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Abstract. We develop simple methods for the stochastic comparisons of informational
energy functions. We introduce modified informational energy functions and uncertainty
of parameter functions are introduced for models with realistic parameter spaces. We
present inequalities, comparisons, and applications including test procedures for test-
ing the equality of informational energy functions. Some illustrative examples are also
presented.
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1. Introduction. The use of informational energy for stochastic comparisons and

inferences is of tremendous practical importance. There are several measures of infor-

mation content of an experiment, among which are the Shannon capacity introduced

by Lindley [5], and the generalized information functions given by Nayak [7]. In a recent

work, Morales et al. [6] developed test procedures based on entropy and divergent type

statistics as an application of statistical information theory. Energy functions are mea-

sures of dispersion of distributions, that varies monotonically with dispersive order,

and as such testing for the equality of energy functions can be thought of as non- or

semi-parametric testing on dispersion.

The main objective of this paper is to investigate and compare informational en-

ergies including certain modified version with regards to the notion of affinity con-

cerning several such functions. This is particularly important and is motivated by

problems in areas such as quality control or analysis of variance, and in the measure-

ment of the information content of a statistical experiment and the uncertainty of

parameter sets.

Let {Pθ : θ ∈ Θ}, be a family of probability density functions associated with re-

spect to a σ -finite measure λ. Consider the likelihood pθ = dPθ/dλ and a sequence

of observations X = (X1, . . . ,Xn) from Pθ0 , where Pθ0 is from a set {Pθ : θ ∈Θ} of dis-

tributions. Assume that the function Pθ is continuous. Also the mapping θ → pθ is

almost surely (a.s.) upper semicontinuous, separable random process, and the energy

function e(θ)= E[pθ(X)] exists and is finite on the parameter space.

The purpose of this paper is to obtain inequalities and compare informational

energy functions, reliability and uncertainty measures for weighted distributions.

Section 2 contains some basic definitions and utility notions. Also, energy functions

are compared. In Section 3, some connections and results on likelihood and infor-

mational energy are presented. The results are used to construct test for equality

of informational energies. Section 4 is concerned with estimates, test statistics and
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procedures based on informational energy functions. Some applications and examples

are given in Section 5. This paper concludes with a discussion in Section 6.

2. Some definitions, utility notions, and comparisons. In this section, we present

some definitions and useful notions. Let � be the set of absolutely continuous distri-

bution function satisfying

H(0)= 0, lim
x→∞H(x)= 1, sup

{
x :H(x) < 1

}=∞. (2.1)

Note that if the mean of a random variable in � is finite, it is positive.

The informational energy associated with Pθ is given by

e(θ)=
∫
R
p2
θ(x)dλ(x). (2.2)

Definition 2.1. Let f and g be two probability density functions. The distance

between f and g is

D2(f ,g)=
(∫ (

f 1/2−g1/2)dλ)1/2
. (2.3)

The Hellinger type integral of order 1/2 is given by

B2(f ,g)=
∫
(fg)1/2dλ. (2.4)

Note that,

B2(f ,g)= 1− 1

2
(
D2

2(f ,g)
) ,

1−B2(f ,g)≤D2
2(f ,g)≤

(
1−B2

2(f ,g)
)1/2.

(2.5)

Definition 2.2. Let u and v be two nonnegative bounded real functions on R.

We say u is exponentially dominated by v if for each ε ∈ (0,1), there exist A(ε) <∞
such that

u(x)≤A(ε)v(x)1−ε ∀x. (2.6)

Ifu and v are exponentially dominated by each other, they are said to be exponentially

equivalent.

The usefulness of the above definition is in the comparisons of small values of

bounded nonnegative functions u and v , respectively.

Let f and g be two nonnegative functions, possibly probability density functions

that are integrable with respect to a σ -finite measure λ, and define

e(f ,g)=
∫

max
(
f 2,g2)dλ. (2.7)

See Bradt and Karlin [4] for a related comparison of dichotomous experiments. We

have the following properties:

(1) e(f ,g)= e(g,f ),
(2) e(f ,g)= e(f), if and only if f = g,
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(3) for c ≥ 0, e(cf ,g)= ce(f ,g), and 0≤ ce(f ,g)≤∞,

(4) for δ1 ≤ δ2, e(δ1f ,g)≤ e(δ2f ,g).

Theorem 2.3. Let f and g be probability density functions (pdf), then

0≤ {Dk(f ,g)}k ≤D1(f ,g), (2.8)

where Dk(f ,g)= (
∫
(f 1/k−g1/k)dλ)1/k, k≥ 1.

Proof. Let

A= {x : f < g}, B = {x : f ≥ g}. (2.9)

Then we have
∫
A

(
g(x)−f(x))dλ(x)≥

∫
A

(
g1/k(x)−f 1/k(x)

)
dλ(x),

∫
B

(
f(x)−g(x))dλ(x)≥

∫
B

(
f 1/k(x)−g1/k(x)

)kdλ(x).
(2.10)

Consequently,

∫
R

(
f(x)−g(x))dλ(x)≥

∫
R

∣∣(f 1/k(x)−g1/k(x)
)∣∣kdλ(x), (2.11)

and the result follows.

The next result compares the informational energies e(f) and e(g).

Theorem 2.4. Let

(1) H1(f ,g,c)=min(f 2(x)/g2(x)−c2,0), and

(2) H2(f ,g,c)=min(g2(x)/f 2(x)−c2,0).
Suppose that Pf (x : g(x) = 0) = Pg(x : f(x) = 0), then e(cf ,g) ≤ ce(f ,g) if and

only if Eg2{H1(f ,g,c)} ≤ Ef2{H2(f ,g,c)}.

Proof. Note that

e(f ,cg)=
∫
{x:c2g2(x)≤f2(x)}

f 2(x)dλ(x)+
∫
{x:c2g2(x)>f2}

g2(x)dλ(x). (2.12)

Similarly,

e(cf ,g)=
∫
{x:c2f2(x)>g2(x)}

c2f 2(x)dλ(x)+
∫
{x:c2f2(x)≤g2(x)}

g2(x)dλ(x). (2.13)

Note that,

e(cf ,g)−e(f ,cg)=
∫
{x:c2g2(x)>g2(x)}

{
c2g2(x)−f 2(x)

}
λ(x)

−
∫
{x:c2f2(x)>g2(x)}

{
c2f 2(x)−g2(x)

}
dλ(x)

=
∫
{x:c2g2(x)>g2(x)}

{
f 2(x)
g2(x)

−c2
}
g2(x)dλ(x)
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−
∫
{x:c2g2(x)>g2(x)}

{
g2(x)
f 2(x)

−c2
}
f 2(x)dλ(x)

= Eg2
{
H1(f ,g,c)

}−Ef2
{
H2(f ,g,c)

}
.

(2.14)

Consequently,

e(cf ,g)≤ ce(f ,g) (2.15)

if and only if

Eg2
{
H1(f ,g,c)

}≤ Ef2
{
H2(f ,g,c)

}
. (2.16)

Theorem 2.5. Suppose f is exponentially dominated byg, and {fn}n≥1 and {gn}n≥1,

are sequences of bounded functions, then

(1) e(f)=
∫
f 2dλ(x) is exponentially dominated by e(g), and

(2) limk→∞ sup{e(gn)1/k−e(fn)1/k} ≤ 0.

Proof. (1) Let f∗ = f 2(x) and g∗ = g2(x), and apply Jensen’s inequality to the

concave function y �y1−ε to obtain

e(f)=
∫
f∗(x)dλ(x)

≤
∫
B(ε)

(
g∗
)1−εdλ(x)

≤ B(ε)
(∫ (

g∗
)
(x)dλ(x)

)1−ε

= B(ε)(e(g))1−ε,

(2.17)

where B(ε)=A2(ε) and A(ε) is given in Definition 2.2.

(2) Note that {f∗n }n≥1 and {g∗n}n≥1, are bounded sequences, so there exists a con-

vergent subsequence such that e(f)= limj→∞ e(fnj ) and e(g)= limj→∞ e(gnj ).
Let e(gn)1/k =Nk and e(fn)1/k =Mk, then

lim
k→∞

e
(
gn
)1/k = lim

k→∞
Nk =N, lim

k→∞
e
(
fn
)1/k = lim

k→∞
Mk =M. (2.18)

Consequently, N ≤ C(ε)M1−ε for every ε∈ (0,1), and the result follows.

3. Informational energy and likelihood. In this section, the connection between

likelihood function and the informational energy function is established. Consider

the function given by

gn(X,θ)= 1
n

n∑
i=1

pθ
(
Xi
)
, gn(X,A)= inf

θ∈A
gn(X,θ), A∈Θ. (3.1)

Also, let Dθ be the set of all compact sets A ⊂ Θ containing θ in their interior.

Furthermore, we assume that for every θ ∈ Θ, there exists A ⊂ Dθ such that for at

least one n on the set energy rate

en(A)= Eθ0

(
gn(X,A)

)
(3.2)

is finite. Note that en(A)≤ e(θ) <∞ for every θ ∈A.
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If e1(θ) > 0, then as n→∞

en(A) ↑ e(A)≡ sup
n
en(A), (3.3)

gn(X,A) �→ e(A) a.s. (3.4)

Clearly, e(A) is the informational energy about the unknown parameter in the set A.

It is clear that these results can be formulated to give the set entropy function.

Consider the loglikelihood function

hn(X,θ)=− 1
n

n∑
i=1

log
(
pθ
(
Xi
))
, (3.5)

then

Eθ0

(
hn(X,A)

)=Hn(A), (3.6)

whereHn(A) is the set entropy function defined for an open or compact setA⊂Θ, and

hn(X,A)= inf
θ∈A

hn(X,θ), A∈Θ. (3.7)

It follows that if H1(θ) > −∞ and n → ∞, then Hn(A) ↑ H(A) ≡ supnHn(A) and

hn(X,A)→H(A) a.s., where H(A) is the uncertainty as to whether the unknown pa-

rameters are in the set A.

4. Test procedures based on informational energy. In this section, statistical in-

ference via informational energy function is developed. Estimates and test procedures

are presented. LetX11,X12, . . . ,X1ni , be independent random samples with distribution

functions Fi, i = 1,2, respectively. An estimate of the informational energy function

e(Fj)=
∫
(f 2
j (x))dx proposed by Bhattacharyya and Roussas [3] is given by

ẽ
(
Fj
)=

∫ (
f̂ 2
j (x)

)
dx, (4.1)

where

f̂j(x)=
[
njhj

]−1
nj∑
i=1

K
(x−Xji

hj

)
, (4.2)

where hj is a bandwidth, and K is a known symmetric and bounded function proba-

bility density function such that limy→∞yK(y)= 0. Ahmad [1] proposed the estimate

e
(
F̂j
)= [n2

jhj
]−1

nj∑
r=1

nj∑
s=1

K
(Xjr −Xjs

hj

)
. (4.3)

Bhattacharyya and Roussas’ estimate [3] is a special case of Ahmad’s estimate [1],

since

ẽ
(
Fj
)= [n2

jhj
]−2

nj∑
r=1

nj∑
s=1

K(2)
(Xjr −Xjs

hj

)
, (4.4)

where K(2)(y) is the convolution of K(y) with itself. See Ahmad and Kochar [2] for

details.
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A test statistics for testing H0 : e(F1)= e(F2) is given by

T
(
F1,F2

)=
∫ (
e
(
F̂1
)−e(F̂2

))2dx. (4.5)

In the case h1 = h2 = h, f1 = f is a fixed probability density function and g is a

function such that f2 = f +γg is a probability density function for sufficiently small

|γ|, the α-level test rejects H0 if T(F)= T(f) > tf , where

PH0

(
T(f) > tf

)=α, (4.6)

and tf is theα-level critical point of the distribution of T(F) under the null hypothesis

H0 : γ = 0, that is, e(F1)= e(F2).
Let H1 =H1(γ) denote the alternative hypothesis that γ = δ/

√
nh, δ≠ 0, then

π(δ)= lim
n→∞PH1

(
T(f) > tf

)
�→ 1, (4.7)

as |δ| → 0 provided 0< |δ|<∞. Also, α<π(δ) < 1 for 0< |δ|<∞.

Theorem 4.1. Let θ̂ be the maximum likelihood estimator of θ. If B = (b1,b2, . . . ,bk)T

and θ = (θ1,θ2, . . . ,θk)T , where bi = ∂e(θ)/∂θi and σ 2(θ)= BT I−1
F (θ)B > 0, then

√
n
(
e
(
θ̂
)−e(θ)) L

�→N(0,BT I−1
F B

)
, (4.8)

as n→∞, where IF (θ) is the Fisher information matrix.

Proof. By the asymptotic normality of
√
n(θ̂−θ) and a Taylor’s expansion of e(θ)

around θ, we obtain the desired result.

Theorem 4.2. If Θ= (θ1,θ2, . . . ,θk)T , then for every θ ∈Θ

lim
n→∞gn(X,θ)= e(θ) a.s. (4.9)

Proof. The result follows from (3.4).

The results above can be used for statistical inference. Now consider the hypothesis,

H0 : e(θ)= e(θ0) againstH0 : e(θ) > e(θ0), where e(θ0) is a specified value of the pop-

ulation informational energy. An appropriate test statistics for testing the hypothesis

is given by

T∗ = T 2I(0,∞)(T), (4.10)

where

T =
√
n
(
e
(
θ̂
)−e(θ))

σ 2
(
θ̂
) . (4.11)

The statistic T has in the limit the standard normal distribution so that T 2 has a

chi-square distribution with one degree of freedom.
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A size α-test will reject H0 if T∗ > χ2
1,2α. This follows from the fact that

lim
n→∞PH0

(
T∗ >C

)= lim
n→∞PH0

(
T 2I(0,∞)(T) > C

)= 1
2
PH0

(
χ2
(1) > C

)
(4.12)

if C > 0, and 1 if C ≤ 0, where χ2
(1) denotes a random variable having a chi-square

distribution with one degree of freedom.

A test of equality of several informational energies, that is,

H0 : e
(
θ1
)= e(θ2

)= ··· = e(θk), (4.13)

rejects H0 if T1 >C , where

T1 =
k∑
i=1


e
(
θ̂i
)−δ(θ̂i)√

σ 2
(
θ̂i
)
/ni




2

, (4.14)

δ(θ̂i) = (
∑k
i=1 e(θ̂i)/[σ 2(θ̂i)/ni])/

∑k
i=1[σ 2(θ̂i)/ni], and σ 2(θ) = BT I−1

F (θ)B > 0, and

C is chosen such that

PH0

(
T1 >C

)=α. (4.15)

The statistic T1 has in the limit as n=∑k
i=1ni goes to infinity the chi-square distribu-

tion with k−1 degrees of freedom. Consequently, the null hypothesis is rejected at

level α if T > χ2
k−1;α.

5. Applications. Let e(f) and e(g) be the informational energies associated with

the distribution functions F and G, respectively. In this section, we present some

applications and some examples of the results presented in earlier sections.

Confidence intervals for e(θ) can be readily obtained and is given by

e
(
θ̂
)± cα/2σ

(
θ̂
)

n1/2 , (5.1)

and a nonconservative sample size for a prescribed error ε and a risk α is

n∗ =
[
σ 2
(
θ̂
)
c2
α/2

ε2

]
+1, (5.2)

where σ 2(θ̂) is given in Section 4, where cα/2 is the critical point of the standard

normal distribution at the significance level α/2 and [] the greatest integer function.

(1) Normal Distribution. The informational energy for the normal distribution is

given by

e
(
f(µ,σ)

)=
∫
R
f 2(x;µ,σ)dx = (π)−1/2(2σ)−1. (5.3)

Clearly, e(f) is a bijective function of σ . If σF and σG are the standard deviations

of the distribution functions F and G, respectively, then e(f) ≥ e(g) if and only if

σG ≥ σF .
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(2) Let

f(x;β)=

2(π)−1/2β−1e−(x/β) if x > 0,

0 otherwise.
(5.4)

The corresponding weighted pdf g(x;β) = W(x)f(x;β)/E(W(X)) with W(x) = x
is given by

g(x;β)=

2xβ−2e−(x/β) if x > 0,

0 otherwise.
(5.5)

On applying Theorem 2.4, for β≥ c ≥ 1, we obtain e(cf ,g)≤ e(cg,f ).
(3) The following result establishes the relation between informational energy and

dispersive ordering of distributions. Let X and Y be two random variables with dis-

tribution functions F and G, respectively, and corresponding quantile functions F−1

and G−1. The distribution function F is said to be less dispersive than G, (Parzen [8])

denoted by F
d
< G if

F−1(u)−G−1(v)≤G−1(u)−G−1(v), (5.6)

for 0< v <u< 1. When F−1 and G−1 are differentiable, this definition is equivalent to

g
(
G−1(u)

)≤ f (F−1(u)
)
, 0<u< 1. (5.7)

Consequently, F
d
< G implies that e(f)≥ e(g), whenever the densities exit.

6. Discussion. In this paper, inequalities and the use of the informational energy

for statistical comparisons and inferences in terms of uncertainty of parameters and

parameter sets is developed. For the purpose of comparisons an intuitive grasp of

notions involving informational energy functions follows by noting that the scale

parameters for the distributions are ordered. Non-parametric and parametric esti-

mates are presented. See references therein. Procedures for testing for homogeneity

of informational energy are obtained and implemented.

In the discrete setting where X and Y are random variables with joint probability

distribution pij , i= 1,2, . . . ,r , and j = 1,2, . . . ,c, the informational energy and mutual

information of order γ concerning X and Y are given by

eγ(X,Y)=
∑
i

∑
j
pγij, Iγ(X,Y)= 1−

∑
i
pγi+−

∑
j
pγ+j+

∑
i

∑
j
pγij, (6.1)

where pi+ and p+j are the marginal distributions of X and Y , respectively.

Comparisons of these informational functions and statistical inference concerning

parameters and parameter sets can be obtained for both discrete and continuous

distributions.
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