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Abstract. The paper aims to develop for sequence spaces E a general concept for recon-
ciling certain results, for example inclusion theorems, concerning generalizations of the
Köthe-Toeplitz duals E× (×∈ {α,β}) combined with dualities (E,G), G ⊂ E×, and the SAK -
property (weak sectional convergence). Taking Eβ := {(yk) ∈ ω := KN | (ykxk) ∈ cs} =:
Ecs , where cs denotes the set of all summable sequences, as a starting point, then we get
a general substitute of Ecs by replacing cs by any locally convex sequence space S with
sum s ∈ S′ (in particular, a sum space) as defined by Ruckle (1970). This idea provides a
dual pair (E,ES) of sequence spaces and gives rise for a generalization of the solid topol-
ogy and for the investigation of the continuity of quasi-matrix maps relative to topologies
of the duality (E,Eβ). That research is the basis for general versions of three types of
inclusion theorems: two of them are originally due to Bennett and Kalton (1973) and gen-
eralized by the authors (see Boos and Leiger (1993 and 1997)), and the third was done
by Große-Erdmann (1992). Finally, the generalizations, carried out in this paper, are justi-
fied by four applications with results around different kinds of Köthe-Toeplitz duals and
related section properties.

2000 Mathematics Subject Classification. 46A45, 46A20, 46A30, 40A05.

1. Introduction. In summability as well as in investigations of topological sequence

spaces E the duality (E,Eβ), where Eβ denotes the β-dual of E, plays an essential role.

For example, if an FK -space E has the SAK -property (weak sectional convergence), then

the topological dual E′ can be identified with Eβ. Further and more deep-seated con-

nections between topological properties of the dual pair (E,Eβ) and the SAK -property,

the continuity of matrix maps on E and the structure of domains of matrix methods

have been presented, for example, in well-known inclusion theorems by Bennett and

Kalton [3, Theorems 4 and 5] (see also [5, 6] for generalizations).

The SAK -property has been generalized and modified by several authors in dif-

ferent directions whereby several generalizations and modifications of the notion

of the β-dual has been treated: Buntinas [8] and Meyers [15] as well as further au-

thors have investigated the STK -property (weak T -sectional convergence) in K-spaces

E and the corresponding β(T)-duals, where T is an Sp1-matrix; Fleming and DeFranza

[10, 11] have dealt with the USTK -property (unconditionally weak T -sectional conver-

gence) and the corresponding α(T)-dual in case of an Sp∗1 -matrix T . That complex

of problems is also connected with the USAK -property of sequence spaces (cf. Sem-

ber [19], Sember and Raphael [18] as well as Swartz [20], Swartz and Stuart [21]),

in particular properties of the duality (E,Eα) where Eα denotes the α-dual of E;

moreover, Buntinas and Tanovíc-Miller [9] investigated the strong SAK -property of

FK -spaces.
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In the present paper, we define and investigate—on the base of the general notion of

a sum introduced by Ruckle [17]—dual pairs (E,ES) where E is a sequence space, S is

a K-space on which a sum is defined in the sense of Ruckle, and ES is the linear space

of all corresponding factor sequences. In this connection we introduce and study in

Sections 3 and 5 the SK -property which corresponds with the SAK -property and the

so-called quasi-matrix maps A, respectively. In particular, we describe the continuity

of A and a natural topological structure of the domain FA of A where F is a K-space. By

means of those results, in Section 6 we formulate and prove in that general situation

the mentioned inclusion theorems as well as a further theorem of Bennett-Kalton

type due to Große-Erdmann [12]. The fact that all mentioned modifications of the

SAK -property and of the β-dual are special cases of the SK -property and the factor

sequence space ES , respectively, enables us to deduce in Section 7 from the general

inclusion theorems, proved in this paper, those in the listed special cases.

2. Notation and preliminaries. The terminology from the theory of locally convex

spaces and summability is standard, we refer to Wilansky [23, 24].

For a given dual pair (E,F) of linear spaces E and F over K (K :=R or C) we denote

by σ(E,F), τ(E,F), and β(E,F) the weak topology, the Mackey topology and the strong

topology, respectively. If (E,τE) is a given locally convex space, then E∗ and E′ denotes

respectively, the algebraic dual of E and the topological dual of (E,τE).
A sequence space is a (linear) subspace of the space ω of all complex (or real)

sequences x = (xk). The sequence space ϕ is defined to be the set of all finitely

nonzero sequences. Obviously, ϕ = span{ek | k ∈ N}, where ek := (0, . . . ,0,1,0 . . .)
with “1” in the kth position, and ϕ contains obviously for each x ∈ ω its sections

x[n] :=∑n
k=1xkek (n∈N).

If a sequence space E carries a locally convex topology such that the coordinate

functionals πn (n ∈ N) defined by πn(x) = xn are continuous, then E is called a

K-space. For every K-space E the space ϕ is a σ(E′,E)-dense subspace of E′ where

ϕ is identified with span{πn |n∈N}. A K-space which is a Fréchet (Banach) space is

called an FK -(BK-)space. The sequence spaces

m :=
{
x ∈ω | ‖x‖∞ := sup

k

∣∣xk∣∣<∞},
c :=

{
x ∈ω | (xk) converges, that is limx := lim

k
xk exists

}
,

c0 := {x ∈ c | limx = 0
}
,

cs :=
{
x ∈ω

∣∣∣∣∑
k
xk converges

}
,

� :=
{
x ∈ω

∣∣∣∣∑
k

∣∣xk∣∣<∞
}
,

bv :=
{
x ∈ω

∣∣∣∣∑
k

∣∣xk−xk+1

∣∣<∞},

(2.1)

(together with their natural norm) are important as well as well-known examples of
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BK -spaces. Furthermore,ω is an FK -space where its (unique) FK -topology is generated

by the family of semi-norms rk, rk(x) := |xk| (x ∈ω, k∈N).
For sequence spaces E and F we use the notation

E ·F := {yx := (ykxk) |y ∈ E, x ∈ F},
EF := {y ∈ω | ∀x ∈ E :yx ∈ F}. (2.2)

In this way, the well-known α-dual Eα and β-dual Eβ of E are defined as Eα := E� and

Eβ := Ecs , respectively.

If E is a K-space that contains ϕ, then

Ef := {uf := (f (ek)) | f ∈ E′} (2.3)

is called f -dual of E. (Note, throughout we will use the notation up := (p(ek)) for each

functional p : E→K.) Moreover, we put

ESAK :=
{
x ∈ E | ∀f ∈ E′ : f(x)=

∑
k
xkf

(
ek
)}
,

EUSAK :=
{
x ∈ E | ∀f ∈ E′ : f(x)= lim

�∈Φ

∑
k∈�

xkf
(
ek
)}
,

(2.4)

where Φ is the set of all finite subsets of N directed by “set inclusion” (cf. [18, 19]).

A K-space E is called a SAK -(USAK-)space if E = ESAK (E = EUSAK). If ϕ̄ = E, then E is

an AD-space by definition.

Let A= (ank) be an infinite matrix. For a sequence space E we call

EA :=
{
x ∈ω |Ax :=

(∑
k
ankxk

)
n

exists and Ax ∈ E
}

(2.5)

domain of A (relative to E). If E is a (separable) FK -space, then EA is too. In particular,

the domain cA = {x ∈ωA | limAx := limAx exists} is a separable FK -space.

Obviously, ϕ ⊂ cA if and only if ak := limnank exists for every k ∈ N. A is called

an Sp1-matrix if ak = 1 (k ∈ N), and an Sp∗1 -matrix if, in addition, each column of

A belongs to bv . If E and F are sequence spaces with E ⊂ FA, then the linear map

A : E→ F , x→Ax is called matrix map.

Let E be a linear space. For a subset M of E∗ we use the following notation:

M := {g ∈ E∗ | ∃(gn) in M such that gn �→ g
(
σ
(
E∗,E

))}
,

M :=
⋂{

L⊂ E∗ | L is a linear subspace of E∗ and M ⊂ L= L
}
,

M
b

:= {g ∈ E∗ | ∃(gα)α∈� in M such that{
gα |α∈�

}
is σ

(
E∗,E

)
-bounded and gα �→ g

(
σ
(
E∗,E

))}
,

M
b

:=
⋂{

L⊂ E∗ | L is a linear subspace of E∗ and M ⊂ L= L
b
}
.

(2.6)

Following [5, 6], a K-space E is called an Lϕ-space and an Aϕ-space, if E′ ⊂ ϕ and

E′ ⊂ ϕb
, respectively. Note, τ(E,ϕ) and τ(E,ϕb) is, respectively, the strongest Lϕ-

topology and Aϕ-topology on an arbitrarily given sequence space E.



12 J. BOOS AND T. LEIGER

Theorem 2.1 (see [6, Theorems 3.2 and 3.9]; see also [4, 5]). Let F be a K-space.

(a) F is an Lϕ-space if and only if for each MackeyK-space E withσ(E′,E)-sequentially

complete dual each matrix map A : E→ F is continuous.

(b) F is an Aϕ-space if and only if for every barrelled K-space E each matrix map

A : E→ F is continuous.

Theorem 2.2 (see [6, Theorem 4.8]; see also [4]). Let A= (ank) be a matrix. If E is

any Lϕ-space (Aϕ-space), then EA (endowed with its natural topology) is an Lϕ-space

(Aϕ-space).

3. Dual pairs (E,ES). Throughout, let (S,τS) be a K-space containing ϕ where τS
is generated by a family � of semi-norms, and, moreover, let s ∈ S′ be a sum on S
(cf. [17]), that is,

s(z)=
∑
k
zk for each z ∈ϕ. (3.1)

Furthermore, let E be a sequence space containingϕ. Then (E,ES) is a dual pair where

its bilinear form 〈 ,〉 is defined by 〈x,y〉 := s(yx) for all x ∈ E, y ∈ ES ; therefore ES ⊂
E∗ (up to isomorphy where the isomorphism ES → E∗ is given by y → s◦diagy : E→K
and diagy is the diagonal matrix (map on E) defined by u). Because of ϕ ⊂ ES , the

weak topology σ(E,ES) is a K-topology. In case of

S := cs, s(z) :=
∑
k
zk := lim

n

n∑
k=1

zk (z ∈ cs), (3.2)

S := �, s(z) := lim
F∈Φ

∑
k∈F

zk (z ∈ �), (3.3)

we get the dual pairs (E,Eβ) and (E,Eα), respectively, which play a fundamental role

in summability and the study of topological sequence spaces.

Obviously, Eβ ⊂ E′ if E is a K-space and (E′,σ(E′,E)) is sequentially complete. For

example, the latter holds for all barrelled K-spaces.

In view of this remark it is natural to ask for sufficient conditions in order that

the inclusion ES ⊂ E′ holds (up to isomorphy). Aiming an answer to this question we

mention (cf. Theorem 2.1) that a matrix map A : E → S is continuous if one of the

following conditions occurs:

(A) S is an Lϕ-space, E is a K-space equipped with the Mackey topology τ(E,E′),
and (E′,σ(E′,E)) is sequentially complete.

(B) S is an Aϕ-space and E is a barrelled K-space.

In particular, (A) as well as (B) implies for each y ∈ ES the continuity of the matrix

map diagy : E→ S. Thus we have the following proposition.

Proposition 3.1. If E as well as S enjoy one of the statements (A) or (B), then ES ⊂ E′.

Remark 3.2. Let E be a sequence space with ϕ ⊂ E. One may easily check that

(ϕ,σ(ϕ,E)) is sequentially complete, and (E,τ(E,ϕb)) is barrelled. As immediate

consequences of Proposition 3.1 we obtain that ES ⊂ϕ for each Lϕ-space S and ES ⊂
ϕb

for each Aϕ-space S.
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Definition 3.3. For a K-space E containing ϕ we put

ESK := {x ∈ E | ∀f ∈ E′ :
(
ufx

)∈ S and f(x)= s(ufx)}. (3.4)

E is called an SK -space if E = ESK.

Remark 3.4. (a) If E is a K-space containing ϕ, then ESK ⊂ϕ in E.

(b) (E,τ(E,ES)) is an SK -space for each sequence space E with E ⊃ϕ.

The latter remark is an immediate consequence of the following result which will

be useful in the sequel: Let E be a sequence space containing ϕ and F be a K-space

with E ⊂ F . If the inclusion map i : (E,τ(E,ES))→ F is continuous, then E ⊂ FSK .

Remark 3.5. (a) In the particular case of (3.2) and (3.3) the SK -property is identical

with SAK and USAK, respectively.

(b) Clearly, if E is an SK -space, then E is an AD-space and Ef ⊂ ES . Conversely, if (A)

or (B) holds, then Ef ⊂ ES forces E to be an SK -space. Indeed, in the latter situation

s ◦diaguf ∈ E′ and the equation f = s ◦diaguf extends from ϕ to E.

4. The solid topology. A sequence space E is solid provided that yx ∈ E whenever

y ∈m and x ∈ E. In this situation x ∈ E if and only if |x| := (|xk|)∈ E.

Motivated by Große-Erdmann [12] we introduce some notation.

Notation 4.1. Under the assumption that S is solid for a K-space E containing ϕ
we put

ESC := {x ∈ E | ∀p ∈�E :upx ∈ S and p(x)≤ s(up|x|)}, (4.1)

where �E denotes the family of all continuous semi-norms on E. If E = ESC , then E is

called an SC-space.

In the particular case of (3.3) we get (cf. [12, page 502])

ESC =ACE :=
{
x ∈ E | ∀p ∈�E :

∑
k
p
(
xkek

)
<∞

}
. (4.2)

We assume throughout this section that S is solid and the sum s ∈ S′ is a positive

functional, that is,

s(z)≥ 0 for each z ∈ S with zk ≥ 0 (k∈N). (4.3)

An important example for this situation is given in (3.3). We are going to present a

further one.

Example 4.2. Let T = (tnk) be a normal Sp1-matrix such that tnk ≥ 0 (n,k∈N). We

put

S :=
{
z ∈mT | ‖z‖[T] := sup

n

∑
k
tnk
∣∣zk∣∣<∞

}
. (4.4)
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As we may easily check, (S,‖ ‖[T]) is a solid BK -space (containing ϕ). Now, we will

show that there exists a positive sum s on S.

First of all, we note that (m,‖ ‖∞,≥) and (mT ,‖ ‖T ,≥T ) with ‖ ‖T := ‖ ‖ ◦T are

equivalent as ordered normed spaces, where z ≥ 0 is defined by zk ≥ 0 (k ∈ N) and

z ≥T 0 by Tz ≥ 0. Since e := (1,1, . . .) is an interior point of the positive cone K :=
{z ∈m | z ≥ 0} in (m,‖ ‖∞), we get that T−1e is an interior point of the positive cone

KT := {z ∈mT | z ≥T 0} in (mT ,‖ ‖T ). By a result of Krein (cf. [22, Theorem XIII.2.3]),

each positive functional g ∈ (cT ,‖ ‖T )′ can be extended to a positive continuous linear

functional on (mT ,‖ ‖T ). In particular, there exists an s̃ ∈ (mT ,‖ ‖T )′ such that

s̃|cT = limT , s̃(z)≥ 0
(
z ∈KT

)
. (4.5)

Then s := s̃|S ∈ (S,‖ ‖[T])′ and s(z)≥ 0 for all z ∈ S∩KT . Because of K ⊂ KT we have

(4.3), and s is a sum since T is an Sp1-matrix.

Definition 4.3. (a) Let E be a sequence space andG a subspace of ES containingϕ.

The locally convex topology ν(E,G) on E generated by the semi-norms p|y| (y ∈ G)
with

p|y|(x) := s(|yx|) (x ∈ E) (4.6)

is called the solid topology corresponding to the dual pair (E,G).
(b) Note that ν(E,G) is the topology τS of uniform convergence on the solid hulls

of y ∈ G, that is, ν(E,G) = τS with S := {sol{y} | y ∈ G} and sol{y} := {v ∈ ω |
|vk| ≤ |yk| (k ∈ N)}. In fact, it is not difficult to verify that p|y|(x) = sup{|s(vx)| |
v ∈ sol{y}}. Therefore, (E,ν(E,G))′ = |G| (the solid span of G).

(c) A K-space (E,τE) is called simple if each τE-bounded subsetD of E is dominated

by an x ∈ E, that is, D ⊂ sol{x}.

Proposition 4.4. Let E be a sequence space containing ϕ.

(a) The solid topology ν(E,ES) is compatible with (E,ES), that is, (E,ν(E,ES))′ = ES .

(b) (E,ν(E,ES)) is an SK-space.

(c) (E,ν(E,ES))SC is an SC-space.

Proof. The statement (a) follows from Remark 4.3(b) and the fact that ES is solid.

Obviously, by Remark 3.4(b) we get that (a) implies (b).

(c) Let p be a continuous semi-norm on (E,ν(E,ES)), then p(x) = supy∈V |s(yx)|
for each x ∈ E, where V := {y ∈ E | p(y) ≤ 1}◦ (polar in ES ). There exists v ∈ ES
such that p(x) ≤ p|v|(x) for all x ∈ E, hence p(ek) ≤ |vk| (k ∈ N). Since ES is solid

and v ∈ ES , then up = (p(ek)) ∈ ES . Furthermore, p(ek) = supy∈V |yk| (k ∈ N) and

|s(yx)| ≤ s(|yx|) ≤ s(up|x|) (x ∈ E) for every y ∈ V , that is, p(x) ≤ s(upx) for

each x ∈ E.

The following proposition is in the particular case of (3.3) a result due to Große-

Erdmann (cf. [12, Theorem 3.2] and the erratum in [13]).

Proposition 4.5. Let E be a solid sequence space containingϕ and G be a sequence

space with ϕ ⊂G ⊂ ES . Then the following statements are equivalent:

(a) (E,σ(E,G)) is simple.
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(b) (G,ν(G,E)) is barrelled.

If in addition G is solid, then (a), thus (b), is equivalent to

(c) (E,ν(E,G)) is simple.

Proof. (a)⇒(b). If (E,σ(E,G)) is simple, then for eachσ(E,G)-bounded subset B of

E there exists y ∈ E such that B ⊂ sol{y}. Thus β(G,E)⊂ ν(G,E), which is equivalent

to the barrelledness of (G,ν(G,E)).
(b)⇒(a). Suppose B isσ(E,G)-bounded subset of E. Then the semi-normp defined by

p(y) := supx∈B |s(yx)| (y ∈G) is continuous on (G,β(G,E)), which forces β(G,E)=
ν(G,E) by (b). Hence p(y)≤ supx∈sol{v} |s(yx)| (y ∈G) for a suitable v ∈ E. Putting

y := ek (k ∈ N) we get supx∈B |xk| = p(ek) ≤ supx∈sol{v} |xk| = |vk| (k ∈ N). Thus, B
is dominated by v .

If G is solid, then ν(E,G)- and σ(E,G)-boundedness of subsets of E are obviously

equivalent, thus “(a)�(c)” holds.

5. Quasi-matrix maps. Aiming the extension of some well-known inclusion theo-

rems due to Bennett and Kalton, we consider in the sequel the so-called quasi-matrix

maps.

Definition 5.1. Let S be a K-space with a sum s ∈ S′ and let A = (ank) be an

infinite matrix and a(n) its nth row. Then the linear map

A : E �→ω, x � �→ Ax := (s(a(n)x))n, (5.1)

where E is a linear subspace of the sequence spaceωA :=⋂∞n=1{a(n)}S , is called quasi-

matrix map. Moreover, for every sequence space F the sequence space

FA := {x ∈ωA | Ax ∈ F} (5.2)

is called a domain of A relative to F and cA is called the domain of A; if x ∈ cA , we put

limAx := lim
n
s
(
a(n)x

)
. (5.3)

Note, Ax =Ax if the matrix A is row-finite.

First of all we give sufficient conditions for the continuity of quasi-matrix maps.

Theorem 5.2. Let E and F be K-spaces. Each of the following conditions implies the

continuity of each quasi-matrix map A : E→ F :

(A′) S and F are Lϕ-spaces, E is a Mackey space, and (E,σ(E′,E)) is sequentially

complete.

(B′) S and F are Aϕ-spaces and E is barrelled.

Proof. Let A : E → F be a quasi-matrix map defined by (5.1). We put ∆A := {f ∈
F ′ | f ◦ A ∈ E′} and show ∆A = F ′; then A is weakly continuous, hence continu-

ous since E carries the Mackey topology τ(E,E′). First of all we note ϕ ⊂ ∆A . In-

deed, if w = (w1, . . . ,wn0 ,0, . . .) ∈ ϕ and f(y) := ∑
nwnyn (y ∈ F), then we get

f ◦A(x) =∑n0
n=1wns(a(n)x) =

∑n0
n=1 s(wna(n)x) = s(vx), x ∈ E, where v :=w1a(1)+

···+wn0a(n) ∈ ES . Thus f ◦A ∈ E′ by Proposition 3.1.
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The case (A′). Since (E′,σ(E′,E)) is sequentially complete, then∆A∩F ′ =∆A . There-

fore, the fact that F is an Lϕ-space implies F ′ =ϕ∩F ′ ⊂∆A∩F ′ =∆A .

The case (B′). The barrelledness of E implies ∆A
b∩F ′ =∆A . Since F is an Aϕ-space,

we have F ′ =ϕb∩F ′ ⊂∆A
b∩F ′ =∆A .

Now, we are going to define a K-topology on the domain EA , where E is a K-space

topologized by a family � of semi-norms and A is a quasi-matrix map defined by (5.1).

The set Qn := {rk | k∈N}∪{q◦diaga(n) | q ∈ �} of semi-norms generates aK-topology

on {a(n)}S (n ∈ N). If S is an Lϕ- or Aϕ-space, then the K-space {a(n)}S enjoys the

same property. Clearly, the family Q :=⋃n∈NQn generates a K-topology τωA on ωA .

By the following lemma, the Lϕ- and Aϕ-property of the K-space S implies the same

property on (ωA,τωA ).

Lemma 5.3. Let S be an Lϕ-space (Aϕ-space) and let {Fα | α ∈ �} be a family of

Lϕ-spaces (Aϕ-spaces). Then � := ⋃α∈� �α, where �α is a family of semi-norms on

Fα (α ∈�) generating the topology of Fα, generates an Lϕ-topology (Aϕ-topology) on

F :=⋂α∈�Fα.

Proof. First assume that S and Fα (α∈�) are Lϕ-spaces and (E,τE) is a Mackey

K-space such that (E′,σ(E′,E)) is sequentially complete. Moreover, let A : E → F be

a matrix map. Because of Theorem 2.1(a) the map A : E → Fα is continuous for each

α∈�. This implies the continuity of A : E→ F . By Theorem 2.1(a), F is an Lϕ-space.

For the case of Aϕ-spaces we use Theorem 2.1(b).

Proposition 5.4. If E and S are Lϕ-spaces (Aϕ-spaces), then (EA,τEA ) topologized

by the family Q∪{p◦A | p ∈�} of semi-norms is also an Lϕ-space (Aϕ-space).

Proof. Obviously, EA is a K-space. First of all we verify that (EA,τEA ) is an Lϕ-

space: if E and S are Lϕ-spaces, then ωA is also an Lϕ-space. By Theorem 5.2, the

maps

iω :
(
EA,τ

(
EA,ϕ

))
�→ωA, x � �→ x, A :

(
EA,τ

(
EA,ϕ

))
�→ E, x � �→ Ax, (5.4)

are continuous. This implies the continuity of the identity map i : (EA,τ(EA,ϕ)) →
(EA,τEA ). Since (E,τ(EA,ϕ)) is an Lϕ-space we get that (EA,τEA ) is an Lϕ-space too.

For the case of Aϕ-spaces we use the fact that (EA,τ(EA,ϕ
b)) is an Aϕ-space.

Remark 5.5. If E is a separable FK -space and S is a separable BK -space, then

(EA,τEA ) is a separable FK -space. The proof of this fact is similar to the one of [1,

Theorem 1].

By Proposition 5.4, the domain cA of a quasi-matrix map A is an Lϕ- or Aϕ-space if

S has the same property. If ak := limnank exists, then ϕ ⊂ cA , and we put a := (ak)
and define

ΛS⊥A := {x ∈ cA | ax ∈ S and limAx = s(ax)
}
. (5.5)

Note, because of limA ∈ c′A , we have (cA)SK ⊂ΛS⊥A .
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6. Inclusion theorems of Bennett-Kalton type. In this section, we extend well-

known inclusion theorems of Bennett and Kalton [3, Theorems 4 and 5] (cf. also au-

thors’ results [5, Theorem 4.4] and [6, Theorem 5.1]) to the situation considered above.

We extend moreover a theorem due to Große-Erdmann (cf. [12]) which is of the same

type as the mentioned theorems of Bennett and Kalton. There are no new ideas in the

proofs, however for the sake of completeness we give them in a brief form.

Theorem 6.1. Let S be an Lϕ-space. For any sequence space E containing ϕ the

following statements are equivalent:

(a) (ES,σ(ES,E)) is sequentially complete.

(b) Each quasi-matrix map A : (E,τ(E,ES))→ F is continuous when F is an Lϕ-space.

(c) The inclusion map i : (E,τ(E,ES))→ F is continuous whenever F is an Lϕ-space

containing E.

(d) The implication E ⊂ F ⇒ E ⊂ FSK holds whenever F is an Lϕ-space.

(e) The implication E ⊂ cA ⇒ E ⊂ΛS⊥A holds for every quasi-matrix map A.

Proof. (a)⇒(b) is an immediate consequence of Theorem 5.2(A′), (b)⇒(c) is obvi-

ously valid whereas (c)⇒(d) follows from Remark 3.4(b). Furthermore, “(d)⇒(e)” is true

since cA is an Lϕ-space and (cA)SK ⊂ΛS⊥A .

(e)⇒(a). If (a(n)) is a Cauchy sequence in (ES,σ(ES,E)), then E ⊂ cA , where the

quasi-matrix map A is defined by the matrix A with a(n) as nth row. On account of (e)

we get E ⊂ΛS⊥A , thus a∈ ES and a(n)→ a(σ(ES,E)).

Theorem 6.2. Let S be an Aϕ-space. For any sequence space E containing ϕ the

following statements are equivalent:

(a) (E,τ(E,ES)) is barrelled.

(b) Each quasi-matrix map A : (E,τ(E,Es)) → F is continuous when F is an

Aϕ-space.

(c) The inclusion map i : (E,τ(E,ES))→ F is continuous whenever F is an Aϕ-space

containing E.

(d) The implication E ⊂ F ⇒ E ⊂ FSK holds whenever F is an Aϕ-space.

(e) The implication E ⊂ mA ⇒ E ⊂ ΛS⊥A holds for every quasi-matrix map A with

ϕ ⊂ cA .

(f) Every σ(ES,E)-bounded subset of ES is relatively sequentially σ(ES,E)-compact.

Proof. (a)⇒(b) is an immediate consequence of Theorem 5.2(B′), (b)⇒(c) is obvi-

ously valid. (c)⇒(d) follows from Remark 3.4(b). (d)⇒(e) is true, since mA is an Aϕ-

space (cf. Proposition 5.4) and (mA)SK = (cA)SK ⊂ΛS⊥A .

(e)⇒(f). Let B be a σ(ES,E)-bounded subset of ES and let (b(r)) be a sequence in

B. Obviously, (b(r)) is bounded in (ω,τω), thus we may choose a coordinatewise

convergent subsequence (a(n)) of (b(r)). Because of the σ(ES,E)-boundedness of

{a(n) |n∈N} we get E ⊂mA , where A is the quasi-matrix map defined by the matrix

A = (a(n)k )n,k. Applying (e) we obtain E ⊂ ΛS⊥A , thus a ∈ ES and a(n) → a(σ(ES,E)).
Hence B is relatively sequentially compact in (ES,σ(ES,E)).

(f)⇒(a). Using the fact that in the K-space (ES,σ(ES,E)) each relatively sequentially

compact subset is relatively compact too (cf. [14, Theorem 3.11, page 61]), (f) tells us

that (E,τ(E,ES)) is barrelled.
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Motivated by Große-Erdmann [12, Theorem 4.1], we prove next an inclusion theorem

which gives a connection between the barrelledness of (E,ν(E,ES)) and the implica-

tion E ⊂ F ⇒ E ⊂ FSC where F is an Aϕ-space.

Theorem 6.3. Let S be a solid Aϕ-space with a positive sum s ∈ S′. Let E be any

sequence space containing ϕ. The following statements are equivalent:

(a) (E,ν(E,ES)) is barrelled.

(b) (ES,σ(ES,E)) is simple.

(c) Each quasi-matrix map A : (E,ν(E,ES))→ F is continuous when F is an Aϕ-space.

(d) The inclusion map i : (E,ν(E,ES))→ F is continuous whenever F is an Aϕ-space

containing E.

(e) The implication E ⊂ F ⇒ E ⊂ FSC holds whenever F is an Aϕ-space.

Proof. (a)�(b) is a part of Proposition 4.5, (a)⇒(c) is an immediate consequence of

Theorem 5.2(B′), (c)⇒(d) is obviously true, and (d)⇒(e) follows from Proposition 4.4(c).

(e)⇒(d). For every p ∈�F we get up ∈ ES and p(x)≤ p|up|(x) (x ∈ E). Thus p|E is

continuous on (E,ν(E,ES)). Consequently, i : (E,ν(E,ES))→ F is continuous.

(d)⇒(a). First of all we remark that (E,ν(E,ES)) is separable as an SK -space. Thus, we

have to show that it isω-barrelled, that is, that every countable σ(ES,E)-bounded sub-

set {a(n) | n ∈ N} of ES is ν(E,ES)-equicontinuous (cf. [14, page 27, Theorem 10.2]).

For a proof of this we consider the quasi-matrix map A defined by the matrix A =
(a(n)k )n,k. Then E ⊂ mA since A is σ(ES,E)-bounded, and (mA,τA) is an Aϕ-space

because of Proposition 5.4. Hence i : (E,ν(E,ES))→ (mA,τA) is continuous. Further-

more, the quasi-matrix map A : (mA,τmA )→ (m,‖ ‖∞) is continuous since ‖ ‖∞◦A is a

continuous semi-norm on mA . Altogether, A : (E,ν(E,ES))→ (m,‖ ‖∞) is also contin-

uous. Thus there exists v ∈ ES such that ‖Ax‖∞ = supn |s(a(n)x)| ≤ p|v|(x) for each

x ∈ E. Consequently, the equicontinuity of {a(n) |n∈N} is proved.

7. Applications. In this section, we deal with applications of our general inclusion

theorems to the case of certain dual pairs (E,ES). In various situations we discuss

connections between weak sequential completeness and barrelledness on one hand

and certain modifications of weak sectional convergence on the other hand.

Case 7.1 (S = cT and S = cs). Let T = (tnk) be a fixed row-finite Sp1-matrix and

S := cT as well as limT s(z) := z (z ∈ cT ). (7.1)

Clearly, S endowed with its (separable) FK -topology is an Lϕ- and Aϕ-space. We have

(cf. [8, 15])

ES = Eβ(T) :=
{
y ∈ω | ∀x ∈ E : lim

n

∑
k
tnkykxk exists

}
(7.2)

for each sequence space E and

ESK = ESTK :=
{
x ∈ E | ∀f ∈ E′ : f(x)= lim

n

∑
k
tnkxkf

(
ek
)}

(7.3)

(weak T -sectional convergence) if E is a K-space containing ϕ.
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Aiming a characterization of quasi-matrix maps in this context we need the follow-

ing concept (cf. [7]): let � be a double sequence space, that is a linear subspace of the

linear space Ω of all double sequences y = (ynr ), and let �= (A(r)) be a sequence of

infinite matrices A(r) = (a(r)nk )n,k. We put

Ω� :=
⋂
r
ωA(r) , �� :=

{
x ∈Ω� |�x :=

(∑
k
a(r)nk xk

)
nr
∈�

}
. (7.4)

If there exists a limit functional on �, say �-lim, then the summability method induced

by �� and the limit functional

�- lim� : �� �→K, x � �→�- lim�x, (7.5)

is called a �-SM -method. For example, this definition contains as a special case the

�c-SM -methods considered by Przybylski [16] where

�c :=
{
y = (ynr )n,r∈N∣∣∣∣ lim

r
lim
n
ynr =: �c- limy exists

}
. (7.6)

Furthermore, if

�m :=
{(
ynr

)∈Ω | ∀r ∈N :
(
ynr

)
n ∈ c and

(
lim
n
ynr

)
r
∈m

}
(7.7)

and � = (A(r)) is any sequence of matrices, then �m� := {x ∈ Ω� | �x ∈ �m} is an

FK -space and �c� is a closed separable subspace of �m�.

The introduced notation enables us to describe quasi-matrix maps in the situation

of (7.1): if A = (ank) is any matrix, then the domain cA of the corresponding quasi-

matrix map A is precisely the domain �c� of the �c-SM -method �= (A(r))withA(r) :=
(tnkark)n,k (r ∈ N). Thus mA = �m� is an Aϕ-space and cA = �c� is an Lϕ- and Aϕ-

space (where we consider them as FK -spaces).

As consequences of the main Theorems 6.1 and 6.2 we get the following inclusion

theorems in the situation of the dual pair (E,Eβ(T)).

Theorem 7.2. For any sequence space E with ϕ ⊂ E the following statements are

equivalent:

(a) (Eβ(T),σ(Eβ(T),E)) is sequentially complete.

(b) The implication E ⊂ F ⇒ E ⊂ FSTK holds whenever F is an Lϕ-space.

(c) The implication E ⊂�c� ⇒ E ⊂ (�c�)STK holds for each sequence � of matrices.

Theorem 7.3. For any sequence space E with ϕ ⊂ E the following statements are

equivalent:

(a) (E,τ(E,Eβ(T))) is barrelled.

(b) The implication E ⊂ F ⇒ E ⊂ FSTK holds whenever F is an Aϕ-space.

(c) The implication E ⊂ �m� ⇒ E ⊂ (�c�)STK holds for each sequence � of matrices

satisfying ϕ ⊂�c� .

Note, in the particular case of T := Σ (summation matrix) we get the well-known

inclusion theorems of Bennett and Kalton [3, Theorems 4 and 5] in a generalized

version due to the authors (cf. [5, Theorem 4.4] and [6, Theorem 5.1]).
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Case 7.4 (S = bvT ). Let T = (tnk) be a fixed row-finite Sp∗1 -matrix and

S := bvT as well as s(z) := lim
�∈Φ

∑
n∈�

∑
k

(
tnk−tn−1,k

)
zk = limT z

(
z ∈ bvT

)
. (7.8)

Then S equipped with its (separable) FK -topology is an Lϕ- and Aϕ-space. We have

(cf. [10, 11])

ES = Eα(T) :=
{
y ∈ω

∣∣∣∣∑
n

∣∣∣∣∣∑
k

(
tnk−tn−1,k

)
ykxk

∣∣∣∣∣<∞
}

(7.9)

for any sequence space E. Moreover, if E is a K-space containing ϕ, then we obtain

ESK = EUSTK :=
{
x ∈ E | ∀f ∈ E′ :

∑
n

∣∣∣∣∣∑
k

(
tnk−tn−1,k

)
xkf

(
ek
)∣∣∣∣∣<∞,

f (x)= lim
n

∑
k
tnkxkf

(
ek
)} (7.10)

(cf. [11, Theorem 3.1]).

For a description of quasi-matrix maps in the situation of (7.8) we introduce the

double sequence spaces

�vm :=
{(
ynr

) | ∀r ∈N :
(
ynr

)
n ∈ bv and

(
lim
n
ynr

)
r
∈m

}
,

�vc :=
{(
ynr

) | ∀r ∈N :
(
ynr

)
n ∈ bv and

(
lim
n
ynr

)
r
∈ c

}
,

(7.11)

and the limit functional �vc- lim : �vc → K, (ynr ) � limr limnynr . It is a standard

exercise to prove that �vm� is an FK -space for each sequence �= (A(r)) of matrices

and that �vc� is a closed separable subspace of �vm� .

For a matrix A= (ank) the corresponding quasi-matrix map A in the context of (7.8)

is the �vc-SM -method � = (A(r)) with A(r) := (tnkark)nk (r ∈ N). Thus mA =�vm�

and cA =�vc� .

Applying the main Theorems 6.1 and 6.2 to the situation of (7.8), we get the follow-

ing inclusion theorems.

Theorem 7.5. For any sequence space E with ϕ ⊂ E the following statements are

equivalent:

(a) (Eα(T),σ(Eα(T),E)) is sequentially complete.

(b) The implication E ⊂ F ⇒ E ⊂ FUSTK holds whenever F is an Lϕ-space.

(c) The implication E⊂�vc� ⇒ E⊂(�vc�)USTK holds for each sequence � of matrices.

Theorem 7.6. For any sequence space E with ϕ ⊂ E the following statements are

equivalent:

(a) (E,τ(E,Eα(T))) is barrelled.

(b) The implication E ⊂ F ⇒ E ⊂ FUSTK holds whenever F is an Aϕ-space.

(c) The implication E ⊂�vm� ⇒ E ⊂ (�vc�)USTK holds for each sequence � of matri-

ces satisfying ϕ ⊂�vc� .
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Case 7.7 (S = �). We consider the case of (3.3). Clearly, this is a particular case

of (7.8) with T = Σ. Then ES = Eα and ESK = EUSAK (cf. [18, 19]). A quasi-matrix map

induced by a matrixA= (ank) is in this situation a matrix map yn =
∑
kankxk (n∈N)

with the application domain ω|A| := {x ∈ω | ∀n ∈ N :
∑
k |ankxk| <∞}. We now put

m|A| :=mA∩ω|A|, c|A| := cA∩ω|A| and Λ⊥|A| := {x ∈ c|A| |
∑
k |akxk|<∞ and limAx =∑

kakxk} (here we assume ϕ ⊂ cA). From Theorems 6.1 and 6.2 we get the following

inclusion theorems.

Theorem 7.8. For any sequence space E with ϕ ⊂ E the following statements are

equivalent:

(a) (Eα,σ(Eα,E)) is sequentially complete.

(b) Every matrix map

A :
(
E,τ

(
E,Eα

))
�→ F with E ⊂ω|A| (7.12)

is continuous whenever F is an Lϕ-space.

(c) The implication E ⊂ F ⇒ E ⊂ FUSAK holds whenever F is an Lϕ-space.

(d) The implication E ⊂ c|A| ⇒ E ⊂Λ⊥|A| holds for each matrix A.

Note that Bennett [2] proved, that (Eα,σ(Eα,E)) is sequentially complete if E is a

monotone sequence space, and that Swartz and Stuart [21, Theorem 5] (see also [20,

Theorem 7]) gave a more general class of sequence spaces having that property.

Theorem 7.9. For any sequence space E with ϕ ⊂ E the following statements are

equivalent:

(a) (E,τ(E,Eα)) is barrelled.

(b) Any matrix map according to (7.12) is continuous when F is an Aϕ-space.

(c) The implication E ⊂ F ⇒ E ⊂ FUSAK holds whenever F is an Aϕ-space.

(d) The implication E ⊂m|A| ⇒ E ⊂Λ⊥|A| holds for each matrix A satisfying ϕ ⊂ cA.

Case 7.10 (S = [cs]). Let

S := [cs] :=
{
z ∈ cs

∣∣∣∣ lim
j

∑
2j

∣∣zk∣∣= 0

}
, s(z) :=

∑
k
zk

(
z ∈ [cs]), (7.13)

where
∑

2jak :=∑2j+1−1
k=2j ak (cf. [9]). It is known that [cs] is an AK -BK -space with the

norm ‖ ‖ defined by ‖z‖ := supm |
∑m
k=1zk|+supj

∑
2j |zk| (z ∈ [cs]) (cf. [9, Theorem

4.5]). Thus, [cs] is an Lϕ- and Aϕ-space. For a sequence space E we set E[β] := E[cs] =
{y ∈ Eβ | limj

∑
2j |ykxk| = 0}. If E is a K-space containing ϕ, we get

ESK =
{
x ∈ E | ∀f ∈ E′ :

(
ufx

)∈ [cs] and f(x)=
∑
k
xkf

(
ek
)}

= (Ef )[β]∩ESAK.

(7.14)

The quasi-matrix map A : ωA →ω corresponding to a matrix A = (ank) is precisely

the matrix map A :ω[A]→ω with

ω[A] :=
{
x ∈ωA | ∀n∈N : lim

j

∑
2j

∣∣ankxk∣∣= 0

}
=ωA. (7.15)
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We put m[A] :=mA∩ω[A], c[A] := cA∩ω[A] and, assuming ϕ ⊂ cA,

Λ⊥[A] :=
{
x ∈ c[A] | ax ∈ [cs] and lim

A
x =

∑
k
akxk

}
. (7.16)

From Theorems 6.1 and 6.2 we obtain the following inclusion theorems in the con-

text of (7.13).

Theorem 7.11. For any sequence space E with ϕ ⊂ E the following statements are

equivalent:

(a) (E[β],σ(E[β],E)) is sequentially complete.

(b) Each matrix map

A :
(
E,τ

(
E,E[β]

))
�→ F with E ⊂ω[A] (7.17)

is continuous whenever F is an Lϕ-space.

(c) The implication E ⊂ F ⇒ E ⊂ (Ff )[β]∩FSAK holds whenever F is an Lϕ-space.

(d) The implication E ⊂ c[A]⇒ E ⊂Λ⊥[A] holds for each matrix A.

Theorem 7.12. For any sequence space E with ϕ ⊂ E the following statements are

equivalent:

(a) (E,τ(E,E[β])) is barrelled.

(b) Each matrix map according to (7.17) is continuous when F is an Aϕ-space.

(c) The implication E ⊂ F ⇒ E ⊂ (Ff )[β]∩FSAK holds whenever F is an Aϕ-space.

(d) The implication E ⊂m[A]⇒ E ⊂Λ⊥[A] holds for each matrix A.
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[17] W. H. Ruckle, An abstract concept of the sum of a numerical series, Canad. J. Math. 22
(1970), 863–874. MR 42#3463. Zbl 0201.15702.

[18] J. Sember and M. Raphael, The unrestricted section properties of sequences, Canad. J. Math.
31 (1979), no. 2, 331–336. MR 80j:46021. Zbl 0396.46006.

[19] J. J. Sember, On unconditional section boundedness in sequence spaces, Rocky Mountain
J. Math. 7 (1977), no. 4, 699–706. MR 56#6338. Zbl 0378.46009.

[20] C. Swartz, Infinite Matrices and the Gliding Hump, World Scientific Publishing, New Jersey,
1996. MR 98b:46002. Zbl 0923.46003.

[21] C. Swartz and C. Stuart, A projection property and weak sequential completeness of α-
duals, Collect. Math. 43 (1992), no. 2, 177–185. MR 94h:40014. Zbl 0779.46013.

[22] B. Z. Vulih, Vvedenie v teoriyu poluuporyadochennykh prostranstv [Introduction to the
Theory of Partially Ordered Spaces], Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1961
(Russian). MR 24#A3494.

[23] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, New York, 1978.
MR 81d:46001. Zbl 0395.46001.

[24] , Summability through Functional Analysis, North-Holland Mathematics Studies,
vol. 85, North-Holland, Amsterdam, 1984. MR 85d:40006. Zbl 0531.40008.

Johann Boos: Fachbereich Mathematik, FernUniversität Hagen, D-58084 Hagen,

Germany

E-mail address: johann.boos@fernuni-hagen.de

Toivo Leiger: Puhta Matemaatika Instituut, Tartu Ülikool, EE 50090 Tartu, Estonia

E-mail address: leiger@math.ut.ee

http://www.ams.org/mathscinet-getitem?mr=88h:46010
http://www.emis.de/cgi-bin/MATH-item?0596.40006
http://www.ams.org/mathscinet-getitem?mr=93d:46018
http://www.emis.de/cgi-bin/MATH-item?0782.46012
http://www.ams.org/mathscinet-getitem?mr=93d:46018
http://www.ams.org/mathscinet-getitem?mr=93k:46006
http://www.emis.de/cgi-bin/MATH-item?0833.46003
http://www.ams.org/mathscinet-getitem?mr=83g:46011
http://www.emis.de/cgi-bin/MATH-item?0447.46002
http://www.ams.org/mathscinet-getitem?mr=50:943
http://www.emis.de/cgi-bin/MATH-item?0275.46007
http://www.ams.org/mathscinet-getitem?mr=42:3463
http://www.emis.de/cgi-bin/MATH-item?0201.15702
http://www.ams.org/mathscinet-getitem?mr=80j:46021
http://www.emis.de/cgi-bin/MATH-item?0396.46006
http://www.ams.org/mathscinet-getitem?mr=56:6338
http://www.emis.de/cgi-bin/MATH-item?0378.46009
http://www.ams.org/mathscinet-getitem?mr=98b:46002
http://www.emis.de/cgi-bin/MATH-item?0923.46003
http://www.ams.org/mathscinet-getitem?mr=94h:40014
http://www.emis.de/cgi-bin/MATH-item?0779.46013
http://www.ams.org/mathscinet-getitem?mr=24:A3494
http://www.ams.org/mathscinet-getitem?mr=81d:46001
http://www.emis.de/cgi-bin/MATH-item?0395.46001
http://www.ams.org/mathscinet-getitem?mr=85d:40006
http://www.emis.de/cgi-bin/MATH-item?0531.40008
mailto:johann.boos@fernuni-hagen.de
mailto:leiger@math.ut.ee

