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ABSTRACT. For the linear difference equation

A(cn_1 A xn—l) + a = 0 with h >0,

n
a non-oscillation comparison theorem given in terms of the coefficients <, and the

fed
series I as has been proved.
=k
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1. INTRODUCTION.
We consider linear homogeneous second order difference equations of the form

A(cn_1 A xn_l) + ax = 0, n=1,2,3,..., (1.1)

where A denotes the forward difference operator Axn = x

41~ Xy and a = {an} and

c = {cn} are real-valued infinite sequences with <, >0 forn=20,1,2,... . (No
assumption is made about the sign of an.)
Equation (1.1) is equivalent to the difference equation

CX1+

ot = bnx R (1.2)

‘n-1%n-1 n

where bn =c, + Chop ~ 3 0= 1,2,3,... . Recent papers ([1],[2], and [3]) have
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treated oscillation and comparison theorems for this equation.

The theorem to be considered here is a difference equation analogue of Taam's
generalized version [4] of the well-known Hille-Wintner comparison theorem for
second-order linear differential equations (see [5, Thm. 7, p. 245] and [6], or
[7, p. 60-62]).

Let x = {xn}, n=20,1,2,..., be a real, non-trivial solution of (1). Then x
is said to be oscillatory if, for every N, there exists n 2 N such that
xnxn+l £ 0. Since either all non-trivial real solutions of (1.1) are oscillatory
or none are (see [8, p. 153]), equation (1.1) may be classified as oscillatory or
non-oscillatory. Also, if x is a solution of (1.1), so is -x, and it then follows
that (1.1) is non-oscillatory if and only if there exists a solution x with X >0
for all n 2 N, for some integer N 2 0. (The variables j, ky, n, M, N will always
be understood below to represent non-negative integers.)

2. MAIN RESULTS.

We will prove the following comparison result:

THEOREM 1. Given the difference equations

A(Cn_1 A xn—l) + Anxn =0 (2.1)
A(cn_1 A xn—l) + ax = o, (2.2)
assume that
< <
0 < Cn =c, and Cn - K (2.3)
for all n 2 0, for some constant K > 0, and
oo
05 % a £ % A <w (2.4)
n=k © n=k o

for all sufficiently large k. Then, if (2.1) is non-oscillatory, (2.2) is non-
oscillatory also.

Before proceeding to the proof of Theorem 1, we need two preliminary results.
The first of these is an elementary property of real numbers:

LEMMA 1. If 0Salb and c > 0, then
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Our second lemma may be thought of as a discrete analogue of Theorem 4 of Hille
[5, p. 243], which gives a necessary and sufficient condition for non-oscillation
of solutions of x" + £(t)x = 0 in terms of the existence of a solution of a
related Riccati integral equation. Hille then used a successive approximations
technique to show the existence of a solution of the integral equation. We will
use a similar device here to prove Theorem 1. Our proof of Lemma 2 is a discrete
version of a standard Riccati transformation argument, as used, for example, in
the proof of the Hille-Wintner theorem presented by Swanson [7]. The resulting
difference equation (2.7) below is quite different in form, however, from the
Riccati differential equation.

LEMMA 2. Assume that

ooA <
z *,
n=1 O

Then the difference equation (1.2) is non-oscillatory if and only if there exists

a sequence v satisfying

2
v
- n ©
Y T z v +C z An+l (2.3)
n=k n n n=k

+C >0 forkazM.

for all sufficiently large k, say k 2 M, with vy X

PROOF. Let (2.1) be non-oscillatory and let x be a solution of (2.1) with

> 2 = >
X 0 for n 2 M. Let vo Cn(Axn)/xn, n - M. Then

xn+1 T X xn+1

= n = — - -
Va Cn ¢ x ) Cn ¢ x D> Cn’
n n
sov +C >0,n 2 M. From (2.1) we have
Cn+1 A *n+1 Cn A *n + An+lxn+1 =0.

Diyiding by X 41 and adding and subtracting v,» one obtains
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Vatl T Vn + Va TV xn/xn+1 + n+l 0,
or
_ = 2.6
Avn + vn(1 xn/xn+l) + An+1 0. (2.6)
Now
X X -x +x Ax v
ntl _ “ntl n=_g+1=€q+l,
*n *n *a n

2
v
n
A —_— = 2 M. N
Vn + v +C Ah+1 O,naM 2.7)
n n
Summing from k to N, where M 5 k < N, we obtain
N vn2 N
Vel TVt LTyt AL (2.8)
n=k n n n=k

By hypothesis, the right side of (2.8) has a finite limit as N + ®, gso the left
side also has such a limit.

As noted above, v. + C_ > Q0 for n 2 M, so v 2/(v +C)20forn 2 M If
n n n n n

® 2
nfk v, /(vn + Cn) =+ «, then, from (2.8), Vil + -® ag N + ®,  But this is

impossible, since Vo 2 —Cn, and —Cn 2 -K by hypothesis. Thus, for every k 2 M,

we have
v 2
05 £ —B <=
= v +C
n=k n n

Therefore, vn2/(vn + Cn) *> 0 as n > *® from which it follows, since Cn is bounded,
that v, 7 0 as n > ®, Equation (2.5) then follows immediately from (2.8).
Conversely, if v is a sequence satisfying (2.5), with Vo + Cn >0 for n 2 M,
then application of the forward difference operator A to both sides of (2.5) leads
immediately to equation (2.7). We then define a sequence x inductively as

Vi + Cn S

X, = 1, X" 6—72:——0xn, n 2 M.

Then x_ > O for n 2 M, and v_ = C_(x
n n n

/xn - 1); hence, v, = ¢ Axn/xn. Substitu-

n+l n

tion of this expression into equation (2.7) then leads readily to equation (2.1),
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so x as defined above satisfies (2.1) for n 2 M. We may then define

X1 Xy-00° 2 %p successively, using (2.1). The resulting sequence x is thus

a non-oscillatory solution of (2.1), which completes the proof of Lemma 2.
Proceeding with the proof of Theorem 1, we assume that (2.1) is non-

oscillatory. Then by Lemma 2 there exists a sequence V = {Vk}, k 2 M, for some

M 2 0, which satisfies (2.5), with Vk + Ck >0 for k 2 M. We will use a succes-

sive approximations argument to show that there is a sequence v = {vk}, k 2 M,

which satisfies 2

nv

n ©
+ c * Z
n=

a , k 2 M. (2.9)
x Vn n =K n+l

It will then follow by Lemma 2 that equation (2.2) is non-oscillatory.

We define a sequence of successive approximations

v o= {vi}, k2M, j20, as follows:

0
vk=vk,k§M,
vj_l 9 (2.10ab)
‘_°°(n) i S o
vi—z; 1 + % a g, kIM §IL
n=k vn + cn n=k

We must first show that the sequences vj, j 2 1, are well-defined by (2.10ab).

. 0 _ >
Since v, = Vk’ k £ M, we have
0 > .0 _ N >
Vk + ck = vk + Ck = Vk + Ck 0, k = M.
Then
0,2 0,2 2
0 (v) < (Vk) vy s

o, T, . =Vk+Ck , kZM. (2.11)
Vie T % kT "k

Since the sequence V satisfies (2.5), it follows -from (2.11) that the series in

(2.10ab) converges for j = 1, for all k z M. Therefore vi is well-defined by

(2.10ab) for each k 2 M. Furthermore, by (2.4), (2.10ab), and (2.11), we have

2
W)
1<m__n__ S = =0 > ®
W2y vt AT TV kel
n=k 'n n n=k

0

A

nA

i.e., O

WA

vg, k 2 M.

=
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Proceeding inductively, we assume that vi,

for j = 1,2,3,...,1 and that 0 £ vi < vi'l for k2 M, j =1,2,3,...,1i. Then

k 2 M, has been defined by (2.10ab)

vi+c, 2c > 0, k 2 M. Using Lemma 1, we then obtain

k k= "k
. D7 . H?
0 T a4 < 3z _1 , k 2 M. (2.12)
n=k v. + ¢ n=k Vo c
n n n

It follows from (2.12) that vi+l

from (2.10ab) and (2.12) we have

is well-defined by (2.10ab) for all k 2 M, and

nw

Therefore, by induction, is defined by (2.10ab) for all j 1 and k 2 M, and

< 1

vi
WS

» j 2 k 2 M. (2.13)

I
=

Thus vj is non-negative and non-increasing in j for each k 2

k and we may define

>
= = M
Vi lim vi, k

j-)OJ

Note that Vi 2 0, so that Vi + e 2z S >0, k 2 M. Also, from (2.13) and Lemma 1,

we obtain

i\ 2 j-1,2
SRR
1

03s— S —= » 321, k2M (2.14)
Bt Pl+e
k k k k

Repeated application of (2.14) yields, with (2.13),
2 2

) )

05— Sy =3¢ for all j 2 O.
vJ+ck k © "k
k

Thus the convergence of the first series in (2.10b) is uniform with respect to j.
Consequently, we may take limits in (2.10ab) as j > ® and obtain equation (2.9).
It then follows from Lemma 2 that equation (2.2) is non-oscillatory, which com-
pletes the proof of the theorem.

Since several recent discussions of oscillation of solutions of difference
equations have treated equation (1.2) above, we restate theorem 1 for equations

of the form (1.2).
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THEOREM 2. Given the difference equations
Cnxn+1 + Cn—lxn-l = ann (2.15)
cnxn+l n-1%n-1 ~ bnxn’ (2.16)

<

assume that 0 < Cn =c, and Cn $K, n=0,1,2,..., for some constant K > 0. If

05 % (c.+c .-b)S T (C_+C_ ,-B)<w
- =k n n-1 n" - n=k n n-1 n

for all sufficiently large k, then, if (2.15) is non-oscillatory, (2.16) is non-

oscillatory also.
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