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1. Introduction. The introductory part is provided to give the generalization of

the so-called general Bromwich-Wagner’s theorem from Cauchy’s calculus of residues,

which has proven to be a powerful tool in the Laplace transforms theory. The main part

is concerned with the theory of singular systems. On the basis of the result worded in

the form of the theorem at the very beginning, throughout the main part of the paper,

an attempt has been made to derive conditions for convergence of the fundamental

matrix of linear time-invariant time-delayed singular systems. The paper ends with a

counterexample pointing out the fact that certain results of the theory of linear time-

invariant singular systems, as for example a condition for the existence of infinite

frequency dynamic modes (of impulsive modes) in a solution formulation of linear

time-invariant singular systems, are incorrect.

In the complex functions theory, more precisely in the theory of Cauchy’s calculus of

residues, the following result, which is well known as the general Bromwich-Wagner’s

theorem (see [4, Theorem 1, page 215]), is a fundamental result from the viewpoint of

determining the function t� f(t) whose Laplace transform is z� F(z).

Theorem 1.1. Let F be a function with the following properties:

(1) F is an analytic function on the domain G = {z | Rez < c} inside which it has

finitely many singularities z1,z2, . . . ,zn;

(2) on the straight line Rez = c, F has finitely many simple poles a1,a2, . . . ,am;

(3) lim|z|→+∞F(z)= 0 in the half-plane G.

If α> 1, then the following equality holds:

vp
∫ c+i∞
c−i∞

αzF(z)dz = 2πi
n∑
k=1

Res
z=zk

[
αzF(z)

]+πi m∑
k=1

Res
z=ak

[
αzF(z)

]
, (1.1)

where vp
∫ c+i∞
c−i∞ αzF(z)dz is the so-called Couchy’s principal value of the improper in-

tegral
∫ c+i∞
c−i∞ αzF(z)dz.

http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com


464 BRANKO SARIC

The more general case in which a function z � F(z) has an infinite but countable

set of singularities is also applicable [1]. Thus, it is of a general interest to prove the

theorem that is slightly more general with respect to Theorem 1.1. On the basis of this

theorem, in what follows, we will derive the result which is more general with respect

to that of [6, equation (5.17)] giving an exponential assessment for integral conver-

gence of the fundamental matrix of a class of linear time-delayed regular systems in

the proof of [6, Theorem 5.1, page 293] and which can be applied in stability analysis

of motions (of solutions) of a class of linear time-delayed singular systems.

Theorem 1.2. Let F(z) be a function with the following properties:

(1) F(z) is an analytic function on the domain G = {z | Rez < c} inside which it has

an infinite but countable set of singularities z1,z2, . . .;
(2) on the straight line Rez = c the function F has an infinite but countable set of

simple poles a1,a2, . . .;
(3) lim|z|→+∞F(z)= 0 in the half-plane G;

(4) the disposition of singularities of the function F(z) on the complex plane is such

that there exists a half-circular contour of integration Ωr ,

Ωr =
{
z | |z−c| = r , Rez ≤ c}, (1.2)

by which the singularities of F(z) are divided in such a way that no singularities

lie onto Ωr , and in the domain bounded by Ωr and the straight line Rez = c, the

singularities lying on Rez = c are isolated ones.

If α> 1, then the following equality holds:

vp
∫ c+i∞
c−i∞

αzF(z)dz = 2πi
+∞∑
k=1

Res
z=zk

[
αzF(z)

]+πi +∞∑
k=1

Res
z=ak

[
αzF(z)

]
. (1.3)

Proof. On the one hand, according to condition (4) of the theorem, the integral

equality

∫�
Gr
αzF(z)dz =

m∑
k=0

∫ ↑
lk
αzF(z)dz+

m∑
k=1

∫�
gk
αzF(z)dz+

∫�
Ωr
αzF(z)dz, (1.4)

(the symbol
∫�
Gr denotes an integration over a closed contour of integration Gr , in

this case in the positive mathematical direction) where the contour of integration

Gr = Ωr ∪ l0∪g1∪ l1∪g2∪···∪ lm consists of half-circular contours of integration

Ωr = {z | |z−c| = r , Rez ≤ c} (r ∈ R1+) and gk = {z | |z−ak| = δ (δ ∈ R1+), Rez ≤ c}
(k= 1,2, . . . ,m) having no common points, as well as of segments

l0 =
{
z | Rez = c, Imz ∈ [−r , Ima1−δ

]}
,

lk =
{
z | Rez = c, Imz ∈ [ Imak+δ, Imak+1−δ

]}
(k= 1,2, . . . ,m−1),

lm =
{
z | Rez = c, Imz ∈ [ Imam+δ,r

]}
,

(1.5)
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is reduced by one-to-one mapping z−c = is the complex plane z onto the complex

plane s to the integral equality

ec logα
∫�
Γr
F(c+is)eis logαds = ec logα

m∑
k=0

∫→
λk
F(c+is)eis logαds

+ec logα
m∑
k=1

∫�
γk
F(c+is)eis logαds

+ec logα
∫�
ωr
F(c+is)eis logαds,

(1.6)

where the contour of integration Γr =ωr ∪λ0∪γ1∪λ1∪γ2∪···∪λm consists of half-

circular contours of integration ωr = {s | |s| = r , Ims ≥ 0} and γk = {s | |s− Imak| =
δ, Ims ≥ 0} (k= 1,2, . . . ,m), as well as of segments

λ0 =
{
s | s ∈ [−r , Ima1−δ

]}
,

λk =
{
s | s ∈ [ Imak+δ, Imak+1−δ

]}
(k= 1,2, . . . ,m−1),

λm =
{
s | s ∈ [ Imam+δ,r

]}
.

(1.7)

On the other hand, from the first Jordan lemma (see [4, Theorem 1, page 52]) and

condition (2) of the theorem, it follows that

lim
δ→0+

m∑
k=1

∫�
γk
F(c+is)eis logαds =−πi

m∑
k=1

Res
s=ak

[
F(c+is)eis logα]. (1.8)

Also, from the third Jordan lemma (see [4, Theorem 3, page 52]) and condition (3)
of the theorem it follows that

lim
r→+∞

∫�
ωr
F(c+is)eis logαds = 0. (1.9)

Finally, on the basis of the general Cauchy theorem (see [4, Theorem 1, page 43]),

we obtain

vp
∫ c+i∞
c−i∞

αzF(z)dz = iec logα vp
∫ +∞
−∞
F(c+is)eis logαds

= 2πi
+∞∑
k=1

Res
s=sk

[
ie(c+is) logαF(c+is)]

+πi
+∞∑
k=1

Res
s=ak

[
ie(c+is) logαF(c+is)],

(1.10)

where the sums of residues are calculated with respect to all singularities of the func-

tion s � ie(c+is) logαF(c+is) in the open upper half-plane as well as onto the real axis,

respectively.

Since on the basis of a low of transformation

s =−i(z−c)= Imz+i(c−Rez), (1.11)
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all singularities of the function αzF(z) in the half-plane Rez ≤ c of the complex plane

z are at the same time singularities of the function s � ie(c+is) logαF(c + is) in the

upper half-plane Ims ≥ 0 of the complex plane s, thus the equality previously derived

is reduced to that of the theorem.

If α= et (t > 0), then it follows from the proof of Theorem 1.2 that

lim
r→+∞

∫�
Ωr
eztF(z)dz = 0. (1.12)

Example 1.3. If F(z)= 1/z, then

∫ c+i∞
c−i∞

ezt

z
dz =


2πi for c > 0,

0 for c < 0,

vp
∫ +i∞
−i∞

ezt

z
dz = iπ.

(1.13)

2. The main results

2.1. The fundamental matrix of linear time-invariant time-delayed singular sys-

tems. The fundamental matrix Φs(t) of a linear time-invariant time-delayed system

of differential-algebraic equations

P
d
dt

x0(t)=
K∑
k=0

Akxk(t),

xk(t)= x
(
t+θk

) (
θk ∈ [−µ,0], 0= ∣∣θ0

∣∣< ∣∣θ1

∣∣< ···< ∣∣θK∣∣= µ ∈R1
0+
)
,

x0
(
0+
)= x0̃, x0(t)= xõ(t) for t ∈ (−µ,0),

(2.1)

where n×nmatrices Ak and a singular n×nmatrix P are in the general case constant

matrices defined on the field of the complex numbers, is a solution of the matrix

differential equation

d
dt
Φs(t)P=

K∑
k=0

Φs
(
t+θk

)
Ak,

Φs(t)P|t=0+ =Φs
(
0+
)
P, Φs(t)≡ 0 for t < 0,

(2.2)

whenever it exists.

Namely, in the first step multiply both sides of system (2.1) on the left by matrix

Φs(t− s) and after that integrate it with respect to s from 0 to t. In such a way, we

obtain

lim
ω→t−
ω0→0+

∫ω
ω0

Φs(t−s)P dds x0(s)ds = lim
ω→t−
ω0→0+

∫ω
ω0

K∑
k=0

Φs(t−s)Akxk(s)ds, (2.3)

that is,

Φs
(
0+
)
Px0(t)=Φs(t)Px0

(
0+
)+ K∑

k=0

∫ 0

θk
Φs
(
t+θk−s

)
Akxõ(s)ds. (2.4)
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According to the Laplace transform of the fundamental matrix Φs(t)

Φ̃s(z)=Φs
(
0+
)
P


zP−

K∑
k=0

Akezθk



−1

, (2.5)

obtained by formal application of the Laplace transform in the course of solving the

matrix differential equation (2.2), the characteristic equation of the system is

det


zP−

K∑
k=0

Akezθk


= 0. (2.6)

Note 2.1. It should be emphasized that for solving the matrix differential equa-

tion (2.2) by formal application of the Laplace transform, it is necessary to make an

additional check of an integral convergence
∫+∞
0 Φs(t)e−zt dt in order for formality of

the procedure to be justified. By formal application of the Laplace transform, we can

directly come to solution (2.2) of system (2.1), too. Namely, for continuous solutions

x0(t) of system (2.1), and under the assumption that vector valued functions of ini-

tial states xõ(t) ∈ T̄0−µ → Cn of the system are elements of the functional space of

functions x̃(θ) which are continuous in the segment [−µ,0] with the standard norm

‖x̃(θ)‖ = sup|x̃(θ)| (where θ ∈ [−µ,0]), it can be shown by the method of partial

integration that

lim
ω→+∞
ω0→0+

∫ω
ω0

ẋ0(t)e−zt dt =−x0
(
0+
)+z lim

ω→+∞
ω0→0+

∫ω
ω0

x0(t)e−zt dt,

lim
ω→+∞
ω0→0+

∫ω
ω0

xk(t)e−zt dt = ezθk

 lim
ω→+∞
ω0→0+

∫ω
ω0

x0(t)e−zt dt+
∫ 0

θk
xõ(t)e−zt dt


.

(2.7)

Thus

Φ̄s(z) lim
ω→+∞
ω0→0+

∫ω
ω0

x0(t)e−zt dt = p(z), (2.8)

where Φ̄s(z)= zP−∑K
k=0 Akezθk and p(z)= Px0̃+

∑K
k=0 Akezθk

∫ 0
θk xõ(t)e−zt dt.

On the basis of the inversion theorem [1, Theorem 1.1, page 18] for sufficiently large

real constant c ∈R1+,

Φs
(
0+
)
Px0(t)= 1

2πi
lim
ω→+∞

∫ c+iω
c−iω

Φs
(
0+
)
PΦ̄−1

s (z)p(z)ezt dz

= 1
2πi

lim
ω→+∞

∫ c+iω
c−iω

Φ̃s(z)p(z)ezt dz.
(2.9)

According to the convolution theorem [1, Theorem 1.4, page 26], the right-hand

side of the preceding relation is equivalent to the right-hand side of relation (2.4).

For a class of linear singular systems without delay Pẋ(t)=Ax(t), the fundamental

matrix of the systemΦs(t)= P̂DeP̂DÂt for t ≥ 0, where the matrix P̂D is a Drazin inverse

matrix of P̂, P̂= P(νP+A)−1, (of course if there exists a constant ν such that the matrix
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(νP+A) is an invertible one) and Â = A(νP+A)−1 is a matrix solution of the matrix

differential equation Φ̇s(t)P = Φs(t)A with the initial conditions Φs
(
0+
)
P = P̂DP and

Φs(t)≡ 0 for t < 0.

Example 2.2. By a table of Laplace transforms of elementary functions, a funda-

mental matrix of the system Pẋ(t)=Ax(t), where P = [1 0
0 0

]
and A= [−1 0

0 1

]
as well as

P(zP−A)−1 = [
1 0
0 0

] [1/(z+1) 0
0 −1

]
, is of the matrix form Φs(t) =

[
e−t 0
0 0

]
. In addition, it

is also a solution of the differential matrix equation Φ̇s(t)P = Φs(t)A with the initial

condition Φs(0+)P= P, since P̂DP= P.

2.2. The conditions for convergence of the fundamental matrix of linear time-

invariant time-delayed singular systems. The matrix Φs(0+) of the initial condition

Φs(t)P|t=0+ = Φs(0+)P cannot be an arbitrarily chosen matrix but it has to belong to

a set of matrices for which there exists a solution of the matrix differential equation

(2.2). In that emphasized case, the Laplace transform Φ̃s(z) of the fundamental n×n
matrixΦs(t) of system (2.1) can be expressed in the form which is suitable for contour

integration, that is, in the form

Φ̃s(z)= Φs(0
+)

z


E+

K∑
k=0

Akezθk


zP−

K∑
k=0

Akezθk



−1
, (2.10)

where E is the identity n × n matrix, from which it follows immediately that

lim|z|→+∞ Φ̃s(z)= 0 in the half-plain Rez ≤ c.

Namely, if

Ḡs(z)= ezµΦ̄s(z)= zezµP−
K∑
k=0

AkezβK−k = zezµP−
K∑
k=0

AK−kezβk , (2.11)

where βk = µ + θK−k and 0 = β0 < β1 < ··· < βK = µ, it follows that det Ḡs(z) =
enzµ detΦ̄s(z) and Ḡ−1

s (z)= e−zµΦ̄−1
s (z), that is,

Φ̃s(z)= Φs
(
0+
)

z


E+

K∑
k=0

AK−kezβk Ḡ−1
s (z)


. (2.12)

On the basis of the fact that exponential multipliers ezβk in the half-plane Rez ≤ c
are bounded and the degrees of polynomials of minors of the matrix Ḡs(z) are no

higher than the degrees of polynomials of the polynomial function detḠs(z), it follows

explicitly that in the half-plane Rez ≤ c

lim
|z|→+∞

Φ̃s(z)= lim
|z|→+∞


Φs

(
0+
)

z


E+

K∑
k=0

AK−kezβk Ḡ−1
s (z)




= 0. (2.13)

In view of the fact that for each k and θk ≤ t ≤ 0, the exponential multipliers

ez(µ+θk−t) are also bounded in the half-plane Rez ≤ c, it follows immediately that the

functional expression lim|z|→+∞ p̄(z) = lim|z|→+∞p(z)ezµ converges in the half-plane

Rez ≤ c.
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Since, on the basis of [1, Theorem 12.13, pages 457–458], there exists a half-circular

contour of integration Ωr by which the singularities of Φ̃s(z) are divided in the half-

plane Rez ≤ c in such a way that no singularities lie on the contourΩr , it follows from

the result of Theorem 1.2 that if Φ̃s(z) is a regular matrix function in the half-plane

Rez ≥ c (c ∈ R1+), more precisely if the characteristic quasi-polynomial of Φ̃s(z) has

a principal term (see [1, Theorem 13.1, pages 480–481]), then for t > µ

Φs
(
0+
)
Px0(t)= 1

2πi

∫ c′+i∞
c′−i∞

Φ̃s(z)p̄(z)ez(t−µ) dz

+
N∑
n=1

Res
z=zn

(Rezn>c′)

[
Φ̃s(z)p̄(z)ez(t−µ)

]
,

(2.14)

where c′ < c. As p(z)= Px0(0+)+
∑K
k=0 Akezθk

∫ 0
θk xõ(t)e−zt dt and

∣∣∣∣∣
∫ 0

θk
xõ(t)e−z(t−θk) dt

∣∣∣∣∣≤ ∥∥x0̃

∥∥∣∣∣∣∣
∫ 0

θk
e−z(t−θk) dt

∣∣∣∣∣= ∥∥x0̃

∥∥∣∣∣∣1
z
(
1−e−zθk)

∣∣∣∣, (2.15)

as well as

∣∣∣∣∣ 1
2πi

∫ c′+i∞
c′−i∞

Φ̃s(z)p(z)ezt dz

∣∣∣∣∣≤ a∥∥x0̃

∥∥ec′t , (2.16)

where a = (1/2πi)∫ c′+i∞c′−i∞ |Φ̃s(z)|(|P| +
∑K
k=0 |Ak||z−1(1− e−zθk)|)dz, then it follows

finally that for t > µ

∣∣∣∣∣Φs(0+)Px0(t)−
N∑
n=1

Res
z=zn

(Rezn>c′)

[
Φ̃s(z)p(z)ezt

]∣∣∣∣∣≤ a∥∥x0̃

∥∥ec′t . (2.17)

Note that Theorem 1.2 can be similarly applied to the integral equality, instead to

equality (2.9), can be applied to the integral equality too

Φs
(
0+
)
P
∫ t

0
x0(τ)dτ = 1

2πi
lim
ω→+∞

∫ c+iω
c−iω

Φ̃s(z)
z

p(z)ezt dz. (2.18)

In that emphasized case, for t > µ, it holds that

∣∣∣∣∣∣Φs
(
0+
)
P
∫ t

0
x0(τ)dτ−

N∑
n=1

Res
z=zn

(Rezn>c′)

[
Φ̃s(z)
z

p(z)ezt
]∣∣∣∣∣∣≤ â

∥∥x0̃

∥∥ec′t , (2.19)

where â= (1/2πi)∫ c′+i∞c′−i∞ (|Φ̃s(z)|/|z|)(|P|+
∑K
k=0 |Ak||z−1(1−e−zθk)|)dz.
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On the basis of the results (2.17) and (2.19), it follows that if Rezn < c′ < 0, where

zn are zeros of the characteristic quasi-polynomial of system (2.1), then

lim
t→+∞

Φs
(
0+
)
Px0(t)= 0, lim

t→+∞
Φs
(
0+
)
P
∫ t

0
x0(τ)dτ = Φ̃s

(
0+
)
p(0), (2.20)

respectively.

The preceding results can be generalized in a sense of obtaining the general condi-

tions for convergence of the fundamental matrix Φs(t) of system (2.1). Namely, on the

one hand, as a result of successive differentiation of both sides of the well-known for-

mula for the Laplace transform of the nth derivative of an arbitrary function t� f(t)

∫ +∞
0

dn

(dτ)n
f(τ)e−zτ dτ = znf̃ (z)−

n−1∑
k=0

zn−1−kf (k)(0), (2.21)

with respect to z, whenever the integral on the left-hand side of (2.21) exists, it is

obtained that

dm

(dz)m

∫ +∞
0

dn

(dτ)n
f(τ)e−z(τ−t) dτ

=
∫ +∞

0
(t−τ)m dn

(dτ)n
f(τ)e−z(τ−t) dτ

= dm

(dz)m
[
znf̃ (z)ezt

]

−
m∑
k=0

(
m
k

)
dm−kezt

(dz)m−k

n−1∑
r=k

r !
(r −k)!z

r−kf (n−1−r)(0).

(2.22)

On the other hand, from the ordinary integral calculus, it is well known that if a

function t �φ(t) is Riemann integrable over any finite time-interval (0, t), the func-

tion t �
∫ t
0φ(τ)dτ is continuous on, more precisely Riemann integrable over that

time-interval (0, t). Hence, for all Riemann integrable functions t � φ(t) over (0, t),
the nth order integral

∫ t
0

∫ t
0 ···

∫ t
0φ(t)(dt)n is defined. The Laplace transform f̃ (z) of

f(t)= ∫ t0 ∫ t0 ···∫ t0φ(t)(dt)n, as it is well known, is f̃ (z)= z−nφ̃(z).
Accordingly, if the point z = 0 is the nth-order pole of a function z� z−nφ̃(z)ezt ,

then in view of the fact that a function residue at the point z = 0 is by definition

Res
z=0

[
z−nφ̃(z)ezt

]= 1
2πi

∫�
G
z−nφ̃(z)ezt dz, (2.23)

clearly under assumption that inside a domain bounded by G, as well as on its bound-

ary, except for the singularity z = 0, there is no other singularities of the function

z−nφ̃(z)ezt , that is,

Res
z=0

[
z−nφ̃(z)ezt

]= 1
(n−1)!

lim
z→0

dn−1

(dz)n−1

{
zn
[
z−nφ̃(z)ezt

]}
, (2.24)

it follows from the result (2.22) that for m=n−1

1
2πi

∫�
G

φ̃(z)
zn

ezt dz = 1
(n−1)!

lim
z→0

∫ +∞
0
(t−τ)n−1φ(τ)e−z(τ−t) dτ, (2.25)
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considering the fact that for every k= 0,1,2, . . . ,n−1

lim
z→0

n−1∑
r=k

r !
(r −k)!z

r−k
[
dn−1−r

(dt)n−1−r

∫ t
0

∫ t
0
···

∫ t
0
φ(t)(dt)n

]∣∣∣∣∣
t=0

= k!

[
dn−1−k

(dt)n−1−k

∫ t
0

∫ t
0
···

∫ t
0
φ(t)(dt)n

]∣∣∣∣∣
t=0

= 0.

(2.26)

In the case in which the function z� φ̃(z) is a regular one in the half-plane Rez > c
(c ∈R1+), it is obtained by application of the inversion theorem that

1
2πi

∫ c+i∞
c−i∞

φ̃(z)
zn

ezt dz = 1
(n−1)!

∫ t
0
(t−τ)n−1φ(τ)dτ. (2.27)

In addition, if all singularities of φ̃(z) are in the half-plane Rez < c′ (c′ ∈R1−) and

limz→+∞[z−nφ̃(z)]= 0 for Rez < c, then by the result of Theorem 1.2, it follows that

∣∣∣∣∣ 1
(n−1)!

lim
z→0

∫ +∞
0
(t−τ)n−1φ(τ)e−z(τ−t) dτ− 1

(n−1)!

∫ t
0
(t−τ)n−1φ(τ)dτ

∣∣∣∣∣
=
∣∣∣∣∣ 1

2πi

∫ c′+i∞
c′−i∞

φ̃(z)
zn

ezt dz

∣∣∣∣∣= ec′t
∣∣∣∣∣ 1

2πi

∫ c′+i∞
c′−i∞

φ̃(z)
zn

ei(Imz)t dz

∣∣∣∣∣≤ aec′t ,
(2.28)

where a= (1/2πi)∫ c′+i∞c′−i∞ |z−n||φ̃(z)|dz, that is,

∣∣∣∣∣ 1
(n−1)!

∫ +∞
t
(t−τ)n−1φ(τ)dτ

∣∣∣∣∣≤ aec′t . (2.29)

On the basis of the preceding results and an integral value of the function τ �
τn−1e−τ [5] ∫ +∞

0
τn−1e−τ dτ = (n−1)!, (2.30)

it follows that if Φ̃s(z), as the Laplace transform of the fundamental matrix Φs(t)
of system (2.1), is a regular-analytic function in the half-plane Rez > c (c ∈ R1+),
more precisely if all singularities of the function Φ̃s(z) are in the half-plane Rez < c′

(where c′ ∈R1−) and limz→+∞[z−nΦ̃s(z)]= 0 for Rez < c, then it holds that

∫ +∞
t
(t−τ)n−1Φs(τ)dτ = 1

2πi

∫ c′+i∞
c′−i∞

Φ̃s(z)
zn

ei(Imz)t dz
∫ −∞

0

(
c′τ

)n−1ec
′(t−τ) d

(
c′τ

)

=
(
c′
)n

2πi

∫ c′+i∞
c′−i∞

Φ̃s(z)
zn

ei(Imz)t dz
∫ +∞
t
(t−τ)n−1ec

′τ dτ,

(2.31)

that is, ∫ +∞
t
(t−τ)n−1Φs(τ)dτ = Y(t)

∫ +∞
t
(t−τ)n−1ec

′τ dτ, (2.32)
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where Y(t)= ((c′)n/2πi)∫ c′+i∞c′−i∞ z−nΦ̃s(z)ei(Imz)t dz, more precisely,

lim
t→+∞

Φs(t)= 0. (2.33)

3. Some comments on impulsive behavior of linear singular systems. The pre-

ceding results are up to a point in collision with the one ad hock result of the theory of

time-invariant linear singular control systems, and which in direct connection with so-

called impulsive behavior of singular systems [3]. In [3], the result (taken over from [8])

was presented, which makes equal a number of impulsive modes, more precisely of

infinite frequency modes, in a solution formulation for linear time-invariant singular

systems without delay, to the algebraic expression value rank P−degree{det(zP−A)}.
For the illustration of the fact that such result is unfounded, the following example

[7] is indicative.

Example 3.1. Since the highest degree of the complex variable z in the polynomial

function π(z)= det(zP−A) of a system of differential-algebraic equations

d
dt

q(t)= x(t),


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


x(t)−



a b c 0

e f g h
i j k 0

m 0 n 0


q(t)= 0,

(3.1)

for nj ≠−mb and h≠ 0, is

degree
{
π(z)

}= degree
{−h{m[(z−k)b+jc]+n[(z−a)j+bi]}}= 1, (3.2)

and the rank of the singular matrix P of the system: rankP = 3< 4, on the one hand,

it follows that

rankP−degree
{

det(zP−A)
}= 3−1= 2. (3.3)

On the other hand, in an explicitly obtained solution formulation for the given

system of differential-algebraic equations

q1(t)= q1
(
t0
)
eα(t−t0);

q2(t)= m(k−a)+m
2c/n−ni

nj+mb q1(t);

q3(t)=−mn q1(t);

q4(t)= 1
h

[
(α−f)m(k−a)+m

2c/n−ni
nj+mb +

(
gm
n
−e

)]
q1(t),

(3.4)

where α = (n(ja− bi)+m(bk − jc)/(nj +mb)), there are no infinite frequency

modes (impulsive modes) but they are present only finite frequency modes (expo-

nential modes).

An idea on the presence of infinite frequency modes (impulsive modes) in a solu-

tion formulation for linear time-invariant singular systems of differential equations
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without delay is among other things a consequence of an insufficiently exact appli-

cation of the Laplace transform in the course of solving a singular system of differ-

ential equations Nẋ2(t) = x2(t)+Bu(t), where n×n matrix N is a nilpotent matrix

with index of nilpotency ν , and B is an arbitrary rectangular m×n matrix, as a sub-

system of the standard (Weirestrass) canonical form of linear time-invariant singular

systems. Namely, the solution of the aforementioned system of differential equations

is x2(t)=−
∑ν−1
i=0 NiBu(i)(t), since

Nẋ2(t)=−
ν−1∑
i=0

Ni+1Bu(i+1)(t)=−
ν∑
i=1

NiBu(i)(t)

=−
ν−1∑
i=0

NiBu(i)(t)+Bu(t)= x2(t)+Bu(t).

(3.5)

However, in [3] (taken over from [2]) the following result was presented:

x2(t)=−
ν−1∑
i=0

δ(i)(t)Ni+1x2(0)−
ν−1∑
i=0

NiBu(i)(t), (3.6)

where δ(i)(t) is ith derivative of Dirac’s delta distribution, in which there exist infinite

frequency modes (impulsive modes). From what follows it will be seen that even if the

inclusion of distributions in a solution formulation for linear time-invariant singular

systems would be acceptable, this result must be corrected so that the system solution,

under the aforementioned circumstance, is

x2(t)=−
ν−1∑
i=0

δ(i)(t)Ni+1

[
x2(0)+

ν−1∑
i=0

NiBu(i)(0)
]
−
ν−1∑
i=0

NiBu(i)(t), (3.7)

that is,

x2(t)=
ν−1∑
i=0

Ni

{
N
[
1−χ(t)](i+1)

[
x2(0)+

ν−i−1∑
j=0

NjBu(j)(0)
]
−Bu(i)(t)

}
, (3.8)

where χ(t) is the unit step function, since

ν−1∑
i=0

δ(i)(t)Ni+1
ν−1∑
i=0

NiBu(i)(0)=
ν−1∑
i=0

Ni+1δ(i)(t)
ν−i−1∑
j=0

NjBu(j)(0). (3.9)

By application of the right-hand Laplace transform to the pure singular system

N(d/dt)x2(t)= x2(t)+Bu(t), for example, it is obtained that

X2(z)= (zN−E)−1[Nx2(0)+Bu(s)
]

=−
ν−1∑
i=0

Nizi
[
Nx2(0)+Bu(s)

]
,

(3.10)
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that is,

x̃2(z)=
ν−1∑
i=0

Nizi
[

N
ν−1∑
i=0

NiBu(i)(0)−Bũ(z)
]

−
ν−1∑
i=0

Ni+1zi
[

x2(0)+
ν−1∑
i=0

NiBu(i)(0)
]

=−Bũ(z)−
ν−1∑
i=1

NiB

[
ziũ(z)−

i−1∑
j=0

zju(i−1−j)(0)
]

−
ν−1∑
i=0

Ni+1zi
[

x2(0)+
ν−1∑
i=0

NiBu(i)(0)
]
.

(3.11)

Finally, by use of the inversion Laplace theorem, clearly under the condition that

x2(0)=−
ν−1∑
i=0

NiBu(i)(0), (3.12)

we obtain

x2(t)=−Bu(t)−
ν−1∑
i=1

NiBu(i)(t)=−
ν−1∑
i=0

NiBu(i)(t), (3.13)

which is equivalent to explicitly obtained solution without infinite frequency modes

(impulsive modes) on the one hand, and on the other satisfies the aforementioned

condition.

4. Conclusion. It is an unquestionable fact that a class of singular systems of differ-

ential equations is more general with respect to a class of regular systems of differen-

tial equations. Accordingly, it is a question whether we can, in spite of all peculiarities

of these two class of systems, apply the same methodology in the qualitative analysis

of their dynamic behavior?

The results obtained in this paper give a solid base for formulating the answer to

the former asked question. In other words, on the basis of our results, we can say

that peculiarities of a class of linear time-invariant time-delayed singular systems are

not of that generality which would require the new methodology in the analysis of

dynamic behavior of that class of systems in comparison with that applied in the

analysis of dynamic behavior of a class of linear time-invariant time-delayed regular

systems.
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culus of Residues with Applications], Mathematical Problems and Expositions, vol. 8,
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