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ON ALMOST PERIODIC SOLUTIONS OF THE DIFFERENTIAL
EQUATION x” (t) = Ax(t) IN HILBERT SPACES
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(Received 31 January 2001)

ABSTRACT. We prove almost periodicity of solutions of the equation x’’(t) = Ax(t) when
the linear operator A satisfies an inequality of the form Re(Ax,x) > 0.
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1. Introduction. Let H be a Hilbert space equipped with norm || - || and scalar prod-
uct (-,-). Almost periodic functions (in Bochner’s sense) are continuous functions
f :R — H such that for every € > 0, there exists a positive real number [ such that
every interval [a,a + ] contains at least a point T such that

StuDEIIf(t+T)—f(t)||<e. (1.1)

The Bochner’s criterion (cf. [1, 3, 4]) states that a function f : R — H is almost
periodic if and only if for every sequence of real numbers (0,),-; there exists a
subsequence (s, )5_; such that (f(t+s,))y-; is uniformly convergent in t € R.

We proved in [2] thatif A = A, + A_, where A, is a symmetric linear operator and A_
is a skew-symmetric linear operator such that Re(A,x,A_x) = —c||A,x||? for every
X € H, then every solution of x'(t) = Ax(t), t € R, with a relatively compact range in
H is almost periodic.

In this note, we use the technique described in [2] to prove similar results for some
classes of linear differential equation of second order x" (t) = Ax(t).

2. Main results

THEOREM 2.1. Assume that the linear operator A satisfies the inequality of the form
Re(Ax,x) = 0, for any x € H. Then solutions of the differential equation

x"(t) = Ax(t), teER, 2.1)

(that are functions x(t) € C2(R,H)) with relatively compact ranges in H, are almost
periodic.

PROOF. Consider x(t) a solution of (2.1) with a relatively compact range in H and
let ¢ : R — R be defined by ¢ (&) = ||x(t)]|2. Then ¢ is a bounded function over R.
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Moreover, for every t € R, we have

P (t) = (x' (), x(1)) + (x(t),x" (1)),
¢ (1) = 2[||x" (D)]|* +Re (Ax(1),x(1))] (2.2)
>0,

which shows that ¢ is a convex function over R, therefore it is constant
b(t) = p(0), VteR, (2.3)
or

[lx(@)]I = [|x(0)

, VteR. (2.4)
We fix s € R and consider the function y;(-) : R — H defined by
ys(t) =x(t+5). (2.5)

Then y;(t) obviously satisfies (2.1). Now fix s; and s, in R. Then ys, (£) — s, (t) also
satisfies (2.1); therefore we have

Hysl(t)_ysz(t)nzHysl(O)—ysz(O)H; Vt eR, (2.6)
which gives
[l (t+s1) —x(t+52)|| = ||x (1) —x(s2)||, VteER. (2.7)

Let (on)y-; be a sequence of real numbers. Then by relative compactness of x(t),
there exists a subsequence (sy)y-1 C (0n)y-; such that (x(sy));-; is Cauchy. Hence
for any given € > 0, there exists N such that if n,m > N, then

[ (sn) =x (sm) || < €. (2.8)
Consequently,
sup||x (t +sn) —x(t+sm)|| <e. (2.9
teR
We conclude that x(t) is almost periodic by the Bochner’s criterion. O

REMARK 2.2. Examples of such problem occur when A is a positive or monotone
linear operator.
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