
IJMMS 28:3 (2001) 181–187
PII. S0161171201010766

http://ijmms.hindawi.com
© Hindawi Publishing Corp.
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ALGEBRAS OF DIMENSION 2r , r ≥ 2

RAOUL E. CAWAGAS

(Received 9 August 2000 and in revised form 19 March 2001)

Abstract. Every Cayley algebra of dimension 2r , r ≥ 2, contains an embedded invertible
loop of order 2r+1 generated by its basis. Such a loop belongs to a class of non-abelian
invertible loops that are flexible and power-associative.
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1. Introduction. Every finite-dimensional algebra A over a field F can be defined

by a multiplication table of its basis En = {e1, . . . ,en}. Such a table can be expressed

by a matrix Mr(En)= (mij), i,j = 1, . . . ,n, called a multiplication matrix or ⊗-matrix,

where mij = ei⊗ej =
∑n
k=1γ

k
ijek, γ

k
ij ∈ F are its structure constants, and ei,ej ,ek ∈ En.

By a suitable choice of structure constants, it is possible to construct algebras with

desired properties.

There is a class of real algebras called Cayley algebras of dimension n= 2r , where

r ≥ 2 [2]. This class includes the classical Cayley-Dickson algebras H (quaternions)

andO (octonions) [3] as well as the sedenions S. In this note, we show that the basis of

such an algebra A forms a non-abelian invertible loop of order 2r+1, called a Cayley

loop, that is flexible and power-associative. Moreover, we also indicate how the idea

of the ⊗-matrix can be used in the construction of special algebraic structures (like

the group of Dirac operators in quantum electrodynamics).

2. The⊗-matrix of a Cayley algebra. Consider the⊗-matrixM3(E8)= (mij) shown

in Figure 2.1 which defines the algebra of Cayley numbers (or octonions) O [2]. If we

separate the sign coefficients (or structure constants) zij of the entries of M3 into

another matrix Z3(E8) (Figure 2.2(a)), then the resulting matrix S3(E8) can be seen to

be the Cayley table of the Klein group (E8,◦) of order n = 8 shown in Figure 2.2(b).

This group is isomorphic to the group C3
2 ≡ C2×C2×C2, where C2 is the cyclic group

of order 2.

As shown in Figure 2.1, the ⊗-matrix M3(E8) that defines O has two submatrices

M2(E4) and M1(E2) that define the algebras H and C, respectively. Similarly (Figure

2.2(b)), the matrix S3(E8) that defines the Klein group (E8,◦) contains two submatrices

S2(E4) and S1(E2) that define its subgroups (E4,◦) and (E2,◦).
The decomposition of the ⊗-matrix M3(E8) into two other matrices Z3(E8) and

S3(E8), therefore, shows that the algebras O, H, and C are defined by ⊗-matrices

of the form �r (Es)=�r (Es)��r (Es), where � is Hadamard multiplication, that is, if

�r = (zij) and �r = (eij) are matrices of the same dimension, then their Hadamard

product is �r = (mij), where mij = zij·eij , and · is some binary operation.
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Figure 2.1. The ⊗-matrix M3(E8) = (mij), where mij = ei ⊗ ej = zijek
which defines the real division algebra A3 of dimension n= 8 isomorphic to
the Cayley numbers (or octonions)O. To simplify the notation for the entries
mij , we have set zijk≡ zijek, where zij =±1 and k= 1, . . . ,8.

+
−+

+
+

+
+
+
+

+
+

+

+

−

−

− −
−
−
−

+
+

+
+

+

+

+

+

−

−
−

−

−
−
−
−
+
+
+
+

+

+

+

+

−

−

−

− −
−

−
−
+

+
+

+ +
+

+
+

−
−

−
−

(a) Z3(E8).
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(b) S3(E8).
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Figure 2.2. Decomposition of the ⊗-matrix M3(E8) into two special matri-
ces. (a) Z3(E8) = (zij), i,j = 1, . . . ,8, where (zij) = ±1 ∈ F is a sign matrix.
(b) S3(E8)= (eij), where eij = ei◦ej = ev , is the structure matrix of the Klein

group (E8;◦) � C3
2 of order 8. For notational simplicity, we have used ± to

represent ±1 and the subscript v to represent the element ev ∈ E8.

We now formally define the matrices �, �, and � as follows.

Definition 2.1. A sign matrix is an m×n matrix �= (zij), where zij =+1 or −1

(or simply + or −), for every i= 1, . . . ,m and for every j = 1, . . . ,n.

Thus, an m×n sign matrix [1] is one whose entries are elements of the number set

F = {+1,−1} ∈R. Therefore, they satisfy the following composition rule:

(+1)·(+1)= (−1)·(−1)=+1, (+1)·(−1)= (−1)·(+1)=−1. (2.1)

This rule shows that the number set F = {+1,−1} is closed under the operation · of

multiplication; they form a group (F,·) isomorphic to the cyclic group C2 of order 2.
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Definition 2.2. Let (Es,◦) be a finite binary system (like a quasigroup, group or a

loop) of order s, where Es = {e1, . . . ,es}. The matrix �(Es)= (eij), where eij = ei◦ej , is

called the structure matrix (or Cayley table) of (Es,◦).
Every finite binary system of order s is completely defined by its structure matrix (or

Cayley table) which is a listing of all the s2 possible binary products of its s elements.

In the case of finite quasigroups, loops, and groups, their Cayley tables form Latin

squares.

Definition 2.3. Let (Es,◦) be a binary system of order s, where Es = {ei | i ∈ I}
and I = {1, . . . ,s}, and let �r (Es)= (eij) be its structure matrix, where eij = ei ◦ej for

all i,j ∈ I. Let �r (Es)= (zij) be a given s×s �-matrix. The s×s matrix

�r
(
Es
)=�r

(
Es
)
��r

(
Es
)= ([mr

]
ij
)

(2.2)

is called the multiplication matrix or ⊗–matrix of Es , where � is Hadamard multipli-

cation such that [
mr

]
ij = zij ·eij = zij ·

(
ei ◦ej

)≡ ei⊗ej (2.3)

for all i,j ∈ I, and the operation · is called sign multiplication.

In Definition 2.3 of the ⊗-matrix, we introduced the operation ⊗ in terms of the

operation · of sign multiplication in the expression ei⊗ej = zij ·eij . This operation ·
simply attaches a sign zij (+ or−) to the left of the symbol eij . If we take �r to be a sign

matrix whose entries zij are the numbers +1 and −1; and �r to be a structure matrix

whose entries eij are elements of a set Es of vectors, then we can take the operation ·
to be ordinary scalar multiplication so that the product ei⊗ej = zij ·eij will be a vector.

This would be the case if �r (Es) is the ⊗-matrix of a finite-dimensional real algebra

whose basis is Es . This is exemplified by the octonions which we discussed above.

3. The Cayley loops. It follows from Definition 2.3 that if �r (Es) is the ⊗-matrix

of a real algebra A, then the operation ⊗ is closed over A but not over Es because of

the sign coefficient zij in its defining equation ei⊗ej = zij ·(ei◦ej). Thus, if zij =−1,

then −(ei◦ej) ∉ Es . However, if we take the larger set �= {±ei | i∈ I} of order σ = 2s,
where +ei ≡ (+1)ei = ei and −ei ≡ (−1)ei, then the operation ⊗ will be closed over �.

This means that the system (�,⊗) is a groupoid embedded in the algebra A. Such a

groupoid will be called a ⊗-system.

Consider once more the octonion algebraO. This is defined by the ⊗-matrixM3(E8)
= Z3(Es)�S3(E8) shown in Figure 2.1. For this case, (E8,◦) is the Klein group of order

s = 8, and the operations ⊗, ·, and the matrix Z3 satisfy the following basic relations:

ei⊗ej = zij ·
(
ei ◦ej

)
,

−ei = (−1)·ei, −1∈ F,
+ei = (+1)·ei = ei, +1∈ F,(−ei)⊗(+ej)= (+ei)⊗(−ej)=−(ei⊗ej),(−ei)⊗(−ej)= (+ei)⊗(+ej)= ei⊗ej,

(3.1)

for all i,j ∈ I, where F = {+1,−1} satisfies (2.1).
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Equations (3.2) define the basic properties of the entries of the sign matrix Z3 while

(3.3), on the other hand, define the basic properties of the products elements of E8

under the operation ⊗
zii =−1, whenever i≥ 2,

zi1 = z1i =+1, ∀i,
zij =−zji, whenever i≠ j, i,j ≥ 2,

(3.2)

ei⊗ei = e2
i =−e1, if i≥ 2,

ei⊗e1 = e1⊗ei = ei, ∀i,
ei⊗ej =−ej⊗ei, if i≠ j, i,j ≥ 2.

(3.3)

Any real algebra (like the octonions O and sedenions S) defined by a ⊗-matrix of

the form �r (Es)=�r (Es)��r (Es), satisfying (3.1), (3.2), and (3.3), where (Es,◦)� Cr2
will be called a Cayley algebra of dimension s = 2r , r ≥ 2. In such an algebra, the

set � = {±ei | i = 1, . . . ,s} and the operation ⊗ form an embedded non-abelian ⊗-

system (�,⊗) that is an invertible loop (a loop in which every element has a unique

two-sided inverse), where δiei⊗δjej = (δiδj)[zij ·(ei◦ej)] and δi,δj ∈ F . This form of

the composition rule is implied by (3.1). In the case of the octonions O, the ⊗-system

(�,⊗), where � = {±ei | i = 1, . . . ,8}, forms a non-abelian invertible loop of order 16

called the octonion loop. In general, we have the following theorem.

Theorem 3.1. Let (�,⊗) be a⊗-system embedded in a Cayley algebraA of dimension

2r , r ≥ 2, where �={±ei | i= 1, . . . ,s = 2r} and⊗ is a binary operation over � satisfying

(3.1), (3.2), and (3.3). Then (�,⊗) is a non-abelian invertible loop of order 2r+1.

Proof. By Definition 2.3 and (3.1), (3.2), and (3.3), it follows that (�,⊗) is a non-

abelian groupoid of order 2r+1 with an identity e1. Moreover, (�,⊗) is invertible, that

is, every element ex ∈ � has a unique inverse e−1
x ∈ �. Thus e−1

1 = e1 and e−1
x = −ex

since ex ⊗ (−ex) = −ex ⊗ex = e1 for all x ≥ 2. Similarly, every element −ex ∈ � has

a unique inverse (−ex)−1 = ex ∈ �. To prove that (�,⊗) is an invertible loop, it is

therefore sufficient to show that every linear equation has a unique solution. By (3.1),

the product of any two elements in (�,⊗) is determined primarily by the product

(ei ◦ ej) in (Es,◦). Since (Es,◦) is a group, then every linear equation has a unique

solution. This, together with (3.1) and (3.3), imply that this is also true for (�,⊗).
Therefore, (�,⊗) is an invertible loop.

Definition 3.2. A ⊗-system (�,⊗) satisfying (3.1), (3.2), and (3.3), where (Es,◦)�
Cr2 is the generalized Klein group of order s = 2r , r ≥ 2, is called a Cayley loop.

By definition, every Cayley algebra A of dimension 2r is defined by a ⊗-matrix satis-

fying (3.1), (3.2), and (3.3). Therefore, it follows from Theorem 3.1 that its embedded

⊗-system (�,⊗) is a Cayley loop. Thus, the octonion loop generated by the basis of

the octonion algebra is a Cayley loop. Similarly, the loop generated by the basis of the

sedenion algebra is also a Cayley loop.

The Cayley loop (�,⊗) can be explicitly expressed in terms of the matrix �r (Es)=
([mr]ij) as follows. Let �(�) be the structure matrix of (�,⊗). Partition �(�) into
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four blocks �pq, p,q = 1,2, and let �11 = �22 = �r (Es) and �12 = �21 = −�r (Es),
where −�r (Es) = (−[mr]ij). Then we can simply write �(�) = (�pq). The structure

matrix �(�) of (�,⊗) is shown below in block form in terms of the matrix �r (Es)

�(�)=
[

�11 =�r
(
Es
)

�12 =−�r
(
Es
)

�21 =−�r
(
Es
)

�22 =�r
(
Es
)
]
. (3.4)

Every Cayley loop or ⊗-system (�,⊗) can be expressed in this matrix form �(�).
This matrix clearly shows that (�,⊗) is an invertible loop and it can be used as an

alternative proof of Theorem 3.1. Many important invertible loops and groups have

this structure.

3.1. Construction of Cayley loops. The foregoing considerations show that we can

construct special loops by means of ⊗-matrices. As an illustration, consider the case

of the 4×4 matrix M2,v(E4)= Z2,v(E4)�S2(E4) when n= 4 so that r = 2.

It can be shown [2] that if Zr,v is any n×n sign matrix satisfying (3.2), then there

are exactly |Zr,v | = 2µ matrices of this form, where µ =∑n−1
i=2 (n−i). Since n= 4, then

we find that µ = 3. Hence there are |Z2,v | = 23 = 8 possible 4×4 Z2,v matrices so that

v = 1, . . . ,8. These eight sign matrices are shown in Figure 3.1.



+ + + +
+ − + +
+ − − +
+ − − −




Z2,1



+ + + +
+ − + +
+ − − −
+ − + −




Z2,2



+ + + +
+ − + −
+ − − +
+ + − −




Z2,3



+ + + +
+ − + −
+ − − −
+ + + −




Z2,4

+ + + +
+ − − −
+ + − −
+ + + −




Z2,5



+ + + +
+ − − −
+ + − +
+ + − −




Z2,6



+ + + +
+ − − +
+ + − −
+ − + −




Z2,7



+ + + +
+ − − +
+ + − +
+ − − −




Z2,8

Figure 3.1. Eight possible Z-matrices Z2,v that can be used to form eight
matricesM2,v [as shown in Figure 3.2] satisfying (3.2). Note that the matrices
in the top row are the transposes of those in the bottom row. Thus, Z2,3 and
Z2,7 are transposes, etc.

Figure 3.1 shows the eight matrices Z2,v which, together with the submatrix S2

shown in Figure 2.2(b), are used to form the eight⊗-matricesM2,v shown in Figure 3.2.

These matrices, in turn, can be used to construct eight Cayley loops of order σ = 8

whose structure matrices have the form given by (3.4).

It can be shown that the ⊗-matricesM2,3 andM2,7 generate loops both of which are

isomorphic to the quaternion group. The other six ⊗-matrices, on the other hand, gen-

erate non-associative finite invertible loops (NAFILs) that are isomorphic to each other.

Although the idea of the⊗-matrix �r (Es)=�r (Es)��r (Es) is based on the multipli-

cation matrix of the Cayley algebras, Definition 2.3 is not restricted to these algebraic

systems. Such a matrix can therefore be used to construct not only Cayley loops but

also other structures (like the group of Dirac operators in quantum electrodynam-

ics [1]) which we call ZSM loops. Starting with a given group (Es,◦), new systems can



186 RAOUL E. CAWAGAS




1 2 3 4

2 −1 4 3

3 −4 −1 2

4 −3 −2 −1




M2,1




1 2 3 4

2 −1 4 3

3 −4 −1 −2

4 −3 2 −1




M2,2




1 2 3 4

2 −1 4 −3

3 −4 −1 2

4 3 −2 −1




M2,3




1 2 3 4

2 −1 4 −3

3 −4 −1 −2

4 3 2 −1




M2,4


1 2 3 4

2 −1 −4 −3

3 4 −1 −2

4 3 2 −1




M2,5




1 2 3 4

2 −1 −4 −3

3 4 −1 2

4 3 −2 −1




M2,6




1 2 3 4

2 −1 −4 3

3 4 −1 −2

4 −3 2 −1




M2,7




1 2 3 4

2 −1 −4 3

3 4 −1 2

4 −3 −2 −1




M2,8

Figure 3.2. Eight ⊗-matrices M2,v satisfying (3.3). Note that M2,3 and M2,7
are transposes and that both generate Cayley loops isomorphic to the quater-
nion group

be formed by means of �-matrices. The given group is thus the substratum of such a

system, while the �-matrix determines its special properties.

3.2. Properties of Cayley loops. Finally, we now prove the important theorem that

any Cayley loop (�,⊗) is flexible and power-associative.

Theorem 3.3. Let (�,⊗) be a Cayley loop. Then (�,⊗) is flexible and power-

associative.

Proof. By Theorem 3.1, (�,⊗) is a non-abelian invertible loop. To prove that it

is flexible, let ei,ej ∈ �. Then the following identity (called the flexible law) must be

satisfied:

ei⊗
(
ej⊗ei

)= (ei⊗ej)⊗ei (3.5)

for all ei,ej ∈ �. Clearly, this is trivially satisfied if i,j = 1 and also if ei and ej are

inverses. By (3.3), if i ≠ j, i,j ≥ 2, the left side of this identity can be written as

ei⊗ (ej ⊗ ei) = −(ej ⊗ ei)⊗ ei. But (ej ⊗ ei) = −(ei⊗ ej) so that we have −(ej ⊗ ei) =
(ei ⊗ ej). Therefore, it follows that ei ⊗ (ej ⊗ ei) = (ei ⊗ ej)⊗ ei; and hence (�,⊗) is

flexible. To prove that (�,⊗) is power-associative, we must show that it satisfies the

following two equations: ei ⊗ e2
i = e2

i ⊗ ei = e3
i and e3

i ⊗ ei = e2
i ⊗ e2

i . Since (�,⊗) is

flexible, the first equation is satisfied. Again, by (3.3), if i ≥ 2 we have e2
i = −e1 so

that e3
i = e2

i ⊗ ei = −e1 ⊗ ei = −ei. Thus e3
i ⊗ ei = −ei ⊗ ei = −e2

i = e1 and e2
i ⊗ e2

i =
(−e1)⊗(−e1)= e1. Therefore it follows that e3

i ⊗ei = e2
i ⊗e2

i . This proves the theorem.

If r = 2, then there exist two Cayley loops of order n= 8, one of which is an NAFIL

while the other is a group (the quaternion group). All Cayley loops, whether associative

or nonassociative, are non-abelian, flexible, and power-associative.

Some Cayley loops (like the octonion loop) are Moufang, and hence also alternative

[2] and IP. Others (like the sedenion loop) are alternative and IP but not Moufang.

Although all basic properties of a generalized Cayley algebra are determined by

the embedded Cayley loop generated by its basis, not all properties of the loop are
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satisfied by the algebra. For instance, the sedenion loop that defines the sedenion

algebra is alternative but the sedenion algebra is not.

It is easy to show that the elements e1,−e1 commute and associate with the elements

ei ∈ �. This implies that the set {e1,−e1} is the center of the Cayley loop (�,⊗).
It would be interesting to find out if the inner mappings of Cayley loops are auto-

morphisms. This, and other interesting questions, are the subject of our present

studies.

4. Summary. The class of Cayley algebras of dimension 2r , where r ≥ 2, is a gener-

alization of the classical Cayley-Dickson algebras. Such an algebra is defined in terms

of its basis Es = {e1, . . . ,es} by a ⊗-matrix of the form �r (Es) = �r (Es) ��r (Es) =
([mr]ij), where [mr]ij = ei⊗ ej = zij · eij = zij · (ei ◦ ej), in which ⊗ satisfies (3.1),

(3.2), and (3.3). By forming the set �= {±ei | i∈ I} of order σ = 2r+1, we showed that

the system (�,⊗) is a non-abelian invertible loop, called a Cayley loop, that is flexible

and power-associative.

Although all properties of a generalized Cayley algebra are determined by its Cayley

loop, not all properties of the loop are satisfied by the algebra.
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