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ABSTRACT. For the equation
Lov(t) + a(t)h(y(a(t))) = £(t)
where
Loy (8) = pp(e) (pg1(6) Coaepy(0) (po()y (eI e ) )
sufficient conditions have been found for all of its solutions to be oscillatory. The
conditions found also lead to growth estimates for the nonoscillatory solutions.
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1. INTRODUCTION.

Our main purpose in this paper is to study the oscillatory phenomenon associated
with the eauation

Ly(e) + a(t)h(y(r(t))) = £(¢) (1.1
Where n > 2 and Ln is a disconjugate differential operator defined by

Ly(t) =p (), (.. () (pp(e)(x)E)) ") ") ") . (1.2)
Following our work (Singh and Kusano [6]), it is assumed that:

(1) Piec((a’ =), (09 "))voiiin
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(ii) a, f, g e C ([a, =), R), there exists a tg > a such that
o< g () <t fort>t,, and p(t) > = ;
(iii) h e € (R,R) , h is nondecreasing and sign h(y) = sign y.
We introduce the notation:
Lay(t) = pay(t), Lyy(t) = p(e)(Ly_j(y(e))', 1 < i < n. (1.3)
The domain D(Ln) of L, is defined to be the set of all functions y : [Tv , ®) > P
such that LiY(t)' o< 1< n, exist and are continuous cn [Tv, «), In what follows by
a "solution" of equation (1.1) we mean a function v ¢ D(Ln) which is nontrivial in any
neightorhood of « and satisfies (1.1) for all sufficiently large t. A soluticen of (3.1}
is called oscillatory if it has artitrarily large zeros; otherwise the solution is
called nonoscillatory.
A great many oscillation criteria are lnown for an eauation of the form

(=D 4 aonye(e)) = o (1.4)

(r(t)v'(t))
For this we refer the reader to Onose [2), Singh [3] and Kusano and Onose [1]. A re-
centlv publishcd Russiar tool bv Sievelov [7] gives a detailed list of references on
the subject. Obtaining an oscillation criterion for the forced equatien
@y @) ™M+ a@ns o)) = £(0) (1.5)
is not so simple. To the best of this author's knowledge, the first attempt to obtain
conditions for the oscillation of the ecuation
(r(t)y'(£))' + a(t)h(y(e(t))) = f(t) (1.€)
was made by Kusano and Onose [1], and later by other authors including this one [4].
The main technique employed rendered the forced ecuation into an almost homogeneous
equation, i.e. a function A(t) was sought such that X(i)(t) > o0as t > o for i = o,

(=D _ £y,

1, ..., n; and (r(t)x'(t))
In this worl, we shall present a new but elementary tecnnique teo obtain an
oscillation criterion for the eauation (1.1).
In order to shorten long expressions we introduce the following notations:
For any function Q(t) € C [a,») and t, s € [a,=), define
1.0,0 = p "1 (M) (1.7
and t

-1 .
1,€0(t),t,8; PpaPpo1s 77 Pn-i) = g Ppop(T) To1(Qut,r5m,, 70y ppop41)dr (1.6)
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for 1< k < n-1.

Any solution y(t) of equation (1.1) which is continuous in a finite interval can
be indefinitely extended to the right of a provided the coefficients arc continuous.
In fact following our proof of Theorem 3.1 in [5] we can state the following theorem:

THEOREM 1.1 The continuity of Pys P2y wees P and that of h, g, a and f
guarantee that any solution of equation (1.1) continuous in a finite interval [a,t]
can be continuously extended to all of [a,x).

PROOF. Same as that of Theorem 3.1 in [5] with minor changes.

2. MAIN RESULTS.
THEOREM 2.1 Suppose there exists a function ¢ (t) such that
#(t) e (™ [R], ¢(6) > 0 and (¥"p ()" > 0 for t > a. (2.1)

Further suppose that y(t) satisfies

Jw1/¢2(t)dt < (2.2)
a
v 2 s -1
Lim sup J 1/4<(s) I w(x)In_3(f(x),x,a;p“,pn_l,...,p3)p2 (x)dxds = «=(2.3)
t + a a
t 2 (5 -1
Lim inf J 1/v<(s) J w(x)In_3(f(x),x,a;pn,pn_l,...,p3)p2 (2.4)
t > o 5 o
(x)dxds = -=
o s X X
f_1 [ Lxrp-1 -1 2 ™21
T | Rt )f it Crto) e [T Lo ) (2.5)
@ a a a a
dxn_1 dxn-Z’ dx _g...dx < @
a(t) > o and pi(t) < o for t > a. (2.¢)

Then all solutions of equation (1.1) are oscillatory.
PROOF. Suppose to the contrary that y(t) is a nonoscillatory solution of ecua-
tion (1.1). Let T > a he large enough so that y(t) and y(g(t)) are of the same sign
for t > T. Without any loss of generalitv, let v(t) > o anc v(g(t)) > o for t > T.

On repeated integration for t > T, we obtain from ecuation (1.1)
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(P1(E) (B(O)V(EN )" = p3 (OILy() - (0710 jtpgl(x)dx)L3y(T)
T

t s
- 6o sl rleeanrym - ...

T T

_ -1 t -1 X3 -1 el -1
Ly -1y (t) py (v) I Py (x3) I 3 P, () - .. [ pn__l(xn_l)dxn_ldxn_zdxn_3...dx3
T T T

+p31(t) T 3 (a(t)h(y(e(t))),t,T;p,,...pq
= p5H(E) T 3(£CE),,T5p WPy qse e euPy) (2.7)
Multiplying (15) by ¢¥(x) and rearranging terms we have

(py (V)(E) (P (D) y(E)) )" = ' (E)p (£) (py(t)y(e))’ - w(t)pgl(t)Lzy(T)

H(®) (L) [Fp31EANLy (ML Ly rghe) (7l
T T

21 (xdéx dx, + $()p 1(e) T__.(ah,t,T;p ra)
: I n-1 n-17""n-1°°""73 i) n=-3'3Mt,15Ph,eee sy

= 9P, (E) T (E(E),E,T5p 4Po1s e e s D) (2.8)

Integrating (2.8) and dividing by wz(t) we get

Py (£) (poy)’ Py (MH(T) (pgy) ' (T) 1 t

( ] L 1
- v (x)pq (%) (pyv) "dx
¥(e) ¥2(c) 2 ) L

2 oot | Lym- 1 [feeory oo £xp;1(s>dsdx L3y (T)

¢2(t) T wz T
t -1 t -1 X-2 -1
- _E;__ f 0(x)p2 (x) I p3 (x3)dx3...£ n pnhl(xn_l)dxn_l...dx3dx Ln-l(T)
vy |LT T
L1 {tw(x)p;l(x) I, 3@EOR(Y(P(X))),X,Tipy - -, P)dX
vie) T
t
1 ¢(x)p-1(X) I 2 (£(X),x,Tip_,P__1se--,P)dxX. (2.9)
- 2 n-3 n’"n-1
iy T

In (2.9), we integrate the third term by parts to obtain

P () (p ¥)' t
! 0 I 1L AN [ ' )r(x)) "pyy(x)dx

u(t) V2 (1) R e T
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v2(e)

- x - , -1 )
e [}1 !tw(x)pzl(x) f n31(x3).... (xn'l P (xn_])axn_l...dx3dx:]

n-1
@) q T A

|1 t -1 _
RIS (X)d%] Ly(M-....
T

1
wz(t)

[F8e0P 0TGN (a()) X, Tip, - sD3)dx
T
= 1

t
(0P L) T (B x,Tip ».nn,p,dx (2.10)
wz(t) 4 2 n-3 n 3

where

Ky = », (DM (0 y) ' (D + p (Dpo(Dy(Mw' (1)

Integrating first term in ¢ ’.1%) arair bv parts auc observive thot

(t Qlfx)ng(X)v(x)w'(x) dx
+ ¥ (x)
") p,(x)v(x)
o p1<x>> R s @211
T\ v (x)
We get
Py (E)py(t)y(t) e P e (RIv(x) e 1 o
.—TFZ;;__—_———_ - Kl { reny % '@2?;; 4 (w pl) po(s)y(s).dsdx

t
- Lzy(T) { _71__ Itw(s)pgl(s)ds — heee

Yo (x) T
rt 1 (s -1 X -1 {xn—z -1 o
- 20, w(x)P2 (x) I P, (x3)... I pn_l(xn_l)dxn_l... x3dxds
T T T T
L Su(x) p'l(x) I (a(x)h(v(e(x))),x,T,n_,...,p3)dxds
)2 2 n-3
T v T
t s -
- —w}(—) £ $0OP, O, 3(£(X) X, T3Py Py s+ »P3)dxds (2.12)
T S
where
. P (TIPp(T)y(t)
Kl —_—

¥(T)
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The terms on the left hand side of (2.12) are either positive or finite.

ripht hand side oscillates between - = and @, a contradictior is apparent.

theorem is proved.

EXAMPLE 1. Consider the equation
(t%v')')' + y(t-31/2) = ¢2 sin t,

Here pG(t) = 1. pl(t) = 1/¢, nz(t) = t and p3(t)

The

Choosing w(t) = t3 for t > a, it is easily verified that all conditions of the

theorem arc satisfied. Hence all solutions of eaquation (1.1) are oscillatory.

THEOREYM 2.2 Suppose conditions (2.2) - (2.€) of theorem 2.1 hold,

a nonnepative solution of the eguation

(P (t)y"())' - a(t)h(v(a(t))) = o.

Then all solutions of equation (l.l) are oscillatory.

Since the

(2.13)

let ¥ (t) be

(2.14)

PROOF. Since (pl(t)w(t))' > o, all conditions of theorem 2.1 are satisfied.

The proof is complete.
COROLLARY 2.1 For the equatior
y(M(£) + a(t)h(v(e(t))) = £(¢)

Conditions (2.3) - (2.5) respectively reduce to
s

>

pg_ﬁ Q —

lim sup 1/¢ (s) J v(s) (x-u)
(] a )
and
t s -
1o [176%(s) J 00 x" % dxds < o
t e )
u a

(¢ x n
lin inf } 1/v2(s) f v | (xu)

-3
f(u)dudxds = -=

f(u)dudxds = o

(2.15)

(2.16)

(2.17)

(2.18)

Thus subject to conditions (2.2), (2.6) and (2.15) - (2.18) all solutions of eauation

(2.15) are oscillatory.

EXAMPLE 2. Consider the equation

y(iv)(t) + ez"y(t-w) = -¢3 e2t sin(2t), t > 7

(2.19)
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If we choose y(t) = et, then conditions of corollary 2.1 can be easily verified.
Hence all solutions of equation (2.19) are oscillatorv. In fact v(t) = e2t sin (2t)
is one such solution.
For the bounded solutions of equation (1.1), the condition a(t) > o can be improved
as the following theorem shows:

THEORE! 2.3 Suppose there exists a function {(t) such that
p(t) e C(n) [R], v(t) > o, ¢'p1)' > o and pl'(t) < o for t > a. Further suppose
that v(t) satisfies conditions (2.2) - (2.5) of Theorem 2.1 and the condition

jmllwz(t) jtw(s) I_3(la(s)]s,a3p_p _1seenspy)p;t(s)dsdt < = (2.20)
a a

Then all bounded solutions of equation (1.1) are oscillatory.
PROOF. We proceed as in Theorem (2.1) and arrive at (2.12). If y(t) is bounded
then there exists a constant Cy > o such that
In(y(g(e)n] < c . (2.21)
In eaquation (2.12) the last term on the left hand side

- S
1 1876) 0300 13 (OONE (RE)) X, Tipg, -« -ny)dxds]
T T

02 re, -1 I . -
< Cy j 1/y<(t) % v(x)p, (X)In_3(|a(x)l,x,T,pn,...,p3)dxdt < ™, (2.22)

Hence all terms on the left hand side of equation (2.12) are either finite or non-
negative. The proof now follows as in theorem 2.1.

REMARK. When n=2,3, condition (2.18) reduces to condition (2.2) with obvious
changes in (2.1f) and (2.17).

Under the conditions of theorem 2.3, eauation (1.1) may nossess unbounded
nonoscillatory solutions as the following example shows:

EXAMPLE 3. The equation

y'(t) + 50 sin t y(t) = (4 + 50 sin t) eF (2.23)

2t
has v(t) = e as a nonoscillatory solution.

If we choose ¢(t) = et we have from (2.20)
f
|

3 t
j e 2t { eS sin s dsdt | < = (2.24)
£

m
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Conditions (2.16) and (2.17) vield

t s
lim inf f et r 03S(A + 50 sin s)dsdt = -
tre ) J

L "

and

{t -2t S 3¢
1im sup e j e”7(4 + 50 sin s)dsdt = »

n n

Thus all conditions of theorem 2.3 are satisfied. Uence all Lounded solutions of
ecuation (2.23) are oscillatory even though it has an untounded nonoscillatory
solution.

COROLLARY 2.2. Subject to the conditions of theorem 2.3 all nonoscillatory
solutions of equation (1.1) are unbounded.

Corollary 2.2 leads to the following theorem which gives a growth condition for
the nonoscillatorv solutions of equation (1.1).

THFOREM 2.4 Supnose conditions of thecrem 2.3 hold. Let v(t) be a nonoscilla-

tory solution of couation {(1.1). Then

1im sup (Jv(t)|p 1(t)) = (2.25)

o n
PROOF. Suppose to the contrary that there exist constant D, > o and T > a
such that
lyeenir 1 (v) < by (2.20)
for t > T. Condition on b implics that there exists a Cy > o such that
[r(v((e)N] < ¢, ly(a(eN] < Cyy = K, (2.27)
Following the proof of theorem 2.3 we sce that the constant Ky replaces Cy in equality
(2.22) and the proof is complete.
REMAPK. It is a matter of general interest to olbtain theorems involving operator
Ln in its most general form; i.e. vhen Ln is not necessarily in canonical form. L, is
said to Le in canonical form if

(" '1( dt =™, 1 < i < n-1 (2.28)
}' pi t)dt N < < .
a



NONLINEAR OSCILLATIONS IN FUNCTIONAL EQUATIONS 109

Recently Trench [8] has shown that when L, 1s not in canonical form, i.e. when
(2.28) doesn't hold, it cam be put in a canonical form in a unique way with a
different set of p s satisfying (2.28). More precisely the operator Ln can he
rewritten as

Ly = b (b1 () (oo (by(8) (bo(t)y(e)) ) 'L ")’
where

L]

I b M(e)de ==, 1< i<l (2.29)

a

each bi is obtained from P1s P2y ==s P i=o0,1, -—-, n. The actual computations
leading to b s are tedious.
It is interesting and important to note that the results in this work do not

depend upon condition (2.28) or (2.29).
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