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We consider the boundary value problem −u′′(x) = λf(u(x)), x ∈ (0,1); u′(0) = 0;
u′(1)+αu(1)= 0, where α> 0, λ > 0 are parameters and f ∈ c2[0,∞) such that f(0) < 0.
In this paper, we study for the two cases ρ = 0 and ρ = θ (ρ is the value of the solution at
x = 0 and θ is such that F(θ) = 0 where F(s) = ∫ s0 f(t)dt) the relation between λ and the
number of interior critical points of the nonnegative solutions of the above system.

2000 Mathematics Subject Classification: 34B15.

1. Introduction. We consider the two point boundary value problem with Neumann-

Robin boundary conditions

−u′′(x)= λf (u(x)), x ∈ (0,1), (1.1)

u′(0)= 0, (1.2)

u′(1)+αu(1)= 0, (1.3)

where α > 0,λ > 0 are parameters, f ∈ c2[0,∞) and f(0) < 0, and we will assume

that there exist β,θ > 0 such that f(s) < 0 on [0,β), f(β) = 0, f ′(s) ≥ 0, f ′′(s) > 0,

lims→∞(f (s)/s)=∞, and F(θ)= 0 where F(s)= ∫ s0 f(t)dt. It is proved in [1, Theorems

3.4.1(a) and 3.4.1(b)] that for any n = 0,1,2, . . . , α ∈ (0,∞), ρ = θ (ρ = 0), (1.1), (1.2),

and (1.3) have exactly two nonnegative solutions u2n,i(u2n+1,i), i = 1,2 with 2n (and

2n+1) interior critical points. Also it is shown in [3, Theorem 1.4] that for the following

Dirichlet boundary conditions

−u′′(x)= λf (u(x)), x ∈ (0,1),
u(0)= 0=u(1), (1.4)

where n is a positive integer, there exists λ∗ > 0 such that (1.4) has a unique nonneg-

ative solution with n interior zeros if and only if λ= (n+1)2λ∗. Equation (1.1) in the

cases Neumann and Dirichlet-Robin boundary conditions have been studied in [2, 4],

respectively. We discuss the relation between interior critical points of nonnegative

solutions and λ’s for problem (1.1), (1.2), and (1.3) for the case ρ = θ in Section 2, and

for the case ρ = 0 in Section 3. Finally, in Section 4 we compare λ’s in two cases ρ = θ
and ρ = 0 for any n= 0,1,2, . . . .
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Figure 2.1

2. The case ρ = θ. In [1] it has been established that for α ∈ (0,∞), ρ = θ, and

n= 0,1,2, . . . , there exists a unique number m∗
2n,1 ∈ (0,αθ) such that

G
(
m∗

2n,1
)=H(m∗

2n,1
)
, (2.1)

where

G(m)=
∫ θ
m/α

1√−F(s)ds+2n
∫ θ

0

1√−F(s)ds, m∈ (0,αθ),

H(m)= m√−F(m/α) , m∈ (0,αθ).
(2.2)

So we obtainλ= λ2n,1(θ,m∗
2n,1) such that

√
2λ=G(m∗

2n,1)=H(m∗
2n,1) (see Figure 2.1),

that is,

√
λ= 1√

2

∫ θ
m/α

1√−F(s)ds+
2n√

2

∫ θ
0

1√−F(s)ds m=m∗
2n,1. (2.3)

Thus (1.1), (1.2), and (1.3) have exactly a nonzero solution u2n,1 with 2n interior

critical points where u′2n,1(1) = −m∗
2n,1 and u′2n,1(0) = θ at λ = λ2n,1(θ,m∗

2n,1). Also,

the equation

√
λ= 2n+1√

2

∫ θ
0

1√−F(s)ds (2.4)

has a unique solution λ= λ2n,2(θ,0) such that for this λ problem, (1.1), (1.2), and (1.3)

have exactly a nonnegative solution u2n,2 with 2n interior critical points such that

u′2n,2(1)= 0 and u2n,2(0)= θ.

In [1], it is proved that

λ2n,1
(
θ,m∗

2n,1
)
< λ2n,2(θ,0) < λ2(n+1),1

(
θ,m∗

2(n+1),1
)
. (2.5)

Now we are ready to prove the main theorem of this section.
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Theorem 2.1. Let n= 0,1,2, . . . , then

λ2n,2−λ2n,1 < λ2(n+1),2−λ2(n+1),1, (2.6)

that is, n� λ2n,2−λ2n,1 is a strictly increasing function.

Proof. Since G(m) is dependent on n, so we write it by Gn(m), that is,

Gn(m)=
∫ θ
m/α

1√−F(s)ds+2n
∫ θ

0

1√−F(s)ds, m∈ (0,αθ). (2.7)

So it is easy to see that {Gn(m)}∞n=0 is a strictly increasing sequence of n for every

m∈ (0,αθ), that is,

Gn(m) <Gn+1(m), m∈ (0,αθ) (2.8)

and we can easily see that

m∗
2n,1 <m

∗
2(n+1),1, n= 0,1,2, . . . (2.9)

(see Figure 2.2). On the other hand, from (2.3) and (2.4) we have

√
λ2n,2−

√
λ2n,1 = 1√

2

∫ θ
0

1√−F(s)ds−
1√
2

∫ θ
m/α

1√−F(s)ds, m=m∗
2n,1,

√
λ2(n+1),2−

√
λ2(n+1),1 = 1√

2

∫ θ
0

1√−F(s)ds−
1√
2

∫ θ
m/α

1√−F(s)ds, m=m∗
2(n+1),1.

(2.10)

Thus combining (2.9) and (2.10) we obtain

√
λ2n,2−

√
λ2n,1 <

√
λ2(n+1),2−

√
λ2(n+1),1. (2.11)
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Also combining (2.4) and (2.9) we have

√
λ2n,2+

√
λ2n,1

= 4n+1√
2

∫ θ
0

1√−F(s)ds+
1√
2

∫ θ
m/α

1√−F(s)ds, m=m∗
2n,1,

(2.12)

√
λ2(n+1),2+

√
λ2(n+1),1

= 4n+5√
2

∫ θ
0

1√−F(s)ds+
1√
2

∫ θ
m/α

1√−F(s)ds, m=m∗
2(n+1),1.

(2.13)

Since 0<m/α< θ for m=m∗
2n,1, so we have

∫ θ
m/α

1√−F(s)ds <
∫ θ

0

1√−F(s)ds, m=m∗
2n,1, (2.14)

and then

1√
2

∫ θ
m/α

1√−F(s)ds+
4n+1√

2

∫ θ
0

1√−F(s)ds <
1√
2

∫ θ
0

1√−F(s)ds+
4n+1√

2

∫ θ
0

1√−F(s)ds.
(2.15)

Now from (2.12) and (2.15) we obtain

√
λ2n,2+

√
λ2n,1 <

4n+2√
2

∫ θ
0

1√−F(s)ds. (2.16)

On the other hand, by the positivity of

3√
2

∫ θ
0

1√−F(s)ds+
1√
2

∫ θ
m/α

1√−F(s)ds, m=m∗
2(n+1),1, (2.17)

and also from (2.13) and (2.16) we obtain

√
λ2n,2+

√
λ2n,1 <

√
λ2(n+1),2+

√
λ2(n+1),1. (2.18)

Now combining (2.11) and (2.18) we obtain

(√
λ2n,2−

√
λ2n,1

)(√
λ2n,2+

√
λ2n,1

)
<
(√
λ2n,2+

√
λ2n,1

)(√
λ2(n+1),2−

√
λ2(n+1),1

)

<
(√
λ2(n+1),2−

√
λ2(n+1),1

)(√
λ2(n+1),2+

√
λ2(n+1),1

)
(2.19)

and so,

λ2n,2−λ2n,1 < λ2(n+1),2−λ2(n+1),1, (2.20)

thus, the proof is complete.
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3. The case ρ = 0. Also in [1] it has been established that for α∈ (0,∞), ρ = 0, and

n= 0,1,2, . . . , there exists a unique number m∗
2n+1,1 ∈ (0,αθ) such that

G̃
(
m∗

2n+1,1
)=H(m∗

2n+1,1
)
, (3.1)

where

G̃(m)=
∫ θ
m/α

1√−F(s)ds+(2n+1)
∫ θ

0

1√−F(s)ds, m∈ (0,αθ),

H(m)= m√−F(m/α) , m∈ (0,αθ).
(3.2)

So we obtain λ = λ2n+1,1(0,m∗
2n+1,1) such that

√
2λ = G̃(m∗

2n+1,1) = H(m∗
2n+1,1)

(see Figure 3.1), that is,

√
λ= 1√

2

∫ θ
m/α

1√−F(s)ds+
2n+1√

2

∫ θ
0

1√−F(s)ds, m=m∗
2n+1,1. (3.3)

Thus (1.1), (1.2), and (1.3) have exactly a nonzero solutionu2n+1,1 with 2n+1 interior

critical points where u′2n+1,1(1)=−m∗
2n+1,1 and u′2n+1,1(0)=0 at λ=λ2n+1,1(0,m∗

2n+1,1).
Also, the equation

√
λ= 2(n+1)√

2

∫ θ
0

1√−F(s)ds (3.4)

has a unique solution λ = λ2n+1,2(0,0) such that for this λ problem, (1.1), (1.2), and

(1.3) have exactly a nonnegative solution u2n+1,2 with 2n+1 interior critical points

such that u′2n+1,2(1)= 0 and u2n+1,2(0)= 0.

In [1], it is proved that

λ2n+1,1
(
0,m∗

2n+1,1
)
< λ2n+1,2(0,0) < λ2(n+1)+1,1

(
0,m∗

2(n+1)+1,1
)
. (3.5)

Now we are ready to prove the main theorem of this section.
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Theorem 3.1. Let n= 0,1,2, . . . , then

λ2n+1,2−λ2n+1,1 < λ2(n+1)+1,2−λ2(n+1)+1,1, (3.6)

that is, n� λ2n+1,2−λ2n+1,1 is a strictly increasing function.

Proof. Since G̃(m) is dependent on n, so we write it by G̃n(m), that is,

G̃n(m)=
∫ θ
m/α

1√−F(s)ds+(2n+1)
∫ θ

0

1√−F(s)ds, m∈ (0,αθ). (3.7)

It is easy to see that {G̃n(m)}∞n=0 is a strictly increasing sequence of n for every

m∈ (0,αθ), that is,

G̃n(m) < G̃n+1(m), m∈ (0,αθ) (3.8)

(see Figure 3.2) and we can easily see that

m∗
2n+1,1 <m

∗
2(n+1)+1,1, n= 0,1,2, . . . (3.9)

(see Figure 3.2). On the other hand, from (3.3) and (3.4) we have

√
λ2n+1,2−

√
λ2n+1,1 = 1√

2

∫ θ
0

1√−F(s)ds−
1√
2

∫ θ
m/α

1√−F(s)ds, m=m∗
2n+1,1,

√
λ2(n+1)+1,2−

√
λ2(n+1)+1,1= 1√

2

∫ θ
0

1√−F(s)ds−
1√
2

∫ θ
m/α

1√−F(s)ds, m=m∗
2(n+1)+1,1.

(3.10)

Thus, combining (3.9) and (3.10) we obtain

√
λ2n+1,2−

√
λ2n+1,1 <

√
λ2(n+1)+1,2−

√
λ2(n+1)+1,1. (3.11)
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Also combining (3.3) and (3.4) we have

√
λ2n+1,2+

√
λ2n+1,1

= 4n+3√
2

∫ θ
0

1√−F(s)ds+
1√
2

∫ θ
m/α

1√−F(s)ds, m=m∗
2n+1,1,

(3.12)

√
λ2(n+1)+1,2+

√
λ2(n+1)+1,1

= 4n+7√
2

∫ θ
0

1√−F(s)ds+
1√
2

∫ θ
m/α

1√−F(s)ds, m=m∗
2(n+1)+1,1.

(3.13)

Since 0<m/α< θ for m=m∗
2n+1,1, so we have

∫ θ
m/α

1√−F(s)ds <
∫ θ

0

1√−F(s)ds, m=m∗
2n+1,1, (3.14)

and then

1√
2

∫ θ
m/α

1√−F(s)ds+
4n+3√

2

∫ θ
0

1√−F(s)ds

<
1√
2

∫ θ
0

1√−F(s)ds+
4n+3√

2

∫ θ
0

1√−F(s)ds.
(3.15)

Now from (3.12) and (3.15) we obtain

√
λ2n+1,2+

√
λ2n+1,1 <

4n+4√
2

∫ θ
0

1√−F(s)ds. (3.16)

On the other hand, by the positivity of

3√
2

∫ θ
0

1√−F(s)ds+
1√
2

∫ θ
m/α

1√−F(s)ds, m=m∗
2(n+1)+1,1, (3.17)

and also from (3.13) and (3.16) we obtain

√
λ2n+1,2+

√
λ2n+1,1 <

√
λ2(n+1)+1,2+

√
λ2(n+1)+1,1. (3.18)

Now combining (3.11) and (3.18) we have

λ2n+1,2−λ2n+1,1 < λ2(n+1)+1,2−λ2(n+1)+1,1, (3.19)

thus, the proof is complete.
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4. Comparing the two cases ρ = 0 and ρ = θ. Now we compare λ’s in the two cases

ρ = 0 and ρ = θ for any n= 0,1,2, . . ., and we are ready to prove the main theorem of

this section.

Theorem 4.1. Let n= 0,1,2, . . . , then

λ2n,2−λ2n,1 < λ2n+1,2−λ2n+1,1, (4.1)

that is, the distance between λ2n,1(θ,m∗
2n,1) and λ2n,2(θ,0) is less than the distance

between λ2n+1,1(0,m∗
2n+1,1) and λ2n+1,2(0,0).

Proof. Since 0<m/α< θ for m=m∗
2n,1, we have

∫ θ
m/α

1√−F(s)ds <
∫ θ

0

1√−F(s)ds, m=m∗
2n,1, (4.2)

and then

1√
2

∫ θ
m/α

1√−F(s)ds+
2n√

2

∫ θ
0

1√−F(s)ds <
2n+1√

2

∫ θ
0

1√−F(s)ds, m=m∗
2n,1. (4.3)

Now, from (4.3) and (2.3) we obtain

√
λ2n,1 <

2n+1√
2

∫ θ
0

1√−F(s)ds. (4.4)

On the other hand, since 0<m/α< θ for m=m∗
2n+1,1, then we have

0<
1√
2

∫ θ
m/α

1√−F(s)ds, m=m∗
2n+1,1, (4.5)

and then from (3.3) we have

√
λ2n,1 <

√
λ2n+1,1. (4.6)

Also, we know that

√
2λ2n,1 =H(m)= m√−F(m/α) , m=m∗

2n,1,
√

2λ2n+1,1 =H(m)= m√−F(m/α) , m=m∗
2n+1,1.

(4.7)

Now since function H is one to one on interval (0,αθ) (see Figure 4.1), we have

m∗
2n,1 <m

∗
2n+1,1, (4.8)
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so we obtain

∫ θ
m∗

2n+1,1/α

1√−F(s)ds <
∫ θ
m∗

2n,1/α

1√−F(s)ds. (4.9)

Thus combining (2.10), (3.10), and (4.9) we obtain

√
λ2n,2−

√
λ2n,1 <

√
λ2n+1,2−

√
λ2n+1,1. (4.10)

On the other hand, since 0<m/α< θ for m=m∗
2n,1, we have

∫ θ
m/α

1√−F(s)ds <
∫ θ

0

1√−F(s)ds, m=m∗
2n,1, (4.11)

and then

4n+1√
2

∫ θ
0

1√−F(s)ds+
1√
2

∫ θ
m/α

1√−F(s)ds <
4n+2√

2

∫ θ
0

1√−F(s)ds, m=m∗
2n,1,

(4.12)

and thus from (2.12) we obtain

√
λ2n,2−

√
λ2n,1 <

4n+2√
2

∫ θ
0

1√−F(s)ds, (4.13)

and also from (4.13) we have

√
λ2n,2+

√
λ2n,1 <

4n+3√
2

∫ θ
0

1√−F(s)ds+
1√
2

∫ θ
m/α

1√−F(s)ds, m=m∗
2n+1,1. (4.14)

So from (4.13) and (3.12), we obtain

√
λ2n,2+

√
λ2n,1 <

√
λ2n+1,2+

√
λ2n+1,1, (4.15)
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and also from (4.15) and (4.10), we have

λ2n,2−λ2n,1 < λ2n+1,2−λ2n+1,1 (4.16)

thus, the proof is complete.
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