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We consider the boundary value problem —u"’(x) = Af(u(x)), x € (0,1); u’(0) = 0;
u' (1) + xu(l) = 0, where & > 0, A > 0 are parameters and f € c2[0, o) such that £(0) < 0.
In this paper, we study for the two cases p =0 and p = 0 (p is the value of the solution at
x =0 and 0 is such that F(0) = 0 where F(s) = féf(t)dt) the relation between A and the
number of interior critical points of the nonnegative solutions of the above system.

2000 Mathematics Subject Classification: 34B15.

1. Introduction. We consider the two point boundary value problem with Neumann-
Robin boundary conditions

-u"”(x)=Af(u(x)), xe€(0,1), (1.1)
u' (0) =0, (1.2)
u' (1) +ou(l) =0, (1.3)

where « > 0,A > 0 are parameters, f € c2[0,») and f(0) < 0, and we will assume
that there exist 8,0 > 0 such that f(s) <0 on [0,8), f(B) =0, f'(s) >0, f"(s) >0,
lim;_o (f(5)/s) = o0, and F(0) = 0 where F(s) = f(ff(t)dt. Itis proved in [1, Theorems
3.4.1(a) and 3.4.1(b)] that for any n = 0,1,2,..., x € (0,0), p =0 (p = 0), (1.1), (1.2),
and (1.3) have exactly two nonnegative solutions uzy, ; (U2n+1,i), i = 1,2 with 2n (and
2n+ 1) interior critical points. Alsoitis shownin[3, Theorem 1.4] that for the following
Dirichlet boundary conditions

-u”(x) =Af(ux)), xe(0,1),

(1.4)
u(0) =0=u(l),

where n is a positive integer, there exists A* > 0 such that (1.4) has a unique nonneg-
ative solution with n interior zeros if and only if A = (n +1)2A*. Equation (1.1) in the
cases Neumann and Dirichlet-Robin boundary conditions have been studied in [2, 4],
respectively. We discuss the relation between interior critical points of nonnegative
solutions and A’s for problem (1.1), (1.2), and (1.3) for the case p = 0 in Section 2, and
for the case p = 0 in Section 3. Finally, in Section 4 we compare A’s in two cases p = 0
and p =0 foranyn =0,1,2,....
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2. The case p = 0. In [1] it has been established that for & € (0,), p = 0, and
n=0,1,2,..., there exists a unique number m}‘nyl € (0,x0) such that

G(mgn,l) =H(m;<n,1)l (2.1)
where
G(m) —Jg 1 ds+2nr)#ds m e (0,x0)
I =F() o J—F(s) ’ ’ 2.2)
m
H(m) = m, m e (0,0(9).

Sowe obtain A = Azp,1 (0, m3, ;) suchthat2A = G(m3,, ) = H(m3, ) (see Figure 2.1),
that is,

N/ U L WP
\/? mia A —F(S) \/E 0 V—F(s)

Thus (1.1), (1.2), and (1.3) have exactly a nonzero solution u»,,; with 2n interior
critical points where u5,, ; (1) = —=m3, ; and uj, ;(0) = € at A = Az,,1(0,m3, ;). Also,
the equation

ds m=mj,,. (2.3)

2n+1 (¢ 1
VA= V2 o\/—F(s)dS

has a unique solution A = Az, 2(0,0) such that for this A problem, (1.1), (1.2), and (1.3)
have exactly a nonnegative solution u, with 27 interior critical points such that
Uy, (1) =0 and uz,2(0) = 6.

In [1], it is proved that

(2.4)

A2n1(0,m3y 1) <A202(0,0) < Az2(n+1),1 (0,541 1) (2.5)

Now we are ready to prove the main theorem of this section.
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THEOREM 2.1. Letn=0,1,2,..., then
A2 —A2n1 < A2ne1)2 —A2ne1),1, (2.6)

that is, n — Aop 2 — Aop,1 IS a strictly increasing function.

PROOF. Since G(m) is dependent on n, so we write it by G, (m), that is,

0

1
Gn(m) - Jm/o( \/—F(S)

——ds + nJ m e (0,x0). (2.7)

! ———ds
J=F(s)

So it is easy to see that {G,(m)},_, is a strictly increasing sequence of n for every
m € (0,x0), that is,

Gn(m) <Gps1(m), me (0,x0) (2.8)
and we can easily see that
m3,, <Mz, n=01,2,... (2.9

(see Figure 2.2). On the other hand, from (2.3) and (2.4) we have

1 (% 1
AA —4/A = —J _ J s, - m¥ .,
a2 aml V2 Jo —F(S) mj/x —F(S M= Mo

\/?\2(1“1),2 - \/?\2(n+1),1 =

1
V2 )o —F(S) —F(S

Thus combining (2.9) and (2.10) we obtain

\/AZn,Z_\//\Zn,l <\/?\z<n+1>,2—\/?\2<n+1),1- (2.11)
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Also combining (2.4) and (2.9) we have

yA2n,2 +1/A2n,1

C4n+1 1 (° 1 (2.12)
- J — ds, m=mj,,
\/7F(S \/E mio~/—F(S) !

\//\2(n+1),2 +\/?\2(n+1>,1

4n+5 1 (¢ (2.13)
= J ds+—J ds, m=m} .
V2 Jo \/=F(s) V2 Jma \J=F(s) 2
Since 0 < m/x < @ for m = m3, |, so we have
0 1 o 1
d J ds, =m3, 1, 2.14
Jm/m/—F(s) S<)o VRS T Mana (2.14)
and then
1 (° 1 ds+4"+1j LJO s+ 4n+1j
V2 Jmja \[=F(s) \/—F(S \/7 0 V=F(s) x/—F((S )
2.15

Now from (2.12) and (2.15) we obtain

\JA2n2 +4/A2n1 < 41?; 2 \/_11__7 (2.16)

On the other hand, by the positivity of

1 (° 1
\/— —F(S \/_ mio A/ —F(S)

ds, m=m3, ., (2.17)

and also from (2.13) and (2.16) we obtain

\//\2n,2+\/?\2n,1 < \/?\2(n+1),2 +\/?\2(n+1),1- (2.18)

Now combining (2.11) and (2.18) we obtain

(\/?\Zn,z —\/7\2n,1) (\/)\Zn,Z + \/7\2n,1) < <\/7\2n,2 + \/AZn,l) (\/7\2<n+1),2 - \/7\2(n+1),1)
< (\//\2(n+l),2 - \/?\2(m1>,1) (\/?\2(n+1),2 +\/?\2(n+1),1)

(2.19)

and so,
Aon2 —Aon1 < Aoman),2 = A2m+1)1, (2.20)

thus, the proof is complete. ]
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3. The case p = 0. Alsoin [1] it has been established that for & € (0,), p =0, and
n=0,1,2,..., there exists a unique number m3,,, ; € (0,x6) such that

G(mfml,l) =H(m3,.1,), (3.1)
where
. 0 1
G(m) = Jm/a mds+ 2n+ I)J mds, m e (0,x0), )
m
H(m) = W, m e (0,0(9).

So we obtain A = Azn.1,1(0,m3, ;) such that V2A = G(m},, ;) = H(m3,, )
(see Figure 3.1), that is,

1 (¢ 1 2n+1
\/X_ﬁ m/tx\/—F(S)dS+ J \/—F(S 5

Thus (1.1), (1.2), and (1.3) have exactly anonzero solution u#z,1,1 with 2n +1 interior
critical points where u, . ; (1) =-m3, ; ; and U3, , ;1 (00 =0at A=2A2p41,10,M3,,, 1 1)
Also, the equation

m=m3, ;. (3.3)

VA = 2("+1)j (3.4)

\/—F(S

has a unique solution A = Az,41,2(0,0) such that for this A problem, (1.1), (1.2), and
(1.3) have exactly a nonnegative solution u,+1,2 with 2n + 1 interior critical points
such that u3, 1, (1) =0 and u2,41,2(0) =

In [1], it is proved that

A2n+1,1(0,M3011) <A2041,2(0,0) < A20n+1)+1,1(0,M3 01 1)111)- (3.5)

Now we are ready to prove the main theorem of this section.
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THEOREM 3.1. Letn=0,1,2,..., then

A2ni1,2 = Aons1,1 <A2(mi1)41,2 — A2+ 1)+1,15 (3.6)
that is, n — Apn+1,2 — Aon+1,1 IS a strictly increasing function.
PROOF. Since G(m) is dependent on 1, so we write it by G, (m), that is,
0
(3.7)

- 1 o 1
Gn(m) = Jm/a \/?(S)ds‘-ﬁ- (27’l+ ].)JO \/T(S)ds' m e (0,0(9)

It is easy to see that {G,(m)}5_, is a strictly increasing sequence of n for every
m € (0,x0), that is,

Gn(m) < Guir(m), me (0,x0) (3.8)

(see Figure 3.2) and we can easily see that

* *
Mopi11 <My, N=0,1,2,... (3.9)

(see Figure 3.2). On the other hand, from (3.3) and (3.4) we have
1 (% 1 1 1
A —4/A = —J as——
\/ el \/ anill \/E 0 —F(S) g \/§ m/x —F(S)
1 (% 1 1 1
A —/A :—J ———ds— —= ——ds,
\/ 2(n+1)+1,2 \/ 2(n+1)+1,1 \/i o V=F(s) ) \/? e V=F(5) s

_ *
ds, m=mzy, .,

m:m;(n+l)+1,l'
(3.10)

Thus, combining (3.9) and (3.10) we obtain

\/)\2n+1,2 _\/)\2n+1,1 < \/)\2(n+1)+1,2 - \/Az(n+1)+1,1- (3.11)
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Also combining (3.3) and (3.4) we have

\/?\2n+1,2 +\/?\2n+1,1
0 0
_4n+3 1L 1

V2 Jo \/=F(s) V2 Jmia =F(s)

\/AZ(n+1)+12+\//\2(n+1)+11
4n+7J R 1
\/—F(s T V2 Jiia VoF ()

_ *
ds, m=m3, ,,

Since 0 < m/x < @ for m = m3, ., ;, so we have

o 1 o 1
L J—d, —mi
Jm/tx\/—F(S) <)o VR & T Menain

and then

1 (° 1 d5+4n+3j

V2 Jnja J=F(5) x/—F(s

- 7[ ds + 4n+3j
V2 Jo \J=F(s) «/—F(S
Now from (3.12) and (3.15) we obtain
4n+4
\/7\2n+1,2 +\/7\2n+1,1 < J W

On the other hand, by the positivity of

1 (¢ 1
\/— —F(S \/_ mio A/ —F(S)

— *
ds, m=m3, 1)1

and also from (3.13) and (3.16) we obtain

\/7\2n+1,2 +\/?\2n+1,1 < \/?\2(n+1>+1,2 + \/?\2(n+1)+1,1-

Now combining (3.11) and (3.18) we have

Aons1,2 = Aons1,1 <A2(ma)+1,2 = A2(n41)+1,15

thus, the proof is complete.

_ *
ds, Mm=myu,).0,-
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(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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4. Comparing the two cases p = 0 and p = 0. Now we compare A’s in the two cases
p=0and p =0 foranyn=0,1,2,..., and we are ready to prove the main theorem of
this section.

THEOREM 4.1. Letn=0,1,2,..., then
Aon2 —Aop1 < Azps12 —Aonstl, (4.1)

that is, the distance between Az (O,mé‘nvl) and A2y,2(0,0) is less than the distance
between Az 11 (0,m3, 1) and Azp.1,2(0,0).

PROOF. Since 0 <m/x < @ for m = mj3, ;, we have

0 0
1 1
7ds<J ———ds, m=m5 ., 4.2
J;th—Fu) 0 V=F(s) 2m,1 “4.2)
and then
1 (¢ 1 2n (9 1 2n+1 (¢ 1

m=mj3,;. (4.3)

e FO BT 2 FFOE S 2 b TR
Now, from (4.3) and (2.3) we obtain

1

2n+1 (¢
w/AZn,l < \/E 0 \/T(S)ds' 4.4)

On the other hand, since 0 < m/x < 0 for m = m3,,, ;, then we have

1 (¢ 1
— ——d =mj 4.
0< \/?J » ) S, M =My, (4.5)

and then from (3.3) we have

VA2n,1 <AA2pn+1,1. (4.6)

Also, we know that

A 2)\211,1 =H(m) = \/%wl/o()’ m = m;kn‘l,

m 4.7)
V2211 =H(m) = \/?m/(x)' m=m3,. ;.

Now since function H is one to one on interval (0, x0) (see Figure 4.1), we have

m;n,l < m;n+1,1, (48)
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so we obtain

0 1 0 1
J =—=ds < ds.
mipei /e N—F(s) mi, /o —F(5)

Thus combining (2.10), (3.10), and (4.9) we obtain

\//\Zn,z _\/)\Zn,l < \/?\2n+1,2 —\/?\2n+1,1-

On the other hand, since 0 < m/x < 6 for m = m3, ;, we have

0
Jm/tx«/—F(S J \/—F(S M= Mo
and then
4n+1j R 1 d5<4n+2J
\/—F(S \/§ mio A/ —F(S) V—F(S

and thus from (2.12) we obtain

[ [ 4n+2 1
A21’1,2 - )\271,1 < \/— W

and also from (4.13) we have

759

4.9)

(4.10)

(4.11)

(4.13)

4n+3 1 1
AA VA —ds, =mj3 . 414
2n,2 T4/Aon,1 < 72 ) \/7 f m/zx\/—i S, Mm=my, . ( )

So from (4.13) and (3.12), we obtain

\//\Zn,z + \/?\Zn,l < \/?\2n+1,2 +\/?\2n+1,1,

(4.15)
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and also from (4.15) and (4.10), we have
Aon2 —Aop1 < Az2pi12 —A2ns1, (4.16)

thus, the proof is complete. a
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