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PROBLEMS AND SOLUTIONS BY THE APPLICATION OF JULIA SET
THEORY TO ONE-DOT AND MULTI-DOTS
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Abstract. In 1977 Hubbard developed the ideas of Cayley (1879) and solved in particular
the Newton-Fourier imaginary problem. We solve the Newton-Fourier and the Chebyshev-
Fourier imaginary problems completely. It is known that the application of Julia set theory
is possible to the one-dot numerical method like the Newton’s method for computing
solution of the nonlinear equations. The secants method is the two-dots numerical method
and the application of Julia set theory to it is not demonstrated. Previously we have defined
two one-dot combinations: the Newton’s-secants and the Chebyshev’s-secants methods
and have used the escape time algorithm to analyse the application of Julia set theory to
these two combinations in some special cases. We consider and solve the Newton’s-secants
and Tchebicheff’s-secants imaginary problems completely.
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1. Introduction. In 1879, Cayley [2] demonstrated the Newton-Fourier imaginary

problem for F(z)= z2−C . In 1977, Hubbard [3] solved this problem. Using the trans-

formation G(z) = (z+C1/2)/(z−C1/2) = u, G−1(u) = C1/2(u+1)/(u−1) he proved

[2, 3] that the dynamical system

C : fN(z)= z− F(z)
F ′(z)

(1.1)

and C : R(u)=u2 are equivalent, that is, R(u)=G◦fN ◦G−1(u)=u2.

In [5] we define the Newton’s-secants method for computing solutions of the non-

linear equation F(z)= 0: it tells us to consider the dynamical system, associated with

F(z)

C : fNs(z)= fN(z)− F
(
fN(z)

)(
fN(z)−z

)

F
(
fN(z)

)−F(z) , (1.2)

where fN(z) is the Newton transformation, associated with the function F(z) (1.1).

In [6] we define the Chebyshev’s secants method for computing the solution of the

nonlinear equations: it tell us to consider the dynamical system

C : fChs(z)= fCh(z)− F
(
fCh(z)

)(
fCh(z)−z

)

F
(
fCh(z)

)−F(z) , (1.3)

where

fCh(z)= z− F(z)
F ′(z)

− F
2(z)F ′′(z)
2
(
F ′(z)

)3 . (1.4)
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2. Main results. Consider the polynomial

F(z)= zn−C, n∈N (2.1)

and the transformations

G(z)= z−C
1/n

z+C1/n , G−1(u)= C1/n u+1
1−u. (2.2)

We can prove the following theorems.

Theorem 2.1. The dynamical system fN(z) (1.1) where F(z) is (2.1) and

RN(u)=G◦fN ◦G−1(u)= 2nu(u+1)n−1−(u+1)n+(1−u)n
2n(u+1)n−1−(u+1)n+(1−u)n (2.3)

are locally equivalent in a sufficiently little circle around each of the n-roots of the

polynomial F(z) = zn−C . Since C is generally a complex number, the value C1/n is

fixed as any of the n-different values of the n-roots of the polynomial (2.1). The fixed

points of Rn(u) are u= 1 and u=−itan(kpi/n), k= 1,2, . . . ,n−1.

Theorem 2.2. The dynamical system (1.4) where F(z) is (2.1) and

RCh(u)

=
(−u2+1

)n(4n−2)+(u−1)2n(1−n)+(u+1)2n−1
(
4n2u−3n(u+1)+u+1

)

(−u2+1
)n(4n−2)+(u−1)2n(1−n)+(u+1)2n−1

(
4n2−3n(u+1)+u+1

)
(2.4)

are locally equivalent in a sufficiently little open circle around each of the n-roots of

the polynomial (2.1). The fixed points of (2.1) are

1, −itan
kpi
n
,

ei2pim/n(n−1)1/n/(3n−1)1/n−1
ei2pim/n(n−1)1/n/(3n−1)1/n+1

,

k= 1,2, . . . ,n−1, m= 0,1,2, . . . ,n−1.
(2.5)

We can prove two similar theorems about fNs(z) and fChs(z) in the case (2.1), but

the general formulas for RNs(u) and RCh(u) are too long and we will publish them

later. Here we will consider only some examples. Consider now the polynomial

F(z)= (zn−C)l, l,n∈N. (2.6)

We are familiar, from calculus, with the modifications of Newton’s and Chebyshev’s

methods for computing the solution of the equation F(z)= 0. They tell us to consider

the dynamical systems

C : fNm(z)= z− u(z)
u′(z)

,

C : fChm(z)= z− u(z)
u′(z)

− u
2(z)u′′(z)
2u′(z)3

,
(2.7)

where u(z) = F(z)/F ′(z). We can prove two similar theorems about fNm(z) and

fChm(z) in the case (2.6). We obtain that RNm(z) = RN(z), but the general formula

for RChm(z) is too long and we will publish it later. We will consider here only some

examples.
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3. Examples and the application of Julia set theory. (1) Case n= 2.

(a) Newton’s-secants method, then

fNs(z)= z
3+3Cz

3z2+C . (3.1)

The fixed points of fNs(z) are 0, C1/2, and −C1/2. The first is repulsive: f ′Ns(0) = 3

and the other are attractive: f ′Ns(C1/2)= f ′Ns(−C1/2)= f ′′Ns(C1/2)= f ′′Ns(−C1/2)= 0, but

f ′′′Ns (C1/2) = f ′′′Ns (−C1/2) = 3/2C . This is clear, because RNs(u) = u3. The Julia set for

u3 is |u| = 1. This is the second case in the fractal geometry that the formula for Julia

set is the same and too simple. (See [1, 2, 3].) It is clear too that the order of succes-

sive approximations is 3 [4], it is more than the order of Newton’s approximations

which is 2 and the order of secants’ approximations which is 1,61803 . . . [4]. Consider

the problem about the computation’s efficiency in this case [3]. Assume that for the

computation of F(z), F ′(z), and F(fn(z)) are necessary 3 computation’s units. Then

the efficiency of the Newton’s-secants method will be 31/3 1,442 . . . that is between

the efficiency of the secants methods (1,61803 . . .) and the sufficiency of the New-

ton’s method (21/2 1,414 . . .). Assume that 4 computation’s units are used, then the

efficiency of the Newton-secants method will be 31/4 that is more than the efficiency

of the chords method which is one.

(b) Chebyshev’s-secants method gives

RChs(u)= u
4(2+u)
1+2u

. (3.2)

The fixed points ofRChs(u) are 0, 1, and−1. The first is attractive and in a little circle of

0, RChs(u), and R(u)=u3 are equivalent. The order of successive approximations is 4,

this is more than the Chebyshev’s approximations order which is 3 [4]. The point−1 is

parabolic and the point 1 is repulsive. The fixed point’s type is determined by the facts

that R′Chs(0) = R′′Chs(0) = R′′′Chs(0) = 0, R(4)Chs(0) = 48, RChs(1) = 11/3, R′Chs(−1) = 1. On

the plate 1, the escape time algorithm [1] is used to analyse the trajectories of RChs(u).
(c) Chebyshev’s-modification method gives

RChm(z)= u
4
(
u2+3

)

3u2+1
. (3.3)

(2) Case n= 3.

(a) Newton’s method gives

RN(u)= 2u2(u+3)
3+3u+3u2−u3

. (3.4)

On the plate 2, the escape time algorithm [1] is used to analyse the trajectories of

RN(u).
(b) Chebyshev’s method gives

RCh(u)= 4u3
(
u3+9u2+15u+15

)

9+36u+45u2+60u3+15u4−5u6
. (3.5)
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(c) Newton’s-secants method gives

RNs(u)= 4u3
(
u4+18u3+60u2+54u+27

)

27+81u+171u2+189u3+177u4+27u5−23u6−9u7
. (3.6)

On the plates 3, 4 the escape time algorithm [1] is used to analyse the trajectories of

fNs(z) in the case F(z)= z3−1.

1 2

3 4

Figure 3.1. Plates 1–4.
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