three paranormed spaces are separable, complete, and -
convey, are established.
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1. Introduction. The study of sequence spaces is generally initiated by problems
in summability theory, Fourier series and power series. During the third decade of the
present century, sequence spaces were studied with more insight and vision through
the application of functional analysis. Rich settings for the analytic approach to the
study of sequence spaces have already been provided by pioneers like Banach (see [1]),
Kothe and Toeplitz (see [6, 7, 8]). Consequently, the study of sequence spaces is now
generally regarded as a branch of linear topological spaces. But it is not hard to realize
that it has more intimate relation with the summability theory and matrix transfor-
mation than any other area.

One of the classic problems in the theory of sequence spaces is to transform one
sequence space into another and study the behavior pattern of the transformed se-
quences related to the original space. A decisive break with the classical approach
is made in this paper by introducing vector-valued sequences in place of sequences
of numbers. We study the sequence spaces which are generated by infinite matri-
ces. These spaces are linear topological spaces, the topologies of which are induced
by paranorms. The paranormed sequence spaces were introduced by Borwien (see
[2, 3]), Bourgin (see [4]), Simons (see [16, 17]), and later, Maddox (see [9, 10, 11, 12,
13, 14]) developed it in considerable details. We study certain topological properties
like separability, completeness, and 7-convexity of these generalized paranormed se-
quence spaces. In fact, all the corresponding results related to the sequence spaces
co, lp, ¢, lo, and w), follow as special cases of the theorems established here. Stated
otherwise, sequence spaces are studied in this paper with a new approach and insight.

2. Preliminaries. Let N be the set of natural numbers and C the set of complex
numbers. Throughout this paper, we assume that E and Ey, for all k € N, are normed
linear spaces. The zero element of a normed linear space is denoted by 0 and the unit
matrix is denoted by I. Also, we assume that for the sequence P = (py), px = 0, for all
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k € N and for the matrix A = (auk), anx = 0 for all n,k € N.If P is abounded sequence,
we write px = O(1) and M = max(1,supy px)- It should be noted that all the results
remain valid, if we assume that E and Ej are seminormed or p-normed spaces, while
Theorem 4.10 is established for seminormed spaces. The conditions under which the
vector-valued sequence spaces are ¥-convex, when each Ej is p-normed, are yet to be
explored.

The following spaces are frequently used:

[A, Pl ((Ex)) = {X = (xx) € [ [ Ex \ Sup > ankllxi Pk < oo},
L
[A, Plo((Ex)) = {x— (xk) €] [ Ex ‘ > anllxillPx exists, VneN and —0asn— oo},
X
[A,P1(E) :{x = (xx) | xx €E, Vk and 3l € E such that

Zankllxk—lll"’k exists VneNand —0Oasn — oo}.
k
(2.1)

These spaces are called vector-valued sequence spaces generated by infinite matrices.
In the special case, when A = I (resp., the Cesaro matrix (C,1)), [A, P ((Ex)) reduces
to lo (P,Ey) (resp., Wo (P, Ex)). The space L(P, Ey) is obtained by considering the matrix
A= (ank), where ay, =1, for all k, 1 < k <n and ay, = 0, for all k > n. Similarly, we
have the following spaces:

[I,P1(E) =c(P,E),  [I,Plo((Ek)) = co(P,(Ex)),

[(C.1),Plo((Ex) = wo (P, (Ex)),  [(C,1),P](E) = w(P,E). 22)

These representations are not unique, because we can also write [B,P]o((Ex)) =
1(P,(E)), where B = (byy) is the matrix defined as by = 1, if k > n and b, = 0,
if 1 < k < n. Similarly, the spaces w(P,E), wo(P,E), and w. (P, (Ex)) can be repre-
sented as [D,P](E), [D,Plo((Ex)), and [D,P]. ((Ex)), respectively, where D = (dx)
is the matrix defined by dux = 2=V, if 271 < k < 2" and d.x = 0, otherwise. A
few decades ago, Maddox introduced [A,P]o (resp., [A,P], [A,P]s) which is a spe-
cial case of [A,P]o((Ex)) (resp., [A,P](E), [A,P]wx((Ek))), when Ex = C, for all k > 1.
The conditions under which the three spaces [A,P]y, [A,P], and [A,P]. are linear
paranormed can be found in [12]. These results hold without any substantial change
for the vector-valued sequence spaces [A,P]o((Ex)), [A,P](E), and [A,P]«((Ey)). If
pkx = O(1), then each of these three spaces are linear topological spaces, the topology
being induced by a paranorm g defined by

1/M
g(x) = sup[zanklxkl”k} , (2.3)
n k

where M = max(1,sup; px). In this paper, we limit our attention to paranormed se-
quence spaces generated by infinite matrices and consequently, we assume for the
remainder of the paper that py = O(1), unless otherwise indicated.
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3. Lemmas. The following lemmas are used in proving the theorems of this paper.

LEMMA 3.1 [9]. A linear topological space is v -convex for some v > 1 if and only if X
is the only neighborhood of the origin.

LEMMA 3.2 [5]. Let x, vy, A, u be complex numbers. Then

[x+ylP <|x|?P+|yIP, ifO<p=<]l,
) (3.1)
(1Ax]+ 1y )P < [Allx P +pllylP, ifp=1, |Al+|ul <1.

LEMMA 3.3 [15]. If x is a complex number with0 < |[x| <1,0<p <v,anda > 1,
then
Ix|? <|x|"(1+aloga)+a™, 3.2)

where 1/mt+7v/p =1.

LEMMA 3.4 [11]. The space w., (p) is paranormed by g(x) = sup,,[ > x dnk|xk|Px 1M,
where M = max (1, supy px) if and only if 0 < infy px < supy px < oo.

LEMMA 3.5. Let E be a nontrivial space. Then [A,P](E) < [A,P](E) if and only if
o= Sup, Xy Ank < .

LEMMA 3.6. Let B = (byx) be any matrix of zeros and ones and let v be any positive
number. If B is any column finite matrix and

[B,(r)].((Ex)) < [B,Pls((Ek)), (3.3)

where (v) = (v,7,7,...), then there exists an integer i > 1 such that sup,, >.sx) a?" <
co, Where 1/t +v/pr =1, fork eN and s(n) = {k | by =1, px <r}, for eachn € N.

LEMMA 3.7. The space l«(P,(Ex)) is a linear topological space if and only if
infy px > 0.

The analogue of Lemmas 3.5, 3.6, and 3.7 for the spaces [A,P]w, [B,Plw, and L (P)
can be found in [9, 10, 12], respectively.

4. Main results. This section deals with the results established in this paper. The
necessary and sufficient conditions for separability, completeness, and ¥-convexity
of the vector-valued sequence spaces [A,Plo((Ex)), [A,P](E), and [A,P]. ((Ex)) are
obtained in Sections 4.1, 4.2, and 4.3, respectively.

4.1. Atopological space is said to be separable, if it has a countable dense subset. In
this subsection, we obtain necessary and sufficient conditions for separability of the
spaces [A,P]o((Ex)) and [A,P](E). In general, the space [A, P]« ((Ex)) is not separable,
since as a special case of this space [, is not separable.

THEOREM 4.1. Let limy,_o anx =0 and Ly = sup,, ank > 0, for each fixed k € N. Then
[A,P]o((Ey)) is separable if and only if each Ey is separable.

PROOF. (<). Suppose that each Ej is separable. Let % be the set of all finite se-
quences in [, Ex. Then it can be easily shown that % is dense in [A,P]o((Ex)). Next,
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we show that % has a countable dense subset. Since each Ej is separable, we can find
a countable dense subset F; < Ei, for each k € N. Let F denote the set of all finite
sequences in [ ], Fx. Clearly, F is a countable subset of %&. Also, if ¥ = (y1,¥2,...,Yr,
0,0,0,...) € B, we choose z, € F such that

|k —zklIPk <€, 4.1)
foreachl <k <7.

Let z = (21, 22,...,2+,0,0,0,...) € F. Since lim;,_. anx = 0, for each fixed k € N,

r

=sup > ankllyi - zillPk < ep, 4.2)
k=1

[g(y-2)]"

where u = sup,, > t_; ank is a finite constant (depending on the sequence y). Hence, it
follows that [A,P]o((Ex)) is separable.

(=). Conversely, let D be a countable dense subset in [A,P]o((Ex)). For each fixed
reN,let D, = {y, | ¥ = (yx) € D}. We show that D, is dense in E,. Let x € E,. Define

a sequence x" by
x, ifk=7,
Xi = . (4.3)
0, ifk=r.

Then, x” € [A,P]o((Ey)), since limy,,_. an = 0. For a given € > 0, we can choose
7y = (yx) € F such that

1/M
g(y—x)" =sup [Zanklyk xkll”k] <[errr, '™, (4.4)

n

k
Therefore,

sup [anVHyT—X”py] <€PrLy, (4.5)

n
which implies that ||y, — x|l < €. This completes the proof of Theorem 4.1. O

Kothe [6, 7] obtained the necessary and sufficient condition for the separability of
l,(E), for 1 < p < oo. This can be deduced from the following corollary which is a
direct consequence of Theorem 4.1.

COROLLARY 4.2. The spacel, ((Ex)) (also, co(P, (Ex)),wo (P, (Ex)) is separable if and
only if each Ey is separable. In particular, each of 1, (E),c, (E), and w? (E)) is separable
if and only if E is separable.

THEOREM 4.3. Let L = infy px > 0, H = sup,, >.x Ank < 0, limy,_« ankx = 0, for each
fixed k e N and &, = sup,, anr = 0, for at least one v € N. Then, [A,P](E) is separable
if and only if E is separable.

PROOF. (<«).Let B = (x;) be a countable dense subset of E and let F denote the
set of all ultimately constant sequences of elements of B, that is, all sequences of the
type " = (Xi;, Xiy, ..o, Xip, U, U, U,...), Where X;,...,X;, and u are in B and iy,...,1,7
are in N. It is clear that F < [A,P](E) is countable. Hence, it suffices to show that F is
dense in [A,P](E).
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Let v = (yx) € [A,P](E) and let 0 < € < 1. For each k € N, choose x,‘; € B such that

vk =i ][ < €M. (4.6)
Then, there exists | € E such that
Jim 3 anellf ™ = 0. @.7)
So, we can find ko € N, for which
sup > ankllyi— 1Pk <€V, 4.8)
neNk=ko+1
and b € B such that
Il-b|t <eM/™M-1) 4.9)

Define z = (zx) by

xi, if 1 <k < ko,
i = (4.10)
b, if k> ko.

Clearly, z € F. Also, it follows from (4.6) and Minkowski’s inequality that

neN

1/M
sup[ ank||yk_zk||pk:|
X

1/M o0 1/M
< sup [ > koankllyk—XiII”’k] +sup [ > ank”yk_b”pk}
k=1

neN neN k=ko+1

0 1/M 0 1-(1/M)
su”Me+sup[ s anknykupk] +sup[ 3 ankuwk} :

nenN nenN

k=ko+1 k=ko+1
4.11)
since py <M and M > 1.
Now, considering the inequalities in (4.8), (4.9), and since [ < py we can have
gy—z)<pu™Metre+u™Mgupepr/l, 4.12)
k

This proves that [A,P](E) is separable.

(=). Conversely, let [A, P](E) be separable with a countable dense subset D = (%) ey,
where ¥ = (y})ren for each i € N.

For x € E, let x” denote the sequence

- x, ifk=7,
Xy = . (4.13)
0, otherwise.

Clearly, x” € [A,P](E). Then, as in Theorem 4.1, we can show that the set G = {¥} |
¥ € N} is dense in E. This completes the proof of Theorem 4.3. O

COROLLARY 4.4. Let py be asin Theorem 4.3 and A = (ank) a nonnegative, nonzero,
and regular matrix. Then, [A,P](E) is separable if and only if E is separable. In partic-
ular, c(P,E) and w(P,E) are separable if and only if E is separable.
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4.2. A paranormed space is said to be complete, if every Cauchy sequence con-
verges. This subsection deals with the completeness of the generalized sequence
spaces [A,P]«((Ex)), [A,P]lo((Ek)), and [A,P](E). In Theorem 4.5(i), we show that
completeness of each space Ey implies completeness of [A, Py ((Ex)) and [A, Pl ((Ex)),
while in part (ii) (resp., (iii)), conditions for which completeness of [A, P]« ((Ex)) (resp.,
[A,P]o((Eg)))implies completeness of each Ejy are established. Finally, in Theorem 4.8,
completeness of [A,P](E) is discussed.

THEOREM 4.5. Let Ly = sup,, ank = 0, for each k € N. Then the following statements
are true:
(i) The spaces [A,Plo((Ex)) and [A,Pl.((Ex)) are complete, whenever the spaces
Ey are complete for each k € N.
(ii) The spaces Ey, for each k € N are complete, whenever [A,P]. ((Ey)) is complete
and Ly = sup,, ank < oo, for each k € N.
(iii) The spaces Ey, for each k € N are complete, whenever [A,P]o((Ey)) is complete
and lim,, . ani = 0.

PROOF. (i) Let x! = (x,i()keN be a Cauchy sequence in [A,P]. ((Ex)). For a given
€ >0, let ip be such that

sup > anllxf—x{|[P* <€, (i,j = 1io). (4.14)
n
k

If k is such that Ly > 0, then
Lilxi —xi||" < €M, Vi, j> i, (4.15)

which shows that (x,i()igN is a Cauchy sequence in Ey, for each k. Let

lim; .o, X}, if Ly > 0,
= . (4.16)
any element of E, if Ly =0.
Then, it follows from (4.11) that
sup > ank||xk — il < €M, Vi>io. 4.17)
n

k

Hence, v = (yx) € [A,Ple((Ex)) and x* — y in [A, Pl ((Ex)), as i — c. This proves
the completeness of [A,P]. ((Ex)). The completeness of [A,P]. ((Ex)) can be proved
by using a similar argument.

(ii) Let [A,P]w((Ex)) be complete and k € N be fixed such that 0 < Ly < co. If x =
(xk) is a Cauchy sequence in Ey and for each ¥ € N, y, denotes the sequence whose
rth term is x, and all other terms are zero, then y, € [A,P]«((Ex)). Moreover, the
sequence y{ whose ith term s y; for each i € N is a Cauchy sequence in [A, P« ((Ex)),
because

1/M

9('=7) = sup [anillxi = x; 1P = [Lillxi = x;17¢] 4.18)

which converges to zero as i,j — o. Since [A,P]«((Ex)) is complete, there exists
z = (zx) € [A,Ple((Ex)) such that

gyi-z) —0, asi— o. (4.19)
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This implies that
Lillxi—zg [Pk — 0, asi— oo. (4.20)

Hence, x; — zy, as i — 0. This establishes the completeness of Ey. The proof of (iii) is
similar to the proof of (ii). This completes the proof of Theorem 4.5. O

COROLLARY 4.6. Each Ey is complete if and only if any of the spaces L(P,(Ey)),
co(P, (Ex)), wo(P, (Ex)), and L« (P, (Ex)) is complete. In particular, co, lp, le, and w§
are complete.

COROLLARY 4.7. Letlimy_. ank = 0 and Ly = sup,, ank > 0, for some k € N. Then,
Ey is complete, whenever [A,P](E) is complete.

PROOF. This follows from part (iii) of Theorem 4.5 upon noting that [A,P]o(E) is
complete, whenever [A,P](E) is complete. O

The next theorem establishes the conditions for the completeness of [A,P](E),
whenever E is complete.

THEOREM 4.8. Let sup,, >y dnk < . Then, completeness of E implies that [A,P](E)
is complete, whenever any of the following conditions hold:
(i) limy e dgank =0,
(i) limsup,, >y ank > 0 andinfypy =L > 0.

We omit the proof of Theorem 4.8, since the proof is exactly similar to that given
by Maddox (see [12, Theorem 5]). However, the removal of the restriction infy py > 0 is
possible in some special cases such as c(P,E) and w (P, E). In fact, the next theorem
shows that part (ii) of Theorem 4.8 holds for these two spaces without the restriction
infy px > 0. So it generalizes a result of Maddox (see [12, Theorem 6]).

THEOREM 4.9. (i) The space c(P,E) is complete if and only if E is complete.
(ii) The space w(P,E) is complete if and only if E is complete.

PROOF. (i) Let (x!) be a Cauchy sequence in ¢ (P, E). So, for each x? in ¢ (P, E), there
exists I' € E such that

||xi —11]|P* — 0, as k — oo for each i € N. (4.21)

Then, as in Theorem 4.8(ii), we can find x € l.(P,E) such that g(xi—x) — 0,as i — .
So it suffices to show that x € c(P,E). The case infy py > 0 can be deduced from
Theorem 4.8 as a special case, when the matrix A = 1.

Let infy px = 0 and qx = px/M, for each k € N. Choose an integer iy such that

g(xt—xM) < é, Vi> ig. (4.22)

Taking i > iy and k sufficiently large, we get

o 1 . ) 1
||x}<—l‘||q" < 5 []x0 — 0| % < 5 (4.23)
So it follows that )

s = |[1F =10 < > (4.24)
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for each k € N. But, since infy gx = 0, it follows that s; > 1/2, for infinitely many k € N,
unless [ = [’ for all sufficiently large i. This implies that (I’) is ultimately a constant
sequence. Hence,

[cic = 20174 < [l =l o ol = LYY 2 = o (4.25)

which converges to zero as k — o, implying that x € c(P,E).

Conversely, let ¢(P,E) be complete. Let x = (x,) be a Cauchy sequence in E and
let y™ denote the sequence whose first term is x;, and all other terms are zero.
Clearly, y" € ¢(P,E), for all n € N and (y?) is a Cauchy sequence in c(P,E). Since
c(P,E) is complete, there exists z = (zy) in c(P,E) such that g(y —z) — 0, as i — oo.
This implies that

lxi—z1l — 0, asi-— oo, (4.26)

and therefore, E is complete.

(ii) Let (x;) be a Cauchy sequence in w(P,E) with I as the strong Cesaro limit
of xt, for each i € N. Then by Theorem 4.8(ii), there exists x € w.(P,FE) such that
g(xt—x) - 0,as i — o. So it suffices to show that x € w(P,E). Choose iy for which

277 Y Ik -x{|I* <e Vi,j> o 4.27)
27 <k<2v+1
Since for each fixed i, j > iy, there exists 7, such that
277 > xR <e, 2 Y Ixk -V <, (4.28)
2r <k<2r+l 2r <k<2r+l

it follows that
277 > |IF -V < 3Me, (4.29)

2V <k<2r+l

for each i,j > ip and all ¥ > 7. Also, for 3Me < 1/2,
[|[IE-V|| <1, Vi, j> i, (4.30)
which implies that

-V < > 277l-V]|P* < 3Me, (4.31)

2V <k<2r+l

foralli,j > ip, where u = supy, px. So (I?) is a Cauchy sequence in E. Since E is complete,
there exists I € E such that I* — [, as i — o, for some [ € E. It now remains to show
that xx — l[w (P,E)]. If we denote by N, («) the number of k in the interval [27,27*1)
such that py < «, then we have the following two possibilities:

inflimsup2 "N, (x) =0 (4.32)
x>0 r—o™

or
inf limsup2™"N, (x) > 0. (4.33)
>0 r—o
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In the case (4.32), for given € > 0, there exists &y > 0 such thatlimsup, _.., 27" Ny (xp) <
€/2. Therefore, 27" N, () < €, for all sufficiently large values of ¥. Now choose i so
large that

[|[IE =1|| < min (1,€e"/ ). (4.34)

Hence, for all sufficiently large r,

2—1’ Z ||l_li|lpk52—r z ||li_l|lpk+2—r Z ||li_l||pk

21 <k<2r+l Pk <&o Prk=&o
(4.35)
<277 314277 > €<27"Ny(oo) +€ < 26,
Pr<&o Pr=&o
which implies that
27" Y [I=U[P*—0, asr— oo (4.36)
2V <k<2r+l
Since for any i € N,
1/M 1/M
[Z'T > nxk—uw] <g(x—x')+ {z-f 3 ||x;;—zi||”k}
27 <k<2r+1 27 <k<2r+1
(4.37)
1M
+ {27 > Ill—liH”"] ,
2r <k<2r+l

by choosing i,7 sufficiently large, it can be shown that x; — [[w (P,E)].

In the case (4.33), if we choose 8 = inf ¢ limsup,_. 27" N, («) > 0, then there exists
¥1 such that 27" N, (1) > B, for v = r; and there exists > such that 27"N,.(1/2) > B,
for v = » and so on. In fact, this determines a sequence of integers r; <7, <r3 < - - -,
such that

2’7N7<%) > B, 4.38)
for each ¥ = 7; and each s € N. By inequalities (4.29) and (4.30), there exists an integer
t = t(B) such that

2= Z ||li_lj||l7k<

27 <k<2r+1

N[

) (4.39)

for sufficiently large » and ||t — 17| < 1, for all i > t. Now we must have ! = [f, for all
i > t. Because, otherwise we have |1} — || > 1/2, for some i > t, which implies that

2—1’ Z ||li_lt||l7k 22—1’ Z ||li_lt||l7k
21 <k<2r+l pr<l/s

227N (D)1l > gt £,

(4.40)

for sufficiently large i and v = 7. This contradicts (4.39). Therefore, it follows from
(4.37) that x — l[w(P,E)], that is, w(P,E) is complete. The proof of the converse
part of (ii) is similar to the converse part of (i). O
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4.3. A subset V of alinear topological space X is said to be absolutely v -convex (we
say r-convex for brevity), if Ax + uy € V whenever x,y € V and A, u are scalars such
that |A|" + |u|” < 1. A linear topological space X is said to be -convex, if the family of
all »-convex neighborhoods of 6 form a neighborhood base. This section establishes
the results related to the ¥-convexity of the spaces [A,P].((Ex)) and [A,P]o((Ex)).
Maddox and Roles (see [15, Theorem 4]) have already obtained necessary and sufficient
conditions for the r-convexity of [A, P]., which is a special case of Theorem 4.10. Note
that by Lemma 3.1, we need to consider only the case 0 < v < 1, while characterizing
the 7-convexity of the space [A,P]« ((Eg)).

THEOREM 4.10. Let A be a column finite matrix and suppose that there exists a
constant « > 0 such that for each n and k with 0 < sup,, anx < © and anx > 0, we have
Ank = XSUP, ank- If 0 < v < 1, then the following are equivalent:

(i) The space [A,P]((Ex)) is r-convex.
(i) [u, ()] ((Ex)) S[u,Ple ((Ex)), where = (hyy) is the matrix defined by hy, =1,
if 0 < sup, ank < ®©, ankx > 0, and hy, =0, otherwise.

(iii) There exists an integer i > 1 such that

sup > i < oo, (4.41)

n s(n)

wheres(n) = {k | ank > 0, px <7, SUP, Ank < 0}, foreachn e Nand1/my+v/px =1,
for each k € N.

PROOF. Since it follows immediately from Lemma 3.6 that (ii) implies (iii), we only
show (i) implies (ii) and (iii) implies (i).
(i)=(ii). Let x € [u, (*) ]« ((Ek)). Then there exists v > 1 such that

sup > haillxkll” < v. (4.42)
n
k

Since [A,P] ((Ex)) is r-convex, there exist an r-convex neighborhood U of the origin
and areal number d > 0 such thats(d) = U<s(1).Let ke N be such that 0 <sup,, ank <
0. Define the sequence (y*) by y* = [d™/ sup,, ank 1"/ (0,0,0,...,xx /1 xkll,0,0,...), if
xr # 0and y* = (0,0,0,...),if xx = 0. Clearly, (%) € s(d) < U. Writing Ay = ||xx||[v1/"
for each k € N and zk for any finite sum over k for which h,,x = 1, m > 1 being a
fixed integer, we see that

SUAI = S honillxill vt = 1. (4.43)
k k

Then it follows from the r-convexity of U that > Ay vk € U. Since U < s(1), we have

~ dM
S amklAIP| —— | <1, (4.44)
. sup,, ank

which implies that
DhmilAlP* < o td M, (4.45)
k
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for each finite sum over k for which h,,x = 1. Now, since v > 1,

S Rl IPE < 0M/7 01 d M (4.46)
k

This is true for every m € N. So it follows that x € [u,P]((Ex)) and consequently,
(ii) follows.

(iii)= (). Suppose that (4.41) holds. To show the ¥-convexity of [A,P].((Ex)), we
construct an v-convex neighborhood base at 0 € [A,P]((Ey)). For each k € N, let
qx = maxy (r,px) and for each 0 < d < 1, define

1) = fx e LRI ((B)) | sup Y (a7 < af,
n
, (4.47)
Uz(d) = {x € [A,Ple((Ex)) | su]?(ankl\xk\l”k)qk/”" < d},
n,
and U(d) = Uy (d)nUx(d). If x,y € U(d) and |A|" + |u|" < 1, then by considering the
cases qx < 1 and gx > 1 separately and applying Lemma 3.2, we obtain

IAXk + pyill < [A" x4+ |l (| l19%. (4.48)
Therefore, we have

sup > [ankllAxg + pyic P ]%PE < (IA]" + ul") d < d, (4.49)
n
k

which implies that Ax + uy € U; (d). Similarly, we show that Ax + uy € Ux(d). Hence
U(d) is r-convex. Since s(d'™) c U(d) whenever 0 < d < 1, it follows that U(d) is
a neighborhood of 6. To prove that the set of all the U(d), for 0 < d < 1, form a
neighborhood base at 6, it suffices to show that for each € > 0, there exist 0 <d < 1
such that U(d) < s(e). Let t(n) = {k € s(n) | px <7/2}. Since —1 < 1y, < 0, for each
k € t(n), it follows from (4.41) that t(n) is a finite set for each n. Let u(n) be the
number of elements in t(n). Since

i > it =i tun), (4.50)

s(n) t(n)

for each n, it follows that yu; = sup,u(n) < «. If x € U(d) for some 0 < d < 1,

observe that )
D ankllxilPe = > [ankllxi|PK]™P* < d,

pr=r pr=r
(4.51)
D> anklxkllPk < suplxpllPx > 1<dp,.
pr<r/2 nk pr<r/2
Also, since gy = v for v /2 < py < r, it follows from Lemma 3.3 that
5 1/ Pk
> amdxil? = Y (an*lxl)
v /2<pg<r v/2<pp<r
k ¢ (4.52)

< > (a;/kpkHXk||Y>(1+TlogT)+ S TPk,

Y[2<pp<r r/2<pg<r
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foreach T > 1. If /2 < px <7, then T} < —1, so that
> (T ™ <> T, (4.53)
v/2<pg<r s(n)

for any positive integer j. Therefore, sup, >.,/»<p, <» T can be made arbitrarily small
by a suitable choice of T and by the fact that y; < . For a given € > 0 choose T > 1
such that

€ M
sup > iTk< (7) , (4.54)
n v/2<pg<r 2
and choose 0 < d < 1 such that

€ M
d(2+p, +TlogT) < (5) . (4.55)

Then,

1M
g(X)S(z anllxillP + > aplxellPe+ > ank|xk|"")

pr=r pr<r/2 T/2<pg<r (4 56)
MM ’
s[d+u1d+(1+TlogT)d+<2> } <E,
which shows that x € s(e).
This completes the proof of Theorem 4.10. O

Unlike other properties, r-convexity of the sequence space [A, Pl ((Ex)) does not
depend on the r-convexity of the space Ej.

REMARK 4.11. In Theorem 4.10 we may replace the sequence space [A,P]« ((Ex)),
leaving the rest unchanged. The new result is still valid.

COROLLARY 4.12. The following statements are equivalent:
(i) I(P,(Ex)) is r-convex;
(i) 0<r<1andl((r),(Ex)) cl(P,(Ey));

(iii) 0 <7 <1 and there exists an integer i > 1such that

S i < oo, (4.57)
k

where 1/py+v /1y =1 for each k and the summation is over k such that py <.

The proof is analogous to a result in [14, Theorem 1], which is special case of
Theorem 4.10.

COROLLARY 4.13. The following statements are equivalent:
(i) we(P,((Ex))) is r-convex.
(i) 0 <r <1, 0 <infypx, and [B, (¥)]e((Ex)) € [B,Plw((Ex)), where bux = 1 for
271 < k < 2" and b,k = 0 otherwise.
(iii) 0 <7 < 1, infy px > 0, and there exists an integer i > 1 such that
sup > i < oo, (4.58)

" sn)

wheres(n) = {k | 2" 1 <k <2", py<r}andl/m+7/py = 1.
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PROOF. Letwq (P, ((Ex))) ber-convex. ThenbyLemma 3.4, 0 <infy py < supy, pk < .
Since w« (p, (Ex)) is not the only neighborhood of the origin, by Lemma 3.1,0 <7 < 1.
The rest of the proof of this corollary follows from Theorem 4.10 with A = D, where
D = (dyy) is the matrix defined by

2n-1jf pn-1 < k < 2" for each n,
Ak = 4.59)

0, otherwise.

Here we make use of the fact that both the matrices D and the Cesaro matrix (C,1)
generate the same paranorm topology on w (P, (Ex)) (cf. [15, page 70]). O

COROLLARY 4.14. The space l (P, (Ey)) is 1-convex if and only if infy py > 0.

PROOF. BylLemma 3.7, L (P, Ey) is a linear topological space if and only if infy py >
0. The rest of the proof can be deduced from Theorem 4.10 by putting A=Iand i =2
in (4.41). O

By Remark 4.11, we have the following result.
COROLLARY 4.15. The sequence space co(P, (Ey)) is 1-convex.

There are several other topological properties of the vector-valued sequence spaces
[A,P]s((Ex)), [A,Plo((Ex)), and [A,P](E), which still remain to be investigated. The
construction of continuous duals and Kothe-Toeplitz duals of these spaces will also
be interesting, since these spaces generalize the existing sequence spaces. Needless to
say, there can be many applications of these three generalized sequence spaces in the
study of topological and geometric properties of all our real and complex sequences.
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