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THE BOOLEAN ALGEBRA AND CENTRAL GALOIS ALGEBRAS

GEORGE SZETO and LIANYONG XUE

(Received 15 March 2001)

ABSTRACT. Let B be a Galois algebra with Galois group G, Jg = {b € B | bx = g(x)b for all
x € B} for g € G, and BJy; = Bey for a central idempotent e4. Then a relation is given
between the set of elements in the Boolean algebra (Bg, <) generated by {0,e4 | g € G}
and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G
is characterized for an e € B,.

2000 Mathematics Subject Classification. 16S35, 16W20.

1. Introduction. Galois theory of rings have been intensively studied [1, 3, 4, 5, 6, 7].
Let B be a Galois algebra with Galois group G and J; = {b € B | bx = g(x)b for all x €
B} for each g € G.In [4], it was shown that BJ,; = Bey for some central idempotent e, of
B. Let B, be the Boolean algebra generated by {0,e, | g € G}.In[7], the following struc-
ture theorem for B was given: there exist {e; € B, | i = 1,2,...,m for some integer m}
and some subgroups H; of G such that B= @3>, Be; ® B(1 - > 1", e;) where Be; is a
central Galois algebra with Galois group H; foreachi=1,2,...,m and B(1— Z?L e;) =
C(1 -3, e;) which is a commutative Galois algebra with Galois group induced by
and isomorphic with G in case 1 = Zfﬁl ¢;, where C is the center of B. We observe
that (1) e; = Ipen,en which is a nonzero monomial in B, for a maximal subset H;
of G, (2) H; is a subgroup of G, and (3) Be; is a central Galois algebra with Galois
group H;. In the present paper, we will discuss a general case: what kind of elements
e in B, and subgroups H, give a central Galois algebra Be with Galois group H,? We
will show that (1) for any nonzero monomial e = Ilzesey of B, for some subset S of
G,let H, = {g € G | e < ¢4, thatis, ee; = e}; then H, is a subgroup of G, (2) when
H, # {1}, Be is a central Galois algebra with Galois group H, if and only if e is a
nonzero minimal element in B, (i.e., Be is one of the components of B as given in
[7, Theorem 3.8]), (3) for a nonzero monomial e = Ilyesey of B, for some subset S
of G,let T, = {g € G | e = e4}; then T, is a subgroup of G if and only if e = 1, and
(4)let H = {g e G|ey=1}. Then e; = 0 for each g ¢ H; if and only if B is either
a central Galois algebra with Galois group H; or a commutative Galois algebra with
Galois group G. Thus, {Be | e is a nonzero minimal element in B,} are the only cen-
tral Galois algebras with Galois group H, arising from nonzero monomials e in B,
and when B, = {0,1}, B is a central Galois algebra with Galois group H; and the cen-
ter C is a commutative Galois algebra with Galois group G/H,. This fact generalizes
the DeMeyer theorem for a Galois algebra with an indecomposable center C (see [1,
Theorem 1]).
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2. Definitions and notations. Let B be a ring with 1, C the center of B, G an au-
tomorphism group of B of order n for some integer n, and B® the set of elements
in B fixed under each element in G. B is called a Galois extension of B¢ with Galois
group G if there exist elements {a;,b; in B, i = 1,2,...,m} for some integer m such
that >, a;g(b;) = 61,4 for each g € G. B is called a Galois algebra over R if B is
a Galois extension of R which is contained in C, and B is called a central Galois ex-
tension if B is a Galois extension of C. Throughout this paper, we assume that B is
a Galois algebra with Galois group G. Let J;, = {b € B | bx = g(x)b for all x € B}
and ]LE,A) ={be A|bx =g(x)b forall x € A} for each g € G, where A C B. In [4], it
was shown that BJ,; = Bey for some central idempotent e, of B. We denote by B, the
Boolean algebra generated by {0,e; | g € G;<}, where e < e’ if ee’ = e.

3. The monomials and subgroups. Let e be a nonzero monomial of By, e = Ilgesey
for a subset S of G. We have two subsets of G, He ={ge€Gle<ezland T, = {g € G |
e = e4}. We are going to show that H, is a subgroup of G, and that T, is a subgroup of
G if and only if e = 1. Let K be a subgroup of G. Then K is called a nonzero subgroup
of G if [Ixegex # 0, and K is called a maximal nonzero subgroup of G if K ¢ K’, where
K’ is a nonzero subgroup of G such that ITxegex = Igek’ ek, then K = K'. We note that
each nonzero subgroup is contained in a unique maximal nonzero subgroup of G. We
will show that there exists a one-to-one correspondence between the following three
sets: (1) the set of nonzero monomials in B, (2) the set of maximal nonzero subgroups
of G, and (3) the set of Galois extensions in B generated by a nonzero monomial e with
a maximal Galois subgroup of G.

LEMMA 3.1. Let e be a nonzero monomial in B, and H, = {g € G | e < ey4}. Then H,
is a subgroup of G.

PROOF. For any g, h € He, e < eg4, and e < e,. Hence e < egep. But JgJu C Jgn,
S0 BJgJn C BJgh. Therefore Begeyp C Begn. Thus egen < egn; and so e < egep < egp.
This implies that gh € H,. Noting that G is finite, we conclude that H, is a subgroup
of G. O

THEOREM 3.2. There exists a one-to-one correspondence between the set of nonzero
monomials in B, and the set of maximal nonzero subgroups of G.

PROOF. Define f:e — H, for a nonzero monomial e in B,, where H, is given in
Lemma 3.1. By Lemma 3.1, H, is a subgroup of G. Also, by the definition of H,, it is
easy to see that H, is a maximal nonzero subgroup of G. Thus f is well defined. Next
we show that f is one to one. Let e and e’ be two nonzero monomials in B, such that
f(e) = f(e'), thatis, H, = Hy'. Then e = Ilpep,en = lhen, en = €'. Thus f is one to
one. Moreover, let K be a maximal nonzero subgroup of G. Then e = Ilyckex # 0 and
K ={g € G| e < e4} by the definition of a maximal nonzero subgroup of G. Thus
f(e) = K. Therefore f is a bijection. O

Let N(H,) be the normalizer of H, in G for a nonzero monomial e in B,;. We next
show that Be is a Galois extension with a maximal Galois subgroup G(e) where G(e) =
{geG|g(e) =e}, and G(e) = N(H,). Consequently, we can establish a one-to-one
correspondence between the set of maximal nonzero subgroups of G and the set of
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Galois extensions in B generated by a nonzero monomial e with a maximal Galois
subgroup of N(H,).

LEMMA 3.3. For a nonzero monomial e in By, let G(e) = {g € G | g(e) = e}. Then,
(1) G(e) = N(H,), where N(H,) is the normalizer of H, in G, and (2) Be is a Galois
extension with a maximal Galois subgroup of G(e)|p. = G(e).

PROOF. (1)ForanygeN(H,), since Be =Bllycu,en =Blyecn,Jn, gBe) =g BIlnen,Jn)
= Bllpen,Jgng-1 = Bllpegn,g-1Jn = Bllpen, Jn = Be (for gHg™! = H). Hence g(e) = ¢;
and so g € G(e). Conversely, for any g € G(e),

Be = g(Be) = g(Bllnen,en) = g(Blnen,Jn) = Bllnen, Jgng-1 = Bllnen,egng-1- (3.1)

Thus e = Ipen,egpng-1. Therefore e < ey -1; and so ghg~! € H, for each h € H,. This
implies that g € N(H,).

(2) Since B is a Galois algebra with Galois group G and e € CS©, Be is a Galois
extension with a maximal Galois subgroup of G(e)|g. = G(e) (see [7, proof of Lemma
3.7]). Moreover, let g € G but g ¢ G(e). Then g(e) # e. Thus g is not an automorphism
of Be; and so G(e) is the maximal Galois group contained in G for Be. O

THEOREM 3.4. There exists a one-to-one correspondence between the set of maximal
nonzero subgroups of G and the set of Galois extensions in B generated by a nonzero
monomial e with a maximal Galois subgroup G (e) |z, = G(e) such that G(e) = N(H,).

PROOF. Let x:e — Be for eachnonzero monomial e in B;. Then, by Lemma 3.3, Be is
a Galois extension in B generated by e with a maximal Galois subgroup G(e)|g. = G(e)
such that G(e) = N(H,). Clearly, « is a bijection from the set of nonzero monomials
in B, to the set of Galois extensions Be for a nonzero monomial e in B, with a maximal
Galois subgroup G(e)|g. = G(e) which is N(H,). Thus Theorem 3.4 is an immediate
consequence of Theorem 3.2. O

In the following, we show that the set T, = {g € G | e = e} for a nonzero monomial
e in B, is not a subgroup of G unless e = 1.

THEOREM 3.5. Let e be a nonzero monomial in B, and T, = {g € G | e = e4}. Then
T. is a subgroup of G if and only if e = 1.

PROOF. Assume T, is a subgroup of G. Then 1 € T,; and so e = e; = 1. Conversely,
assume ¢ = 1. Then T, = T = {g € G | 1 = e4}. But the condition that 1 = e, is
equivalent to that 1 < ey, so T, = T} = H; where H; is given in Lemma 3.1. Hence by
Lemma 3.1, T, is a subgroup of G. O

4. Central Galois algebras. In Section 3, Lemma 3.1 proves that for a nonzero mo-
nomial e € By, He (= {g € G| e <ey}) is a subgroup of G. In [7], it was shown that if
H is a maximal subset of G such that ITycyJn # {0}, then H is a subgroup of G. We
will show that the maximal subset H is exactly H, for a minimal nonzero monomial
e € B;. Thus Be is a central Galois algebra with Galois group H, (see [7, Theorem 3.6]).
Next is a characterization of the central Galois algebra Be with Galois group H, for a
nonzero monomial e € B,.
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THEOREM 4.1. Let e be a honzero monomial in B, such that H, # {1}. The following
statements are equivalent:

(1) Be is a central Galois algebra with Galois group H,.

(2) eJg = {0} for each g ¢ H,.

(3) e is a minimal nonzero monomial in B,.

PROOF. (1)=(2). Since B is a Galois algebra over a commutative ring R with Galois
group G, B= @3 . J, (see [4, Theorem 1]). Hence

Be=o > e, = (ea > e]h)ea(ea > ejg). 4.1)

geG heH, gé¢He

By hypothesis, Be is a central Galois algebra with Galois group He, so Be =& > jcp, J, ,(lB ®,

But by [7, Lemma 3.3], J;Be) = eJy for each h € H; and so Be = & >y, eJn. Thus
® > g¢n, eJg = 10}, that is, eJ,; = {0} for each g ¢ H..

(2)=(1). Since Be = @ > jccefg = (® Xpep, eJn) ® (83 ¢, eJy) and eJ,; = {0} for
each g ¢ H,, Be = ® Xy, eJn- By [7, Lemma 3.3] again, JﬁBe) = eJy for each h € H,.
Hence Be = © Yy, J,(lBe), where J;lBe)J;ﬁ'i) = (eJp)(eJy-1) = eJuJy-1 = eC which is the
center of Be. Moreover, B is a Galois R-algebra, so it is a separable R-algebra. Thus,
Be is a separable algebra over Re (see [2, Proposition 1.11, page 46]). Therefore, Be is
a central Galois algebra over Ce (see [3, Theorem 1]).

(3)=(2). Since e is a minimal nonzero monomial in B,, for each g € G, eithere < e, or
eey = 0. Since e < ¢, for each g € H,, we have that ee, = 0 for each g ¢ H,. Therefore,
BeJ,; = Beey = {0}; and so eJ, = {0} for each g ¢ H,.

(2)=(3). Suppose e is not a minimal nonzero monomial in B,. Then there exists a
g € G such that 0 < eey < e. By the definition of H,, e = IIpcn,en; and so eey = e for
each h € H,. Hence g ¢ H.. Therefore, BeJ, = Bee, # {0}. This implies that eJ, # {0}
for some g & H,. This contradicts hypothesis (2). Thus statement (3) holds. O

When e is a minimal nonzero monomial in B,, Theorem 4.1 shows that Be is a
central Galois algebra with Galois group H,. Hence the order of H, is a unit in Be (see
[4, Corollary 3]). Moreover, by Lemma 3.3, Be is a Galois extension with Galois group
G (e) which is N(H,), so we have a structure of Be.

THEOREM 4.2. For a minimal nonzero monomial e in B, Be is a central Galois
algebra with Galois group H, and Ce is a commutative Galois algebra with Galois
group G(e)/H,.

PROOF. Since e is a minimal nonzero monomial in B, Be is a central Galois algebra
with Galois group H, by Theorem 4.1. Hence |H, |, the order of H,, is a unit in Ce. More-
over, by Lemma 3.3, Be is a Galois extension with Galois group G(e) whichis N(H,), so
H, is a normal subgroup of G(e). Let {a;,b; | i =1,2,...,m} be a G(e)-Galois system
for Be. Then, 31", a;g(b;) = 61 4e for each g € G(e). Let x; = (1/|He|) Xpep, h(ai)
and y; = Xpep, h(b;). Then, x; and y; are invariant under each element in H,.. Hence,
xi,vi € Ce since (Be)Me = Ce. It is straightforward to verify that {x;, y;} is a G(e)/H,-
Galois system for Ce. O
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Theorem 4.1 characterizes a central Galois algebra Be for a minimal nonzero mono-
mial e € B;. Next we want to characterize a central Galois algebra B1 for the maximal
monomial 1 in B,.

THEOREM 4.3. Let H = {h € G | ey, = 1}. Then e, = 0 for each g ¢ H, if and only
if B is either a central Galois algebra with Galois group H, or a commutative Galois
algebra with Galois group G.

PROOF. (=) Case 1. H; # {1}. Since ey = 0 for each g ¢ H;, J; = {0} for each
g ¢ Hi. Hence, by (2)=(1) in Theorem 4.1, B (= B1) is a central Galois algebra with
Galois group H;. Case 2. H; = {1}. By hypothesis, e; = 0 for each g # 1 in G, so
B=®3,c6Jg5 =J1 = C.Thus B is a commutative Galois algebra with Galois group G.

(<) Assume B is a central Galois algebra with Galois group H;. Then H; # {1}.
Hence, by (1)=(2) in Theorem 4.1, J; = 1J4 = {0} for each g ¢ H,. Thus e, = 0 for
each g ¢ H,. Next, assume B is a commutative Galois algebra with Galois group G.
Then J, = {0} for each g # 1 in G (see [3, Proposition 2]). Hence e, = 0 for each g # 1
in G. Therefore H; = {1} and e, = 0 for each g ¢ H;. O

As a consequence of Theorem 4.3, the DeMeyer theorem (see [1, Theorem 1]) for
central Galois algebras with a connected center is generalized.

COROLLARY 4.4. Let B be a Galois algebra with Galois group G. If B, = {0,1}, then B
is a central Galois algebra with Galois group H, and C is a commutative Galois algebra
with Galois group G/H;.

PROOF. Since B, = {0,1}, e; = 0 for each g ¢ H;; and so the corollary holds. O

We conclude the present paper with an example of a Galois algebra B such that
B, = {0,1}, but its center C is not indecomposable.

EXAMPLE 4.5. Let R[i,j,k] be the quaternion algebra over the real field R, B =
R[i,j,k1®R[i,j,k],and G = {1,9i,9},9k. 9,99i,99, 99k}, Where g;(a1,a;) = (iayi 1,
iari~1), gj(ai,az) = (jarj ', jasj 1), gr(ay,az) = (kark™!, ka,k™'), and g(a,a,) =
(az,ay) for all (a,,a) in B. Then,

(1) B is a Galois extension with a G-Galois system: {a; = (1,0), a» = (i,0), a3 =
(J,0), a4 = (k,0), as = (0,1), ag = (0,i), a7 = (0,j), ag = (0,k); by = (1/4)(1,0), b2 =
—(1/4)(i,0), b3 = —(1/4)(j,0), by = —(1/4)(k,0), bs = (1/4)(0,1), bg = —(1/4)(0,1),
b; = -(1/4)(0,j), bg = —(1/4)(0,k)}.

(2) B¢ = {(r,¥) |¥ €R} =R.

(3) By (1) and (2), B is a Galois algebra over R with Galois group G.

(4) J1=C=ReR, Jg = (Ri)®(RD), Jg; = (R)) & (Rj), Jg, = (Rk) ® (Rk), and J4 =
Jogi = Jggj =Joar = {0}.

(5) BJ; = BJg, = BJgj =BJ,, = Bl and BJ,; = BJgg; = nygj = BJgg, = {0}. Hence
e1=eg, =eg; =€y, = land e, = ey, = €gg; = Cgg = 0. Thus B, = {0,1}.

(6) Hy = {1,49i,9j,9«} and B is a central Galois algebra with Galois group H;.

(7) C = ReR whichis a commutative Galois algebra with Galois group G/H; = {1,g}.
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