A HILLE-WINTNER TYPE COMPARISON THEOREM FOR SECOND ORDER DIFFERENCE EQUATIONS

JOHN W. HOOKER

Department of Mathematics, Southern Illinois University Carbondale, Illinois 62901 U.S.A.

(Received October 2, 1981)

ABSTRACT. For the linear difference equation

$$\Delta(c_{n-1} \Delta x_{n-1}) + a_n x_n = 0$$
 with $c_n > 0$,

a non-oscillation comparison theorem given in terms of the coefficients c_n and the series $\sum\limits_{n=k}^{\infty}a_n$, has been proved.

KEY WORDS AND PHRASES. Difference equations, oscillatory and non-oscillatory solutions, comparison theorems, Riccati transformation:

1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. 39A10, 39A12.

1. INTRODUCTION.

We consider linear homogeneous second order difference equations of the form

$$\Delta(c_{n-1} \Delta x_{n-1}) + a_n x_n = 0, \quad n = 1, 2, 3, ...,$$
 (1.1)

where \triangle denotes the forward difference operator $\triangle x_n = x_{n+1} - x_n$, and $a = \{a_n\}$ and $c = \{c_n\}$ are real-valued infinite sequences with $c_n > 0$ for $n = 0,1,2,\ldots$ (No assumption is made about the sign of a_n .)

Equation (1.1) is equivalent to the difference equation

$$c_{n}x_{n+1} + c_{n-1}x_{n-1} = b_{n}x_{n},$$
 (1.2)

where $b_n = c_n + c_{n-1} - a_n$, n = 1,2,3,... Recent papers ([1],[2], and [3]) have

388 J. HOOKER

treated oscillation and comparison theorems for this equation.

The theorem to be considered here is a difference equation analogue of Taam's generalized version [4] of the well-known Hille-Wintner comparison theorem for second-order linear differential equations (see [5, Thm. 7, p. 245] and [6], or [7, p. 60-62]).

Let $x = \{x_n\}$, n = 0,1,2,..., be a real, non-trivial solution of (1). Then x is said to be oscillatory if, for every N, there exists $n \ge N$ such that $x_n x_{n+1} \le 0$. Since either all non-trivial real solutions of (1.1) are oscillatory or none are (see [8, p. 153]), equation (1.1) may be classified as oscillatory or non-oscillatory. Also, if x is a solution of (1.1), so is -x, and it then follows that (1.1) is non-oscillatory if and only if there exists a solution x with $x_n > 0$ for all $n \ge N$, for some integer $N \ge 0$. (The variables j, k, n, M, N will always be understood below to represent non-negative integers.)

2. MAIN RESULTS.

We will prove the following comparison result:

THEOREM 1. Given the difference equations

$$\Delta(C_{n-1} \Delta x_{n-1}) + A_n x_n = 0$$
 (2.1)

$$\Delta(c_{n-1} \Delta x_{n-1}) + a_n x_n = 0, \qquad (2.2)$$

assume that

$$0 < C_n \leq c_n \quad \text{and} \quad C_n \leq K$$
 (2.3)

for all $n \ge 0$, for some constant K > 0, and

$$0 \leq \sum_{n=k}^{\infty} a_n \leq \sum_{n=k}^{\infty} A_n < \infty$$
 (2.4)

for all sufficiently large k. Then, if (2.1) is non-oscillatory, (2.2) is non-oscillatory also.

Before proceeding to the proof of Theorem 1, we need two preliminary results.

The first of these is an elementary property of real numbers:

LEMMA 1. If $0 \le a \le b$ and c > 0, then

$$0 \le \frac{a^2}{a+c} \le \frac{b^2}{b+c} .$$

Our second lemma may be thought of as a discrete analogue of Theorem 4 of Hille [5, p. 243], which gives a necessary and sufficient condition for non-oscillation of solutions of x'' + f(t)x = 0 in terms of the existence of a solution of a related Riccati integral equation. Hille then used a successive approximations technique to show the existence of a solution of the integral equation. We will use a similar device here to prove Theorem 1. Our proof of Lemma 2 is a discrete version of a standard Riccati transformation argument, as used, for example, in the proof of the Hille-Wintner theorem presented by Swanson [7]. The resulting difference equation (2.7) below is quite different in form, however, from the Riccati differential equation.

LEMMA 2. Assume that

$$\sum_{n=1}^{\infty} A_n < \infty.$$

Then the difference equation (1.2) is non-oscillatory if and only if there exists a sequence v satisfying

$$v_k = \sum_{n=k}^{\infty} \frac{v_n^2}{v_n + C_n} + \sum_{n=k}^{\infty} A_{n+1}$$
 (2.5)

for all sufficiently large k, say $k \ge M$, with $v_k + C_k > 0$ for $k \ge M$.

PROOF. Let (2.1) be non-oscillatory and let x be a solution of (2.1) with $x_n > 0$ for $n \ge M$. Let $v_n = C_n(\Delta x_n)/x_n$, $n \ge M$. Then

$$v_n = C_n \left(\frac{x_{n+1} - x_n}{x_n} \right) = C_n \left(\frac{x_{n+1}}{x_n} - 1 \right) > -C_n,$$

so $v_n + C_n > 0$, $n \ge M$. From (2.1) we have

$$C_{n+1} \triangle x_{n+1} - C_n \triangle x_n + A_{n+1}x_{n+1} = 0.$$

Dividing by \boldsymbol{x}_{n+1} and adding and subtracting \boldsymbol{v}_n , one obtains

390 J. HOOKER

$$v_{n+1} - v_n + v_n - v_n x_n / x_{n+1} + A_{n+1} = 0$$
,

or

$$\Delta v_n + v_n (1 - x_n/x_{n+1}) + A_{n+1} = 0.$$
 (2.6)

Now

$$\frac{x_{n+1}}{x_n} = \frac{x_{n+1} - x_n + x_n}{x_n} = \frac{\Delta x_n}{x_n} + 1 = \frac{v_n}{c_n} + 1,$$

and substitution of this expression into (2.6) yields

$$\Delta v_n + \frac{{v_n}^2}{v_n + C_n} + A_{n+1} = 0, n \ge M.$$
 (2.7)

Summing from k to N, where $M \leq k \leq N$, we obtain

$$v_{N+1} - v_k + \sum_{n=k}^{N} \frac{v_n^2}{v_n + C_n} = -\sum_{n=k}^{N} A_{n+1}.$$
 (2.8)

By hypothesis, the right side of (2.8) has a finite limit as $N \to \infty$, so the left side also has such a limit.

As noted above, $v_n + C_n > 0$ for $n \ge M$, so $v_n^2/(v_n + C_n) \ge 0$ for $n \ge M$. If $\sum_{n=k}^{\infty} v_n^2/(v_n + C_n) = +\infty$, then, from (2.8), $v_{N+1} \to -\infty$ as $N \to \infty$. But this is impossible, since $v_n \ge -C_n$, and $-C_n \ge -K$ by hypothesis. Thus, for every $k \ge M$, we have

$$0 \leq \sum_{n=k}^{\infty} \frac{v_n^2}{v_n + C_n} < \infty.$$

Therefore, $v_n^2/(v_n + C_n) \to 0$ as $n \to \infty$, from which it follows, since C_n is bounded, that $v_n \to 0$ as $n \to \infty$. Equation (2.5) then follows immediately from (2.8).

Conversely, if v is a sequence satisfying (2.5), with $v_n + C_n > 0$ for $n \ge M$, then application of the forward difference operator Δ to both sides of (2.5) leads immediately to equation (2.7). We then define a sequence x inductively as

$$x_{M} = 1, \quad x_{n+1} = (\frac{v_{n} + C}{C_{n}})x_{n}, \quad n \ge M.$$

Then $x_n > 0$ for $n \ge M$, and $v_n = C_n(x_{n+1}/x_n - 1)$; hence, $v_n = C_n \Delta x_n/x_n$. Substitution of this expression into equation (2.7) then leads readily to equation (2.1),

so \mathbf{x}_n as defined above satisfies (2.1) for $\mathbf{n} \geq \mathbf{M}$. We may then define $\mathbf{x}_{\mathbf{M}-1}, \mathbf{x}_{\mathbf{M}-2}, \ldots, \mathbf{x}_0$ successively, using (2.1). The resulting sequence \mathbf{x} is thus a non-oscillatory solution of (2.1), which completes the proof of Lemma 2.

Proceeding with the proof of Theorem 1, we assume that (2.1) is non-oscillatory. Then by Lemma 2 there exists a sequence $V = \{V_k\}$, $k \ge M$, for some $M \ge 0$, which satisfies (2.5), with $V_k + C_k > 0$ for $k \ge M$. We will use a successive approximations argument to show that there is a sequence $v = \{v_k\}$, $k \ge M$, which satisfies

$$v_k = \sum_{n=k}^{\infty} \frac{v_n^2}{v_n + c_n} + \sum_{n=k}^{\infty} a_{n+1}, k \ge M.$$
 (2.9)

It will then follow by Lemma 2 that equation (2.2) is non-oscillatory.

We define a sequence of successive approximations

$$v^{j} = \{v_{k}^{j}\}, k \stackrel{>}{=} M, j \stackrel{>}{=} 0, \text{ as follows:}$$

$$v_{k}^{0} = V_{k}, \quad k \ge M,$$

$$v_{k}^{j} = \sum_{n=k}^{\infty} \frac{(v_{n}^{j-1})^{2}}{v_{n}^{j-1} + c_{n}} + \sum_{n=k}^{\infty} a_{n+1}, \quad k \ge M, \quad j \ge 1.$$
(2.10ab)

We must first show that the sequences v^j , $j \ge 1$, are well-defined by (2.10ab). Since $v_k^0 = V_k$, $k \ge M$, we have

$$v_k^0 + c_k \ge v_k^0 + c_k = v_k + c_k > 0, k = M.$$

Then

$$0 \le \frac{(v_k^0)^2}{v_k^0 + c_k} \le \frac{(v_k^0)^2}{v_k^0 + c_k} = \frac{v_k^2}{v_k + c_k}, \quad k \ge M.$$
 (2.11)

Since the sequence V satisfies (2.5), it follows from (2.11) that the series in (2.10ab) converges for j = 1, for all $k \ge M$. Therefore v_k^1 is well-defined by (2.10ab) for each $k \ge M$. Furthermore, by (2.4), (2.10ab), and (2.11), we have

$$0 \le v_k^1 \le \sum_{n=k}^{\infty} \frac{(v_n)^2}{v_n + c_n} + \sum_{n=k}^{\infty} A_{n+1} = v_k = v_k^0, \ k \ge M;$$

i.e.,
$$0 \le v_k^1 \le v_k^0$$
, $k \ge M$.

392 J. HOOKER

Proceeding inductively, we assume that v_k^j , $k \ge M$, has been defined by (2.10ab) for $j=1,2,3,\ldots,i$ and that $0 \le v_k^j \le v_k^{j-1}$ for $k \ge M$, $j=1,2,3,\ldots,i$. Then $v_k^i + c_k^j \ge c_k^j > 0$, $k \ge M$. Using Lemma 1, we then obtain

$$0 \leq \sum_{n=k}^{\infty} \frac{(v_n^i)^2}{v_n^i + c_n} \leq \sum_{n=k}^{\infty} \frac{(v_n^{i-1})^2}{v_n^{i-1} + c_n}, k \geq M.$$
 (2.12)

It follows from (2.12) that v_k^{i+1} is well-defined by (2.10ab) for all $k \ge M$, and from (2.10ab) and (2.12) we have

$$0 \leq v_k^{i+1} \leq v_k^i$$
, $k \geq M$.

Therefore, by induction, v_k^j is defined by (2.10ab) for all $j \ge 1$ and $k \ge M$, and

$$0 \le v_k^j \le v_k^{j-1}, \ j \ge 1, \ k \ge M.$$
 (2.13)

Thus v_k^j is non-negative and non-increasing in j for each $k \stackrel{>}{=} M$ and we may define

$$v_k = \lim_{j \to \infty} v_k^j, k \ge M.$$

Note that $v_k \ge 0$, so that $v_k + c_k \ge c_k > 0$, $k \ge M$. Also, from (2.13) and Lemma 1, we obtain

$$0 \le \frac{(v_k^j)^2}{v_k^j + c_k} \le \frac{(v_k^{j-1})^2}{v_k^{j-1} + c_k}, \ j \ge 1, \ k \ge M.$$
 (2.14)

Repeated application of (2.14) yields, with (2.13),

$$0 \le \frac{(v_k^j)^2}{v_k^j + c_k} \le \frac{(v_k)^2}{v_k + c_k} \qquad \text{for all } j \ge 0.$$

Thus the convergence of the first series in (2.10b) is uniform with respect to j. Consequently, we may take limits in (2.10ab) as $j \to \infty$ and obtain equation (2.9). It then follows from Lemma 2 that equation (2.2) is non-oscillatory, which completes the proof of the theorem.

Since several recent discussions of oscillation of solutions of difference equations have treated equation (1.2) above, we restate theorem 1 for equations of the form (1.2).

THEOREM 2. Given the difference equations

$$C_{n} x_{n+1} + C_{n-1} x_{n-1} = B_{n} x_{n}$$
 (2.15)

$$c_{n} x_{n+1} + c_{n-1} x_{n-1} = b_{n} x_{n},$$
 (2.16)

assume that $0 < C_n \le C_n$ and $C_n \le K$, n = 0,1,2,..., for some constant K > 0. If

$$0 \stackrel{\leq}{=} \stackrel{\infty}{\underset{n=k}{\sum}} (c_n + c_{n-1} - b_n) \stackrel{\leq}{=} \stackrel{\infty}{\underset{n=k}{\sum}} (c_n + c_{n-1} - b_n) < \infty$$

for all sufficiently large k, then, if (2.15) is non-oscillatory, (2.16) is non-oscillatory also.

REFERENCES

- 1. HINTON, D. and LEWIS, R., Spectral analysis of second order difference equations, J. Math. Anal. Appl. 63(1978), 421-438.
- HOOKER, J. and PATULA, W., Riccati type transformations for second order linear difference equations, J. Math. Anal. Appl. 82(1981),451-462.
- PATULA, W., Growth, oscillation, and comparison theorems for second order linear difference equations, SIAM J. Math. Anal. 10(1979), 1272-1279.
- TAAM, C.T., Non-oscillatory differential equations, <u>Duke Math. J.</u> <u>19</u>(1952), 493-497.
- 5. HILLE, E., Non-oscillation theorems, <u>Trans. Amer. Math. Soc.</u> 64(1948), 234-252.
- WINTNER, A., On the comparison theorem of Kneser-Hille, <u>Math. Scand</u>. 5(1957), 255-260.
- 7. SWANSON, C., Comparison and Oscillation Theory of Linear Differential

 Equations, Mathematics in Science and Engineering, Vol. 48, Academic

 Press, New York, 1968.
- 8. FORT, T., Finite Differences and Difference Equations in the Real Domain, Oxford University Press, London, 1948.