ON *n*-FOLD FUZZY POSITIVE IMPLICATIVE IDEALS OF BCK-ALGEBRAS

YOUNG BAE JUN and KYUNG HO KIM

(Received 11 March 2000)

ABSTRACT. We consider the fuzzification of the notion of an *n*-fold positive implicative ideal. We give characterizations of an *n*-fold fuzzy positive implicative ideal. We establish the extension property for *n*-fold fuzzy positive implicative ideals, and state a characterization of PI^n -Noetherian BCK-algebras. Finally we study the normalization of *n*-fold fuzzy positive implicative ideals.

2000 Mathematics Subject Classification. 06F35, 03G25, 03E72.

1. Introduction. For the general development of BCK-algebras, the ideal theory plays an important role. In 1999, Huang and Chen [1] introduced the notion of *n*-fold positive implicative ideals in BCK-algebras. In this paper, we consider the fuzzification of *n*-fold positive implicative ideals in BCK-algebras. We first define the notion of *n*-fold fuzzy positive implicative ideals of BCK-algebras, and then discuss the related properties. We give the relation between a fuzzy ideal and an *n*-fold fuzzy positive implicative ideal. We state a condition for a fuzzy ideal to be an *n*-fold fuzzy positive implicative ideal. Using level sets, we give a characterization of an *n*-fold fuzzy positive implicative ideal. We establish the extension property for an *n*-fold fuzzy positive implicative ideal. Using a family of *n*-fold fuzzy positive implicative ideals, we make a new *n*-fold fuzzy positive implicative ideal. We define the notion of PI^{*n*}-Noetherian BCK-algebras, and give its characterization. Furthermore, we study the normalization of an *n*-fold fuzzy positive implicative ideal.

2. Preliminaries. By a *BCK-algebra* we mean an algebra (X; *, 0) of type (2, 0) satisfying the axioms

- (I) ((x * y) * (x * z)) * (z * y) = 0,
- (II) (x * (x * y)) * y = 0,
- (III) x * x = 0,
- (IV) 0 * x = 0,
- (V) x * y = 0 and y * x = 0 imply x = y,

for all $x, y, z \in X$. We can define a partial ordering \leq on X by $x \leq y$ if and only if x * y = 0. A BCK-algebra X is said to be *n*-fold positive implicative (see Huang and Chen [1]) if there exists a natural number n such that $x * y^{n+1} = x * y^n$ for all $x, y \in X$. In any BCK-algebra X, the following hold:

- (P1) x * 0 = x,
- (P2) $x * y \le x$,
- (P3) (x * y) * z = (x * z) * y,

(P4) $(x * z) * (y * z) \le x * y$,

(P5) $x \le y$ implies $x * z \le y * z$ and $z * y \le z * x$.

Throughout this paper *X* will always mean a BCK-algebra unless otherwise specified. A nonempty subset *I* of *X* is called an *ideal* of *X* if it satisfies

(I1) $0 \in I$,

(I2) $x * y \in I$ and $y \in I$ imply $x \in I$.

- A nonempty subset *I* of *X* is said to be a *positive implicative ideal* if it satisfies (I1) $0 \in I$,
 - (I3) $(x * y) * z \in I$ and $y * z \in I$ imply $x * z \in I$.

THEOREM 2.1 (see [3, Theorem 3]). A nonempty subset *I* of *X* is a positive implicative ideal of *X* if and only if it satisfies

- (I1) $0 \in I$,
- (I4) $((x * y) * y) * z \in I$ and $z \in I$ imply $x * y \in I$.

We now review some fuzzy logic concepts. A fuzzy set in a set *X* is a function $\mu : X \to [0,1]$. For a fuzzy set μ in *X* and $t \in [0,1]$ define $U(\mu;t)$ to be the set $U(\mu;t) := \{x \in X \mid \mu(x) \ge t\}$.

A fuzzy set μ in *X* is said to be a *fuzzy ideal* of *X* if

(F1) $\mu(0) \ge \mu(x)$ for all $x \in X$,

(F2) $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}$ for all $x, y \in X$.

Note that every fuzzy ideal μ of *X* is order reversing, that is, if $x \le y$ then $\mu(x) \ge \mu(y)$.

A fuzzy set μ in *X* is called a *fuzzy positive implicative ideal* of *X* if it satisfies (F1) $\mu(0) \ge \mu(x)$ for all $x \in X$,

(F3) $\mu(x * z) \ge \min\{\mu((x * y) * z), \mu(y * z)\}$ for all $x, y, z \in X$.

THEOREM 2.2 (see [2, Proposition 1]). For any fuzzy ideal μ of X, we have

$$\mu(x*y) \ge \mu((x*y)*y) \Longleftrightarrow \mu((x*z)*(y*z)) \ge \mu((x*y)*z) \quad \forall x, y, z \in X.$$
(2.1)

3. *n***-fold fuzzy positive implicative ideals.** For any elements *x* and *y* of a BCK-algebra, $x * y^n$ denotes

$$(\cdots ((x * y) * y) * \cdots) * y \tag{3.1}$$

in which y occurs n times. Using Theorem 2.1, Huang and Chen [1] introduced the concept of an n-fold positive implicative ideal as follows.

DEFINITION 3.1. A subset *A* of *X* is called an *n*-fold positive implicative ideal of *X* if (I1) $0 \in A$,

(I5)
$$x * y^n \in A$$
 whenever $(x * y^{n+1}) * z \in A$ and $z \in A$ for every $x, y, z \in X$.

We try to fuzzify the concept of *n*-fold positive implicative ideal.

DEFINITION 3.2. Let *n* be a positive integer. A fuzzy set μ in *X* is called an *n*-fold fuzzy positive implicative ideal of *X* if

(F1) $\mu(0) \ge \mu(x)$ for all $x \in X$,

(F4) $\mu(x * y^n) \ge \min\{\mu((x * y^{n+1}) * z), \mu(z)\}$ for all $x, y, z \in X$.

Notice that the 1-fold fuzzy positive implicative ideal is a fuzzy positive implicative ideal.

EXAMPLE 3.3. Let $X = \{0, a, b\}$ be a BCK-algebra with the following Cayley table:

*	0	а	b
0	0	0	0
а	a	0	0
b	b	b	0

Define a fuzzy set $\mu : X \to [0,1]$ by $\mu(0) = t_0$, $\mu(a) = t_1$, and $\mu(b) = t_2$ where $t_0 > t_1 > t_2$ in [0,1]. Then μ is an *n*-fold fuzzy positive implicative ideal of *X* for every natural number *n*.

PROPOSITION 3.4. Every *n*-fold fuzzy positive implicative ideal is a fuzzy ideal for every natural number *n*.

PROOF. Let μ be an *n*-fold fuzzy positive implicative ideal of *X*. Then

$$\mu(x) = \mu(x * 0^{n}) \ge \min \{\mu((x * 0^{n+1}) * z), \mu(z)\}$$

= min { $\mu(x * z), \mu(z)$ } $\forall x, z \in X.$ (3.2)

Hence μ is a fuzzy ideal of *X*.

The following example shows that the converse of Proposition 3.4 may not be true.

EXAMPLE 3.5. Let $X = \mathbb{N} \cup \{0\}$, where \mathbb{N} is the set of natural numbers, in which the operation * is defined by $x * y = \max\{0, x - y\}$ for all $x, y \in X$. Then X is a BCK-algebra [1, Example 1.3]. Let μ be a fuzzy set in X given by $\mu(0) = t_0 > t_1 = \mu(x)$ for all $x(\neq 0) \in X$. Then μ is a fuzzy ideal of X. But μ is not a 2-fold fuzzy positive implicative ideal of X because $\mu(5 * 2^2) = \mu(1) = t_1$ and $\mu((5 * 2^3) * 0) = \mu(0) = t_0$, and so

$$\mu(5*2^2) \not\ge \min\{\mu((5*2^3)*0), \mu(0)\}.$$
(3.3)

Let *X* be an *n*-fold positive implicative BCK-algebra and let μ be a fuzzy ideal of *X*. For any $x, y, z \in X$ we have

$$\mu(x * y^{n}) = \mu(x * y^{n+1}) \ge \min\{\mu((x * y^{n+1}) * z), \mu(z)\}.$$
(3.4)

Hence μ is an *n*-fold fuzzy positive implicative ideal of *X*. Combining this and Proposition 3.4, we have the following theorem.

THEOREM 3.6. In an n-fold positive implicative BCK-algebra, the notion of n-fold fuzzy positive implicative ideals and fuzzy ideals coincide.

PROPOSITION 3.7. Let μ be a fuzzy ideal of X. Then μ is an n-fold fuzzy positive implicative ideal of X if and only if it satisfies the inequality $\mu(x * y^n) \ge \mu(x * y^{n+1})$ for all $x, y \in X$.

PROOF. Suppose that μ is an *n*-fold fuzzy positive implicative ideal of *X* and let $x, y \in X$. Then

$$\mu(x * y^{n}) \ge \min \{\mu((x * y^{n+1}) * 0), \mu(0)\}$$

= min { $\mu(x * y^{n+1}), \mu(0)$ } (3.5)
= $\mu(x * y^{n+1}).$

Conversely, let μ be a fuzzy ideal of *X* satisfying the inequality

$$\mu(x * y^n) \ge \mu(x * y^{n+1}) \quad \forall x, y \in X.$$
(3.6)

Then

$$\mu(x * y^{n}) \ge \mu(x * y^{n+1}) \ge \min \{ \mu((x * y^{n+1}) * z), \mu(z) \} \quad \forall x, y, z \in X.$$
(3.7)

Hence μ is an *n*-fold fuzzy positive implicative ideal of *X*.

COROLLARY 3.8. Every *n*-fold fuzzy positive implicative ideal μ of X satisfies the inequality $\mu(x * y^n) \ge \mu(x * y^{n+k})$ for all $x, y \in X$ and $k \in \mathbb{N}$.

PROOF. Using Proposition 3.7, the proof is straightforward by induction. \Box

LEMMA 3.9. Let A be a nonempty subset of X and let μ be a fuzzy set in X defined by

$$\mu(x) := \begin{cases} t_1 & \text{if } x \in A, \\ t_2 & \text{otherwise,} \end{cases}$$
(3.8)

where $t_1 > t_2$ in [0,1]. Then μ is a fuzzy ideal of X if and only if A is an ideal of X.

PROOF. Let *A* be an ideal of *X*. Since $0 \in A$, therefore $\mu(0) = t_1 \ge \mu(x)$ for all $x \in X$. Suppose that (F2) does not hold. Then there exist $a, b \in X$ such that $\mu(a) = t_2$ and $\min\{\mu(a * b), \mu(b)\} = t_1$. Thus $\mu(a * b) = t_1 = \mu(b)$, and so $a * b \in A$ and $b \in A$. It follows from (I2) that $a \in A$ so that $\mu(a) = t_1$. This is a contradiction. Suppose that μ is a fuzzy ideal of *X*. Since $\mu(0) \ge \mu(x)$ for all $x \in X$, we have $\mu(0) = t_1$ and hence $0 \in A$. Let $x, y \in X$ be such that $x * y \in A$ and $y \in A$. Using (F2), we get $\mu(x) \ge \min\{\mu(x * y), \mu(y)\} = t_1$ and so $\mu(x) = t_1$, that is, $x \in A$. Consequently, *A* is an ideal of *X*.

PROPOSITION 3.10. Let A be a nonempty subset of X, n a positive integer, and μ a fuzzy set in X defined as follows:

$$\mu(x) := \begin{cases} t_1 & \text{if } x \in A, \\ t_2 & \text{otherwise,} \end{cases}$$
(3.9)

where $t_1 > t_2$ in [0,1]. Then μ is an *n*-fold fuzzy positive implicative ideal of *X* if and only if *A* is an *n*-fold positive implicative ideal of *X*.

PROOF. Assume that μ is an *n*-fold fuzzy positive implicative ideal of *X*. Then μ is a fuzzy ideal of *X*. It follows from Lemma 3.9 that *A* is an ideal of *X*. Let $x, y \in X$ be such that $x * y^{n+1} \in A$. Using Proposition 3.7, we get $\mu(x * y^n) \ge \mu(x * y^{n+1}) = t_1$ and so

 $\mu(x * y^n) = t_1$, that is, $x * y^n \in A$. Hence by [1, Theorem 1.5], we conclude that *A* is an *n*-fold positive implicative ideal of *X*. Conversely, suppose that *A* is an *n*-fold positive implicative ideal of *X*. Then *A* is an ideal of *X* (see [1, Proposition 1.2]). It follows from Lemma 3.9 that μ is a fuzzy ideal of *X*. For any $x, y \in X$, either $x * y^n \in A$ or $x * y^n \notin A$. The former induces $\mu(x * y^n) = t_1 \ge \mu(x * y^{n+1})$. In the latter, we know that $x * y^{n+1} \notin A$ by [1, Theorem 1.5]. Hence $\mu(x * y^n) = t_2 = \mu(x * y^{n+1})$. From Proposition 3.7 it follows that μ is an *n*-fold fuzzy positive implicative ideal of *X*. \Box

PROPOSITION 3.11. A fuzzy set μ in X is an n-fold fuzzy positive implicative ideal of X if and only if it satisfies

- (F1) $\mu(0) \ge \mu(x)$,
- (F5) $\mu(x * z^n) \ge \min\{\mu((x * y) * z^n), \mu(y * z^n)\}, \text{ for all } x, y, z \in X.$

PROOF. Suppose that μ is an *n*-fold fuzzy positive implicative ideal of *X* and let $x, y, z \in X$. Then μ is a fuzzy ideal of *X* (see Proposition 3.4), and so μ is order reversing. It follows from (P3), (P4), and (P5) that

$$\mu((x * z^{2n}) * (y * z^n)) = \mu(((x * z^n) * (y * z^n)) * z^n) \ge \mu((x * y) * z^n).$$
(3.10)

Using (F2) and Corollary 3.8, we get

$$\mu(x * z^{n}) \ge \mu(x * z^{2n}) \ge \min \{\mu((x * z^{2n}) * (y * z^{n})), \mu(y * z^{n})\}$$

$$\ge \min \{\mu((x * y) * z^{n}), \mu(y * z^{n})\},$$
(3.11)

which proves (F5). Conversely, assume that μ satisfies conditions (F1) and (F5). Taking z = 0 in (F5) and using (P1), we conclude that

$$\mu(x) = \mu(x * 0) \ge \min \{ \mu((x * y) * 0^n), \mu(y * 0^n) \}$$

= min { $\mu(x * y), \mu(y) \}.$ (3.12)

Hence μ is a fuzzy ideal of *X*. Putting z = y in (F5) and applying (III), (IV), and (F1), we have

$$\mu(x * y^{n}) \ge \min \{\mu((x * y) * y^{n}), \mu(y * y^{n})\}$$

= min { $\mu(x * y^{n+1}), \mu(0)$ } = $\mu(x * y^{n+1}).$ (3.13)

By Proposition 3.7, we know that μ is an *n*-fold fuzzy positive implicative ideal of *X*.

Now we give a condition for a fuzzy ideal to be an *n*-fold fuzzy positive implicative ideal.

THEOREM 3.12. A fuzzy set μ in X is an n-fold fuzzy positive implicative ideal of X if and only if μ is a fuzzy ideal of X in which the following inequality holds:

(F6) $\mu((x * z^n) * (y * z^n)) \ge \mu((x * y) * z^n)$ for all $x, y, z \in X$.

PROOF. Assume that μ is an *n*-fold fuzzy positive implicative ideal of *X*. By Proposition 3.4, it follows that μ is a fuzzy ideal of *X*. Let $a = x * (y * z^n)$ and b = x * y. Then

$$\mu((a * b) * z^{n}) = \mu(((x * (y * z^{n})) * (x * y)) * z^{n})$$

$$\geq \mu((y * (y * z^{n})) * z^{n}) = \mu(0),$$
(3.14)

and so $\mu((a * b) * z^n) = \mu(0)$. Using (F5) we obtain

$$\mu((x * z^{n}) * (y * z^{n})) = \mu((x * (y * z^{n})) * z^{n}) = \mu(a * z^{n})$$

$$\geq \min \{\mu((a * b) * z^{n}), \mu(b * z^{n})\}$$

$$= \min \{\mu(0), \mu(b * z^{n})\}$$

$$= \mu(b * z^{n}) = \mu((x * y) * z^{n}),$$
(3.15)

which is condition (F6). Conversely, let μ be a fuzzy ideal of X satisfying condition (F6). It is sufficient to show that μ satisfies condition (F5). For any $x, y, z \in X$ we have

$$\mu(x * z^{n}) \ge \min \{\mu((x * z^{n}) * (y * z^{n})), \mu(y * z^{n})\} \\\ge \min \{\mu((x * y) * z^{n}), \mu(y * z^{n})\},$$
(3.16)

which is precisely (F5). Hence μ is an *n*-fold fuzzy positive implicative ideal of *X*. \Box

THEOREM 3.13. Let μ be a fuzzy set in X and let n be a positive integer. Then μ is an n-fold fuzzy positive implicative ideal of X if and only if the nonempty level set $U(\mu;t)$ of μ is an n-fold positive implicative ideal of X for every $t \in [0,1]$.

PROOF. Assume that μ is an *n*-fold fuzzy positive implicative ideal of *X* and $U(\mu;t) \neq \emptyset$ for every $t \in [0,1]$. Then there exists $x \in U(\mu;t)$. It follows from (F1) that $\mu(0) \ge \mu(x) \ge t$ so that $0 \in U(\mu;t)$. Let $x, y, z \in X$ be such that $(x * y^{n+1}) * z \in U(\mu;t)$ and $z \in U(\mu;t)$. Then $\mu((x * y^{n+1}) * z) \ge t$ and $\mu(z) \ge t$, which imply from (F4) that

$$\mu(x * y^n) \ge \min\left\{\mu\left(\left(x * y^{n+1}\right) * z\right), \mu(z)\right\} \ge t, \tag{3.17}$$

so that $x * y^n \in U(\mu; t)$. Therefore $U(\mu; t)$ is an *n*-fold positive implicative ideal of *X*. Conversely, suppose that $U(\mu; t) (\neq \emptyset)$ is an *n*-fold positive implicative ideal of *X* for every $t \in [0,1]$. For any $x \in X$, let $\mu(x) = t$. Then $x \in U(\mu; t)$. Since $0 \in U(\mu; t)$, we get $\mu(0) \ge t = \mu(x)$ and so $\mu(0) \ge \mu(x)$ for all $x \in X$. Now assume that there exist $a, b, c \in X$ such that $\mu(a * b^n) < \min\{\mu((a * b^{n+1}) * c), \mu(c)\}$. Selecting $s_0 = (1/2)(\mu(a * b^n) + \min\{\mu((a * b^{n+1}) * c), \mu(c)\})$, then

$$\mu(a * b^n) < s_0 < \min\{\mu((a * b^{n+1}) * c), \mu(c)\}.$$
(3.18)

It follows that $(a * b^{n+1}) * c \in U(\mu; s_0)$, $c \in U(\mu; s_0)$, and $a * b^n \notin U(\mu; s_0)$. This is a contradiction. Hence μ is an *n*-fold fuzzy positive implicative ideal of *X*.

THEOREM 3.14. If μ is an *n*-fold fuzzy positive implicative ideal of *X*, then the set

$$X_{\mu} := \{ x \in X \mid \mu(x) = \mu(0) \}$$
(3.19)

is an *n*-fold positive implicative ideal of *X*.

PROOF. Let μ be an *n*-fold fuzzy positive implicative ideal of *X*. Clearly $0 \in X_{\mu}$. Let $x, y, z \in X$ be such that $(x * y^{n+1}) * z \in X_{\mu}$ and $z \in X_{\mu}$. Then

$$\mu(x * y^{n}) \ge \min \{\mu((x * y^{n+1}) * z), \mu(z)\} = \mu(0).$$
(3.20)

It follows from (F1) that $\mu(x * y^n) = \mu(0)$ so that $x * y^n \in X_\mu$. Hence X_μ is an *n*-fold positive implicative ideal of *X*.

THEOREM 3.15 (extension property for *n*-fold fuzzy positive implicative ideals). *Let* μ and ν be fuzzy ideals of X such that $\mu(0) = \nu(0)$ and $\mu \subseteq \nu$, that is, $\mu(x) \leq \nu(x)$ for all $x \in X$. If μ is an *n*-fold fuzzy positive implicative ideal of X, then so is ν .

PROOF. Using Proposition 3.7, it is sufficient to show that ν satisfies the inequality $\nu(x * y^n) \ge \nu(x * y^{n+1})$ for all $x, y \in X$. Let $x, y \in X$. Then

$$\begin{aligned}
\nu(0) &= \mu(0) = \mu((x * (x * y^{n+1})) * y^{n+1}) \le \mu((x * (x * y^{n+1})) * y^n) \\
&= \mu((x * y^n) * (x * y^{n+1})) \le \nu((x * y^n) * (x * y^{n+1})).
\end{aligned}$$
(3.21)

Since v is a fuzzy ideal, it follows from (F1) and (F2) that

$$\begin{aligned} \nu(x * y^{n}) &\geq \min \left\{ \nu((x * y^{n}) * (x * y^{n+1})), \nu(x * y^{n+1}) \right\} \\ &\geq \min \left\{ \nu(0), \nu(x * y^{n+1}) \right\} = \nu(x * y^{n+1}). \end{aligned} (3.22)$$

This completes the proof.

4. PIⁿ-Noetherian BCK-algebras

DEFINITION 4.1. A BCK-algebra *X* is said to satisfy the PI^{*n*}-ascending (resp., PI^{*n*}-descending) chain condition (briefly, PI^{*n*}-ACC (resp., PI^{*n*}-DCC)) if for every ascending (resp., descending) sequence $A_1 \subseteq A_2 \subseteq \cdots$ (resp., $A_1 \supseteq A_2 \supseteq \cdots$) of *n*-fold positive implicative ideals of *X* there exists a natural number *r* such that $A_r = A_k$ for all $r \ge k$. If *X* satisfies the PI^{*n*}-ACC, we say that *X* is a PI^{*n*}-Noetherian BCK-algebra.

THEOREM 4.2. Let $\{A_k \mid k \in \mathbb{N}\}$ be a family of *n*-fold positive implicative ideals of *X* which is nested, that is, $A_1 \supseteq A_2 \supseteq \cdots$. Let μ be a fuzzy set in *X* defined by

$$\mu(x) = \begin{cases} \frac{k}{k+1} & \text{if } x \in A_k \setminus A_{k+1}, \ k = 0, 1, 2, \dots, \\ 1 & \text{if } x \in \bigcap_{k=0}^{\infty} A_k, \end{cases}$$
(4.1)

for all $x \in X$, where A_0 stands for X. Then μ is an n-fold fuzzy positive implicative ideal of X.

PROOF. Clearly $\mu(0) \ge \mu(x)$ for all $x \in X$. Let $x, y, z \in X$. Suppose that

$$(x * y^{n+1}) * z \in A_k \setminus A_{k+1}, \quad z \in A_r \setminus A_{r+1}$$

$$(4.2)$$

for k = 0, 1, 2, ...; r = 0, 1, 2, ... Without loss of generality, we may assume that $k \le r$. Then obviously $z \in A_k$. Since A_k is an *n*-fold positive implicative ideal, it follows that $x * y^n \in A_k$ so that

$$\mu(x * y^{n}) \ge \frac{k}{k+1} = \min\{\mu((x * y^{n+1}) * z), \mu(z)\}.$$
(4.3)

If $(x * y^{n+1}) * z \in \bigcap_{k=0}^{\infty} A_k$ and $z \in \bigcap_{k=0}^{\infty} A_k$, then $x * y^n \in \bigcap_{k=0}^{\infty} A_k$. Hence

$$\mu(x * y^n) = 1 = \min \{ \mu((x * y^{n+1}) * z), \mu(z) \}.$$
(4.4)

If $(x * y^{n+1}) * z \notin \bigcap_{k=0}^{\infty} A_k$ and $z \in \bigcap_{k=0}^{\infty} A_k$, then there exists $i \in \mathbb{N}$ such that $(x * y^{n+1}) * z \in A_i \setminus A_{i+1}$. It follows that $x * y^n \in A_i$ so that

$$\mu(x * y^n) \ge \frac{i}{i+1} = \min\{\mu((x * y^{n+1}) * z), \mu(z)\}.$$
(4.5)

Finally, assume that $(x * y^{n+1}) * z \in \bigcap_{k=0}^{\infty} A_k$ and $z \notin \bigcap_{k=0}^{\infty} A_k$. Then $z \in A_j \setminus A_{j+1}$ for some $j \in \mathbb{N}$. Hence $x * y^n \in A_j$, and thus

$$\mu(x * y^{n}) \ge \frac{j}{j+1} = \min \{ \mu((x * y^{n+1}) * z), \mu(z) \}.$$
(4.6)

Consequently, μ is an *n*-fold fuzzy positive implicative ideal of *X*.

Theorem 4.2 tells that if every *n*-fold fuzzy positive implicative ideal of *X* has a finite number of values, then *X* satisfies the PI^n -DCC.

Now we consider the converse of Theorem 4.2.

THEOREM 4.3. Let X be a BCK-algebra satisfying PI^n -DCC and let μ be an n-fold fuzzy positive implicative ideal of X. If a sequence of elements of $Im(\mu)$ is strictly increasing, then μ has a finite number of values.

PROOF. Let $\{t_k\}$ be a strictly increasing sequence of elements of $\operatorname{Im}(\mu)$. Hence $0 \le t_1 < t_2 < \cdots \le 1$. Then $U(\mu; r) := \{x \in X \mid \mu(x) \ge t_r\}$ is an *n*-fold positive implicative ideal of *X* for all $r = 2, 3, \ldots$. Let $x \in U(\mu; r)$. Then $\mu(x) \ge t_r \ge t_{r-1}$, and so $x \in U(\mu; r-1)$. Hence $U(\mu; r) \subseteq U(\mu; r-1)$. Since $t_{r-1} \in \operatorname{Im}(\mu)$, there exists $x_{r-1} \in X$ such that $\mu(x_{r-1}) = t_{r-1}$. It follows that $x_{r-1} \in U(\mu; r-1)$, but $x_{r-1} \notin U(\mu; r)$. Thus $U(\mu; r) \subsetneq U(\mu; r-1)$, and so we obtain a strictly descending sequence

$$U(\mu;1) \supseteq U(\mu;2) \supseteq U(\mu;3) \supseteq \cdots$$
(4.7)

of *n*-fold positive implicative ideals of *X* which is not terminating. This contradicts the assumption that *X* satisfies the PI^n -DCC. Consequently, μ has a finite number of values.

THEOREM 4.4. The following are equivalent.

(i) X is a PI^n -Noetherian BCK-algebra.

(ii) The set of values of any n-fold fuzzy positive implicative ideal of X is a wellordered subset of [0,1].

PROOF. (i) \Rightarrow (ii). Let μ be an *n*-fold fuzzy positive implicative ideal of *X*. Assume that the set of values of μ is not a well-ordered subset of [0,1]. Then there exists a strictly decreasing sequence {*t_k*} such that $\mu(x_k) = t_k$. It follows that

$$U(\mu;1) \subsetneq U(\mu;2) \subsetneq U(\mu;3) \subsetneq \cdots$$
(4.8)

is a strictly ascending chain of *n*-fold positive implicative ideals of *X*, where $U(\mu; r) = \{x \in X \mid \mu(x) \ge t_r\}$ for every r = 1, 2, ... This contradicts the assumption that *X* is PI^{*n*}-Noetherian.

(ii) \Rightarrow (i). Assume that condition (i) is satisfied and *X* is not PI^{*n*}-Noetherian. Then there exists a strictly ascending chain

$$A_1 \subsetneq A_2 \subsetneq A_3 \subsetneq \cdots \tag{4.9}$$

of *n*-fold positive implicative ideals of *X*. Let $A = \bigcup_{k \in \mathbb{N}} A_k$. Then *A* is an *n*-fold positive implicative ideal of *X*. Define a fuzzy set ν in *X* by

$$\nu(x) := \begin{cases} 0 & \text{if } x \notin A_k, \\ \frac{1}{r} & \text{where } r = \min\{k \in \mathbb{N} \mid x \in A_k\}. \end{cases}$$
(4.10)

We claim that v is an *n*-fold fuzzy positive implicative ideal of *X*. Since $0 \in A_k$ for all k = 1, 2, ..., we have $v(0) = 1 \ge v(x)$ for all $x \in X$. Let $x, y, z \in X$. If $(x * y^{n+1}) * z \in A_k \setminus A_{k-1}$ and $z \in A_k \setminus A_{k-1}$ for k = 2, 3, ..., then $x * y^n \in A_k$. It follows that

$$\nu(x * y^{n}) \ge \frac{1}{k} = \min\{\nu((x * y^{n+1}) * z), \nu(z)\}.$$
(4.11)

Suppose that $(x * y^{n+1}) * z \in A_k$ and $z \in A_k \setminus A_r$ for all r < k. Since A_k is an *n*-fold positive implicative ideal, it follows that $x * y^n \in A_k$. Hence

$$v(x * y^n) \ge \frac{1}{k} \ge \frac{1}{r+1} \ge v(z), \quad v(x * y^n) \ge \min\{v((x * y^{n+1}) * z), v(z)\}.$$
 (4.12)

Similarly for the case $(x * y^{n+1}) * z \in A_k \setminus A_r$ and $z \in A_k$, we have

$$\nu(x * y^{n}) \ge \min\{\nu((x * y^{n+1}) * z), \nu(z)\}.$$
(4.13)

Thus ν is an *n*-fold fuzzy positive implicative ideal of *X*. Since the chain (4.9) is not terminating, ν has a strictly descending sequence of values. This contradicts the assumption that the value set of any *n*-fold fuzzy positive implicative ideal is well ordered. Therefore *X* is PI^{*n*}-Noetherian. This completes the proof.

We note that a set is well ordered if and only if it does not contain any infinite descending sequence.

THEOREM 4.5. Let $S = \{t_k \mid k = 1, 2, ...\} \cup \{0\}$ where $\{t_k\}$ is a strictly descending sequence in (0, 1). Then a BCK-algebra X is \mathbb{PI}^n -Noetherian if and only if for each n-fold fuzzy positive implicative ideal μ of X, $\operatorname{Im}(\mu) \subseteq S$ implies that there exists a natural number k such that $\operatorname{Im}(\mu) \subseteq \{t_1, t_2, ..., t_k\} \cup \{0\}$.

PROOF. Assume that *X* is a $\mathbb{P}I^n$ -Noetherian BCK-algebra and let μ be an *n*-fold fuzzy positive implicative ideal of *X*. Then by Theorem 4.4 we know that $\mathrm{Im}(\mu)$ is a well-ordered subset of [0,1] and so the condition is necessary.

Conversely, suppose that the condition is satisfied. Assume that X is not PI^n -Noetherian. Then there exists a strictly ascending chain of n-fold positive implicative ideals

$$A_1 \subsetneq A_2 \subsetneq A_3 \subsetneq \cdots . \tag{4.14}$$

Define a fuzzy set μ in *X* by

$$\mu(x) = \begin{cases} t_1 & \text{if } x \in A_1, \\ t_k & \text{if } x \in A_k \setminus A_{k-1}, \ k = 2, 3, \dots, \\ 0 & \text{if } x \in X \setminus \bigcup_{k=1}^{\infty} A_k. \end{cases}$$
(4.15)

Since $0 \in A_1$, we have $\mu(0) = t_1 \ge \mu(x)$ for all $x \in X$. If either $(x * y^{n+1}) * z$ or z belongs to $X \setminus \bigcup_{k=1}^{\infty} A_k$, then either $\mu((x * y^{n+1}) * z)$ or $\mu(z)$ is equal to 0 and hence

$$\mu(x * y^{n}) \ge 0 = \min\{\mu((x * y^{n+1}) * z), \mu(z)\}.$$
(4.16)

If $(x * y^{n+1}) * z \in A_1$ and $z \in A_1$, then $x * y^n \in A_1$ and thus

$$\mu(x * y^n) = t_1 = \min \{ \mu((x * y^{n+1}) * z), \mu(z) \}.$$
(4.17)

If $(x * y^{n+1}) * z \in A_k \setminus A_{k-1}$ and $z \in A_k \setminus A_{k-1}$, then $x * y^n \in A_k$. Hence

$$\mu(x * y^{n}) \ge t_{k} = \min \{ \mu((x * y^{n+1}) * z), \mu(z) \}.$$
(4.18)

Assume that $(x * y^{n+1}) * z \in A_1$ and $z \in A_k \setminus A_{k-1}$ for k = 2, 3, ... Then $x * y^n \in A_k$ and therefore

$$\mu(x * y^{n}) \ge t_{k} = \min \{ \mu((x * y^{n+1}) * z), \mu(z) \}.$$
(4.19)

Similarly for $(x * y^{n+1}) * z \in A_k \setminus A_{k-1}$ and $z \in A_1$, k = 2, 3, ..., we obtain

$$\mu(x * y^n) \ge t_k = \min \{ \mu((x * y^{n+1}) * z), \mu(z) \}.$$
(4.20)

Consequently, μ is an *n*-fold fuzzy positive implicative ideal of *X*. This contradicts our assumption.

5. Normalizations of *n*-fold fuzzy positive implicative ideals

DEFINITION 5.1. An *n*-fold fuzzy positive implicative ideal μ of *X* is said to be *normal* if there exists $x \in X$ such that $\mu(x) = 1$.

EXAMPLE 5.2. Let = {0, *a*, *b*} be a BCK-algebra in Example 3.3. Then the fuzzy set μ in *X* defined by $\mu(0) = 1$, $\mu(a) = 0.8$, and $\mu(b) = 0.5$ is a normal *n*-fold fuzzy positive implicative ideal of *X*.

Note that if μ is a normal *n*-fold fuzzy positive implicative ideal of *X*, then clearly $\mu(0) = 1$, and hence μ is normal if and only if $\mu(0) = 1$.

PROPOSITION 5.3. Given an n-fold fuzzy positive implicative ideal μ of X let μ^+ be a fuzzy set in X defined by $\mu^+(x) = \mu(x) + 1 - \mu(0)$ for all $x \in X$. Then μ^+ is a normal n-fold fuzzy positive implicative ideal of X which contains μ .

PROOF. We have $\mu^+(0) = \mu(0) + 1 - \mu(0) = 1 \ge \mu(x)$ for all $x \in X$. For any $x, y, z \in X$, we have

$$\min \{\mu^{+}((x * y^{n+1}) * z), \mu^{+}(z)\}$$

$$= \min \{\mu((x * y^{n+1}) * z) + 1 - \mu(0), \mu(z) + 1 - \mu(0)\}$$

$$= \min \{\mu((x * y^{n+1}) * z), \mu(z)\} + 1 - \mu(0)$$

$$\leq \mu(x * y^{n}) + 1 - \mu(0) = \mu^{+}(x * y^{n}).$$
(5.1)

Hence μ^+ is a normal *n*-fold fuzzy positive implicative ideal of *X*, and obviously $\mu \subseteq \mu^+$.

Noticing that $\mu \subseteq \mu^+$, we have the following corollary.

COROLLARY 5.4. If there is $x \in X$ such that $\mu^+(x) = 0$, then $\mu(x) = 0$.

Using Proposition 3.10, we know that for any *n*-fold positive implicative ideal *A* of *X*, the characteristic function χ_A of *A* is a normal *n*-fold fuzzy positive implicative ideal of *X*. It is clear that μ is a normal *n*-fold fuzzy positive implicative ideal of *X* if and only if $\mu^+ = \mu$.

PROPOSITION 5.5. If μ is an n-fold fuzzy positive implicative ideal of X, then $(\mu^+)^+ = \mu^+$.

PROOF. The proof is straightforward.

COROLLARY 5.6. If μ is a normal n-fold fuzzy positive implicative ideal of X, then $(\mu^+)^+ = \mu$.

PROPOSITION 5.7. Let μ and ν be *n*-fold fuzzy positive implicative ideals of *X*. If $\mu \subseteq \nu$ and $\mu(0) = \nu(0)$, then $X_{\mu} \subseteq X_{\nu}$.

PROOF. If $x \in X_{\mu}$, then $\nu(x) \ge \mu(x) = \mu(0) = \nu(0)$ and so $\nu(x) = \nu(0)$, that is, $x \in X_{\nu}$. Therefore $X_{\mu} \subseteq X_{\nu}$.

PROPOSITION 5.8. Let μ be an *n*-fold fuzzy positive implicative ideal of *X*. If there is an *n*-fold fuzzy positive implicative ideal ν of *X* satisfying $\nu^+ \subseteq \mu$, then μ is normal.

PROOF. Assume that there is an *n*-fold fuzzy positive implicative ideal ν of *X* such that $\nu^+ \subseteq \mu$. Then $1 = \nu^+(0) \leq \mu(0)$, and so $\mu(0) = 1$. Hence μ is normal.

Given an *n*-fold fuzzy positive implicative ideal, we construct a new normal *n*-fold fuzzy positive implicative ideal.

THEOREM 5.9. Let μ be an n-fold fuzzy positive implicative ideal of X and let f: $[0,\mu(0)] \rightarrow [0,1]$ be an increasing function. Let $\mu_f : X \rightarrow [0,1]$ be a fuzzy set in Xdefined by $\mu_f(x) = f(\mu(x))$ for all $x \in X$. Then μ_f is an n-fold fuzzy positive implicative ideal of X. In particular, if $f(\mu(0)) = 1$ then μ_f is normal; and if $f(t) \ge t$ for all $t \in [0,\mu(0)]$, then $\mu \subseteq \mu_f$.

PROOF. Since $\mu(0) \ge \mu(x)$ for all $x \in X$ and since f is increasing, we have $\mu_f(0) = f(\mu(0)) \ge f(\mu(x)) = \mu_f(x)$ for all $x \in X$. For any $x, y, z \in X$ we get

$$\min \{ \mu_f((x * y^{n+1}) * z), \mu_f(z) \} = \min \{ f(\mu((x * y^{n+1}) * z)), f(\mu(z)) \}$$

= $f(\min \{ \mu((x * y^{n+1}) * z), \mu(z) \}) \le f(\mu(x * y^n)) = \mu_f(x * y^n).$ (5.2)

Hence μ_f is an *n*-fold fuzzy positive implicative ideal of *X*. If $f(\mu(0)) = 1$, then clearly μ_f is normal. Assume that $f(t) \ge t$ for all $t \in [0, \mu(0)]$. Then $\mu_f(x) = f(\mu(x)) \ge \mu(x)$ for all $x \in X$, which proves $\mu \subseteq \mu_f$.

Let $\mathcal{N}(X)$ denote the set of all normal *n*-fold fuzzy positive implicative ideals of *X*.

THEOREM 5.10. Let $\mu \in \mathcal{N}(X)$ be nonconstant such that it is a maximal element of the poset $(\mathcal{N}(X), \subseteq)$. Then μ takes only the values 0 and 1.

PROOF. Since μ is normal, we have $\mu(0) = 1$. Let $x \in X$ be such that $\mu(x) \neq 1$. It is sufficient to show that $\mu(x) = 0$. If not, then there exists $a \in X$ such that $0 < \mu(a) < 1$. Define a fuzzy set ν in X by $\nu(x) = (1/2) \{\mu(x) + \mu(a)\}$ for all $x \in X$. Clearly, ν is well defined, and we get

$$\nu(0) = \frac{1}{2} \{ \mu(0) + \mu(a) \} = \frac{1}{2} \{ 1 + \mu(a) \} \ge \frac{1}{2} \{ \mu(x) + \mu(a) \} = \nu(x) \quad \forall x \in X.$$
 (5.3)

Let $x, y, z \in X$. Then

$$\nu(x*y^{n}) = \frac{1}{2} \{\mu(x*y^{n}) + \mu(a)\} \ge \frac{1}{2} \{\min\{\mu((x*y^{n+1})*z), \mu(z)\} + \mu(a)\} \\
= \min\{\frac{1}{2} \{\mu((x*y^{n+1})*z) + \mu(a)\}, \frac{1}{2} \{\mu(z) + \mu(a)\}\} \\
= \min\{\nu((x*y^{n+1})*z), \nu(z)\}.$$
(5.4)

Hence v is an *n*-fold fuzzy positive implicative ideal of *X*. By Proposition 5.3, v^+ is a maximal *n*-fold fuzzy positive implicative ideal of *X*, where v^+ is defined by $v^+(x) = v(x) + 1 - v(0)$ for all $x \in X$. Note that

$$\nu^{+}(a) = \nu(a) + 1 - \nu(0) = \frac{1}{2} \{\mu(a) + \mu(a)\} + 1 - \frac{1}{2} \{\mu(0) + \mu(a)\}$$

= $\frac{1}{2} \{\mu(a) + 1\} > \mu(a)$ (5.5)

and $\nu^+(a) < 1 = \nu^+(0)$. It follows that ν^+ is nonconstant, and μ is not a maximal element of $(\mathcal{N}(X), \subseteq)$. This is a contradiction.

DEFINITION 5.11. An *n*-fold fuzzy positive implicative ideal μ of *X* is said to be *fuzzy maximal* if μ is nonconstant and μ^+ is a maximal element of the poset $(\mathcal{N}(X), \subseteq)$.

For any positive implicative ideal *I* of *X* let μ_I be a fuzzy set in *X* defined by

$$\mu_I(x) = \begin{cases} 1 & \text{if } x \in I, \\ 0 & \text{otherwise.} \end{cases}$$
(5.6)

THEOREM 5.12. Let μ be an n-fold fuzzy positive implicative ideal of X. If μ is fuzzy maximal, then

- (i) μ is normal,
- (ii) μ takes only the values 0 and 1,
- (ii) $\mu_{X_{\mu}} = \mu$,
- (iv) X_{μ} is a maximal *n*-fold positive implicative ideal of *X*.

PROOF. Let μ be an *n*-fold fuzzy positive implicative ideal of *X* which is fuzzy maximal. Then μ^+ is a nonconstant maximal element of the poset $(\mathcal{N}(X), \subseteq)$. It follows from Theorem 5.10 that μ^+ takes only the values 0 and 1. Note that $\mu^+(x) = 1$ if and only if $\mu(x) = \mu(0)$, and $\mu^+(x) = 0$ if and only if $\mu(x) = \mu(0) - 1$. By Corollary 5.4, we have $\mu(x) = 0$, and so $\mu(0) = 1$. Hence μ is normal and $\mu^+ = \mu$. This proves (i) and (ii).

(iii) Obviously $\mu_{X_{\mu}} \subset \mu$ and $\mu_{X_{\mu}}$ takes only the values 0 and 1. Let $x \in X$. If $\mu(x) = 0$, then $\mu \subseteq \mu_{X_{\mu}}$. If $\mu(x) = 1$, then $x \in X_{\mu}$ and so $\mu_{X_{\mu}}(x) = 1$. This shows that $\mu \subseteq \mu_{X_{\mu}}$.

(iv) Since μ is nonconstant, X_{μ} is a proper *n*-fold positive implicative ideal of *X*. Let *J* be an *n*-fold positive implicative ideal of *X* containing X_{μ} . Then $\mu = \mu_{X_{\mu}} \subseteq \mu_{J}$. Since μ and μ_{J} are normal *n*-fold fuzzy positive implicative ideals of *X* and since $\mu = \mu^{+}$ is a maximal element of $\mathcal{N}(X)$, we have that either $\mu = \mu_{J}$ or $\mu_{J} = \mathbf{1}$ where $\mathbf{1} : X \to [0, 1]$ is a fuzzy set defined by $\mathbf{1}(x) = 1$ for all $x \in X$. The later case implies that J = X. If $\mu = \mu_{J}$, then $X_{\mu} = X_{\mu_{J}} = J$. This shows that X_{μ} is a maximal *n*-fold positive implicative ideal of *X*. This completes the proof.

ACKNOWLEDGEMENT. The first author was supported by Korea Research Foundation Grant (KRF-2000-005-D00003).

REFERENCES

- Y. Huang and Z. Chen, On ideals in BCK-algebras, Math. Japon. 50 (1999), no. 2, 211–226. CMP 1 718 851. Zbl 938.06018.
- [2] Y. B. Jun, S. M. Hong, J. Meng, and X. L. Xin, *Characterizations of fuzzy positive implicative ideals in BCK-algebras*, Math. Japon. **40** (1994), no. 3, 503–507. CMP 1 305 546. Zbl 814.06012.
- J. Meng, On ideals in BCK-algebras, Math. Japon. 40 (1994), no. 1, 143–154. MR 95e:06049. Zbl 807.06012.

YOUNG BAE JUN: DEPARTMENT OF MATHEMATICS EDUCATION, GYEONGSANG NATIONAL UNI-VERSITY, JINJU 660-701, KOREA

E-mail address: ybjun@nongae.gsnu.ac.kr

KYUNG HO KIM: DEPARTMENT OF MATHEMATICS, CHUNGJU NATIONAL UNIVERSITY, CHUNGJU 380-702, KOREA

E-mail address: ghkim@gukwon.chungju.ac.kr