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OSCILLATION OF NONLINEAR DELAY
DIFFERENCE EQUATIONS
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ABSTRACT. We obtain some oscillation criteria for solutions of the nonlinear delay differ-
. o
ence equation of the form xy+1—xn +pn l_[g'l:1 xn{kj =0.
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1. Introduction. Consider the nonlinear delay difference equation

m
xn+1—xn+pn1—[1x:ikj=0, n=0,1,2,..., (1.1)

j=
where p, 20, n =0,1,2,..., 0 < k1 < k» < --- < kyy, are integers, «; > 0 are ratio-
nal numbers with denominator of positive odd integers for each j = 1,2,...,m and

z;‘il O(J = 1.
Equation (1.1) is a discrete analogue of the following first-order nonlinear delay
differential equation

X (t)+p(t) 1_[ (t-1)]% =0, 1.2)

where p (t) € C([tg,©),[0,0)),0<T; < T2 < -+ < Ty, and «; are the same asin (1.1).
For (1.2), the oscillation of its solutions has been extensively studied in the literature,
see, for example [2, 4, 11, 12].

When k; =k, = - - - = ky,, = k, (1.1) reduces to the linear delay difference equation

Xn+l1 —Xn+PunXn-k=0, n=0,1,2,.... (1.3)

Recently, there has been a lot of activity concerning the oscillatory behavior of (1.3).
See, for example, [1, 3, 5, 6, 7, 8, 9, 10]. In particular, [7] proved that every solution of
(1.3) is oscillatory provided

o n+k n+k n+k n+k n+k n+k
> {Z mln< D, pi+1-sign > m) -2 piln( D, pi+l-sign m)} = o0
n=0 i=n i=n

i=n+1 i=n+1 i=n+1
(1.4)

Condition (1.4) improves many previous well-known results. Furthermore, (1.4) fits
the case when 3,1, pi— (k/(k+1))¥* oscillate or 31,1, pi < (k/(k+1))k+L,
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Our main aim in this note is to generalize condition (1.4) to (1.1).

2. Main results

THEOREM 2.1. Assume that

0 n+k; n+k; n+k;
Z<|z(xj > plln{zcxj > pl+1—31gn<Zo<J Z pi )}

j=1 i=n i=n

(2.1)

i=n+l 1:n+1

Then every solution of (1.1) oscillates.

PROOF. Assume, by way of contradiction, that (1.1) has an eventually positive
solutions {x;}. Then there exists an integer n; > 0 such that x,_k,, > 0, Xn+1 < Xy,
n > n;. We define the functions p(t) and x(t) as follows:

pt)=pn, xt)=xu+{-n)(xpi1—Xxn), n<t<n+l,n=0,12,.... (2.2

Let x'(t) denote derivation on the right. Then

x(t) >0, x'(¢)<0, t=n,

/ (2.3)
x'(t)=xps1—xn forn<t<n+1l,n=0,1,2,....
Hence, (1.1) can be rewritten as
m
xX'(t)+p(t) 1‘[ [t—k;])V =0, t=0, (2.4)

where here and in the sequel, [-] denotes the greatest integer function.
Set A(t) = —x'(t)/x(t) for t = ny. Then A(t) > 0 for t > n;, and from (2.4) we have

A(t) =p(t) exp(z J s)ds) t>ny+km, (2.5)
1 [t—kj]
or

[t+k +1]
A(t) Z aJJ p(s)ds

j=1

[t+k;+1] m (2.6)
> p(t) Zcxjj A(s)ds | exp Z J As)ds |, t=mnq+kn.
a ) t-k;]
One can easily show that
b(rye* =dpr)x+¢p(r)In(er +1—signr), r =0, x =R, (2.7)

where ¢(0) = 0 and @ (v) > 0 for » > 0. By the definition of p(t), we see that p(t) is
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nonnegative and right-continuous. Therefore, it follows from

m [t+k;+1]
Zajj p(s)ds=0 (2.8)
t

Jj=1

that p(t) = 0. Applying inequalities (2.7) to the right side of (2.6), we obtain

m [t+kj+1] m
A(t)Z(ij s)ds = p(t) Z J ()ds+p(t)InA(t), n=ng+ky,
j=1 ¢ j=1 [t-k ]
(2.9)
where
[t+k +1] m [t+kj+1]
A(t) —eZ(ij p(s)ds+1—sign Z(XjI p(s)ds |. (2.10)
j=1 j=1 t

Set n» = n; + kyy,. Integrating both sides of (2.9) from n, to N > n, + 2k, we have

[t+k;+1]
(xJJ )\(t)J p(s)dsdt
j=1 "2

m (2.11)
N ¢ N
= cxjj p(t)J A(s)dsdt+J p(t)InA(t)dt.
j=1 np [t—kj] ny
Interchanging the order of integration, we get
N t N- k [3+k +1]
J p(t)f )\(s)dsdtzf ?\(S)J p(t)dtds
np [tfkj] ny
(2.12)
N*kj [t+kj+l]
:J M”J p(s)dsadt.
ny t
Substituting this into (2.11), we have
m [t+k +1] N
Z I A(t)J p(s)dsdt=| p)nA(t)dt. (2.13)
j=1 ne
From (1.1) we have
Xni1—Xn +PnXi "‘"’x“mk <0, n=n;. (2.14)
Set v, = xp™ for n = ny. Then
Vnil = Yn+ OmPnYn-km <0, =N +kp. (2.15)

It follows that &, X.i",, ,, Pi < 1, and so

[t+km+1] [t]+km
amJ p(syds<om > pi<l, t=n,. (2.16)
t i=[t]
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Recall that k; < k» < - - - <k, therefore

[t+k;+1] e
og,f p(s)dsso(—", t>=ns, j=1,2,...,m. (2.17)
t

m

Substituting this into (2.13), we obtain

m N
g JNk (t)dt > nzp(t)lnA(t)dt, (2.18)
or
(XN =k)\Y N
1n(ﬂ( poria ) )zcxm ,, pOIA@L. (2.19)
It follows that
m X(N*kj) i ad
%13?{(%) zexp(am nzp(t)lnA(t)dt). (2.20)

Let E = {n>=mn, | pn > 0}. Then

) p(t)InA(t)dt

ny
n+1 m [t+kj+1] m [t+kJ+1]
ZJ p(t)In ztxjj p(s)ds+1-sign Z J p(s)ds||dt
j=1 j=1

n+kj+1 t
J p(s)dsfj p(s)ds |+1

n+kj+1 t
J p(s)dsfj p(s)ds dat

® n+l m n+k;
= > vnf ln(ezaj( > ni—pn(t—n))ﬂ

i=n

m ‘VH»kJ'
—sign(Z (xj( > pi—pn(t—n))))dt
Jj=1 i=n

n+1 m n+k;
anJ ln(erxi( > pivn(tn)))dt
E n j=1

i=n
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<

m n+k; m n+k;
(oS rm(E0Sn))
E Jj=1 i=n j=1 i=n

m n+k; m n+k; m
—Zch > piln (Z > pi+1—sign<za
- b

i=n+1 i=n+1

Jj=1 i=n

n+k; m n+k;
*ZO‘J Z piln (Z > pi+1-sign

j=1 i=n+1 i=n+1

From (2.1) and (2.20), we have

On the other hand, it follows from (2.1) that

limsup p, > 0.

n—oo

By (2.15), we have

n+k;

Jj=1

n+k;

jZPi

i=n+l1

1’L+kj

(i“i 2. pi

i=n+1

)

niz(itxjnglpll (ﬁ nf'wl_mgn(za] 5 p))

)

limsup py < limsup — 2% = 1 !
neo o CmYn-ky O UMINf 0 (Vnokpn /)’
which, together with (2.23) yields
liminf 2" ~%m o 00,
n—oo yn
that is,
x(N=kpm) ™"
hﬁﬁ@( x(N) =%
and so
X(N=k;)) o X(N—km)
hmlnfﬂl< poryes ) <111{]r£10101f xS

which contradicts (2.22) and so the proof is completed.
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(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)
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From Theorem 2.1 we have immediately.

COROLLARY 2.2. Assume that there exists an integer N > 0 such that
m ‘Yl+kj
D > pi>0 forn=N, (2.28)
j= i=n
and that

é{za]nfmln(za,ng}pl) Zch mzk’ piln (g niki pi):| = 0. (2.29)

i=n+1 i=n+1

Then every solution of (1.1) oscillates.
Clearly, when k; = k, = - - - = kyy, condition (2.1) reduces to (1.4).
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