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ABSTRACT. A study is made of certain completeness properties of the space of all

continuous real-valued functions on a space, where this function space has the

compact-open topology.
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i. INTRODUCTION.

The set of all real-valued continuous functions defined on a topological space

X, denoted by C(X), has a number of natural topologies which have been well-used.

In this paper, we study the "completeness" of one of these kinds of function spaces.

Whenever C(X) has the topology of uniform covergence then it is always completely

metrizable, so there is no question about the "completeness" in this case. Whenever

C(X) has the topology of pointwise convergence, then the "completeness" has been

studied in this case in [4]. On the other hand whenever C(X) has the compact-open

topology, which in many circumstances is the best or most natural topology, then the

situation concerning "completeness" is not very well understood except in special

cases. We study the "completeness" of C(X) with the compact-open topology, primarily

for first countable spaces X. The general situation remains unknown. Throughout

this paper all spaces X are completely regular Hausdorff spaces, and the function

spaces, C(X), all have the compact-open topology.

Let F(X) denote the set of all real-valued functions on X (not necessarily

continuous). If A

_
X and V R, the space of real numbers, then we use the notation

[A,V] to denote the set {feF(X) If(A ! V}. Then the compact-open topology on F(X) is
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the topology generated by the subbase {[A,V]I A is a compact subset of X and V is an

open subset of R}. Now C(X) is a subspace of F(X), and when we are working with C(X),

we use [A,V] n C(X). Note that F(X) is a Hausdorff space, and that C(X) is completely

regular.

The weakest kind of completeness property is that of being of second category in

itself (i.e., a space which cannot be written as a countable union of nowhere dense

subsets of itself). In fact by a completeness property we mean one that lies between

that of being of second category in itself and that of being completely metrizable.

For function spaces, C(X) is of second category in itself if and only if it is a

Baire space (i.e., every nonempty open subspace is of second category in itself).

This is because C(X) is homogeneous.

The strongest kind of completeness property is that of being completely metriz-

able. To begin with, a function space C(X) is metrizable if and only if X is hemi-

compact [i]. The space X is hemicompact provided it has a sequence of compact sub-

sets such that every compact subset of X is contained in some member of this sequenc

Every first countable hemicompact space is locally compact, and every locally compact

Lindelf space is hemicompact. Now it is known that C(X) is completely metrizable

if and only if X is a hemicompact k-space [2].

2. MAIN RESULTS.

We begin our study with a necessary condition that C(X) be a Baire space.

THEOREM i. Let X contain a point x
0

such that

(i) x
0

has no compact neighborhood in X, and

(ii) x
0

is contained in a compact set A
0
which has a countable base in X.

Then C(X) is of first category in itself.

PROOF. Let U
I

_
U
2

U
2

U
3

U
3

be a countable base for AO. For each

n, let A U \U There is some integer k
I

s,,ch that is not compact, since
n n n+l"

i
otherwise A

0
u AI

o A
2

u would be a compact neighborhood of xO. In fact we can

find an increasing sequence kI, k2,.. .such that each is not compact. For each
n

n let G --u{[{a} (n,n+l)]la which is an open dense subset of C(X).
n

n
Suppose there exists an feG

I
n G

2
Then for each n, there is an ane

n
such that f(an)e(n,n+l). Now f(A0) is contained in some bounded open interval
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(-M,M). But then there is an n > M such that U
k _c f-I((-M,M)), so that f(an >n>M,
n

which is a contradiction. Therefore G
1

n G
2

rl -, so that C(X) is of first

category in itself.

The following corollary of Theorem i can be found in [3].

COROLLARY i. If X is first countable and C(X) is a Balre space, then X is

locally compact.

This has a partial converse which was pointed out in [3].

THEOREM 2. If X is a locally compact paracompact space, then C(X) is a Balre

space.

PROOF. The space X is the topological sum of locally compact a-compact spaces

X,gA. Each C(X) is completely metrizable, so that H{C(X)leA} is a Balre space.

But this product is homeomorphic to C(X).

There are many other well-studied completeness properties. One of these is the

property of being pseudo-complete. A space X is pseudo-complete provided it has a

sequence {P of pseudo-bases such that whenever P gP is such that each Pn+l c p
n n n n

then PI n P2 n # 9. This is a productive property, so that the conclusion that

C(X) be a Baire space in Theorem 2 can be replaced with the stronger conclusion that

C(X) is a pseudo-complete. In fact we have the following corollary of Theorems i and

2.

COROLLARY 2. If X is a first countable paracompact space, then the following

are equivalent.

i. C(X) is a Baire space.

2. C(X) is a pseudo-complete.

3. C(X) is the product of completely metrizable spaces.

4. X is locally compact.

Another completeness property which is stronger than that of being pseudo-

complete is that of being ech-complete. A space is dech-complete if it is a

G6-subset of its Stone-ech compactification. Corollary i has an analog for this

property. We first establish an analog to Lemma 8.7 in [4].

LE4A i. If C(X) contains a nonempty G6-subset of F(X), then X is the topologi-

cal sum of a G-compact space and a discrete space.
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PROOF. Let feC(X) and let {W be a sequence of basic open subsets of F(X) such
n

that feW
I

n W
2

n _c C(X). To be specific, suppose that each Wn [Anl’vnl] n...n

[Ank ,Vnk ]. Define A U{Ani n= 1,2 and i i kn} and let B X\A.
n n

Note that if geF(X) with A A’ then gee(x).

Let p be a non-isolated point of X. Suppose by way of contradiction that pA.

Then define g:X R by g(x) f(x for xeX\{p} and g(p) f(p) + i. Since A A’

then geC(X). But since X\{p} is dense in Hausdorff space X, then f g, which is a

contradiction. Therefore, A contains all the non-isolated points of X. In partlcu-

lar A is closed in X and B is discrete.

Again, by way of contradiction suppose that B has some accumulation point p,

which would necessarily be in A. Define g:X R by g(x) f(x) if xeA and g(x) f(p)

+ i if xeB. Again since A A then geC(X). Since p is an accumulation point B,

and g is constant f(p) + i on B, then g(p) f(p) + i. But since peA, then g(p)

f(p), which is a contradiction. Therefore B has no accumulation point, so that A

is open in X. Then X is the topological sum of the -compact space A and the discrete

space B.

THEOREM 3. If X is first countable and C(X) is ech-complete, then X is heml-

compact.

PROOF. Since C(X) is ech-complete and dense in Hausdorff space F(X), then C(X)

is a G6-subset of F(X). By Lemma i, X is the topological sum of -compact space A

and discrete space B. Then C(X) is homeomorphic to C(A) C(B) C(A) RB. Now each

of C(A) and R
B
must be ech-complete. In the first place this implies that B is

countable. Also since A is first countable, then it is locally compact by Corollary i.

Finally a locally compact -compact space is hemlcompact.

COROLLARY 3. If X is first countable then the following are equivalent.

i. C(X) is ech-complete.

2. C(X) is completely metrizable.

3. X is hemicompact.

The ech-complete property implies that of being a k-space (compactly generated

space). Although the k-space property is not really a completeness property since



COMPLETE FUNCTION SPACES 275

such spaces need not be Baire spaces, still for function spaces with the compact-open

topology, there is a relationship between these properties (which is not completely

known). We see this with our last theorem. Some of these ideas can be found in [5].

LFMMA 2. If X is first countable at some non-isolated point, then C(X) is not

countably compact.

PROOF. Let {x be a sequence of distinct points of X converging to some point
n

x0. For each n define function f eC(X) satisfying:
n

(i) f (x.) 0 for i > n,
n 1

(ii) f (xi) i for i < n,
n

(iii) f 0n(XO
Then the set {f is closed and discrete in C(X).

n

In the next lemma, N denotes the set of natural numbers.

LEMMA 3. If X is a first countable paracompact space which is not LindelDf,

then C(X) contains a closed copy of ,I.

PROOF. Let Y be the subspace of non-isolated points of X. First suppose that

Y is Lindelf. Then X contains an uncountable closed subspace D consisting of

isolated points of X. If Z X\D, then C(X) is homeomorphic to C(Z) C(D). But

C(D) clearly contains a closed copy of NI.
Now suppose that Y is not Lindelf. Then there exists a discrete family A of

closed subsets of X having cardinality I, such that int A n Y # @ for each AeA.

Define F {feC(X) f is supported on uA}, and for each AeA, let FA
{fEC(X) f is

supported on A}. We see that F is a closed subspace of C(X) which is homeomorphic to

H{FA AeA}. By Lemma 2, each F
A

is not countable compact, and therefore contains a

closed copy of N. Then F, and also C(X), must contain a closed copy of N1.
THEOREM 4. If X is a first countable paracompact space and C(X) is a k-space,

then X is hemicompact.

PROOF. First since NI is not a k-space, then X would have to be LindelDf by

Lemma 3. Since a locally compact LindelDf space is hemicompact, it will suffice to

show that X is locally compact.

Suppose that X is not locally compact at x0, and let UI
U
2

U
2

be a
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countable base at x0. For each n, let A U \U As in the proof of Theorem i
n n n+l

there is a sequence {k such that each
K
& is not compact and kn+I > k + i for

n n
n

each n. Then for each n there exists a countable closed discrete subset {ailiN}
n

and there exists a discrete family of open subsets {viliN}" such that alVI

K n n n
n.

and VI n U
k +i

. For each n > i and i > n define fiec(x) satisfying:
n n

n

(i) fi(ai) i,
n n

(ii) fi i
nai) 0,

(iii) fin(XO) l/n,

(iv) fi(x) < i/n for every xVi.
n n

Now define F {fill < n < i}. By Ascoli’s Theorem, K rl F is finite for each

compact K C(X). Also the constant 0 function is in F\F, so that C(X) would not

be a k-space.

COROLLARY 4. If X is a first countable paracompact space, then the following

are equivalent.

I. C(X) is a k-space.

2. C(X) is ech-complete.

3. C(X) is completely metrizable.

4. X is hemicompact.

We give some examples showing that -one of the hypotheses in the theorems

on Baire saces can be omitted.

EXAMPLE i. Let X be an uncountable space with exactly one non-isolated point,

which has as nighborhoods those sets containing it having countable complements.

Now X is a Lindelf space which is not first countable or locally compact. Also

the compact subsets of X are finite, so that C(X) in fact has the topology of point-

wise convergence. From [4], we see that C(X) is pseudo-complete but not dech-

complete. In particular we see that Corollary I becomes false if "first countable"

is replaced by "Lindelf."

EXAMPLE 2. Let X be the space of countable ordinals with the order topology.

Then X is a first countable, locally compact space which is not paracompact. For
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each n, let D be the set of isolated points of the nth derived set of X. Then
n

define G u{[{x},(n-l,n)]l xgD }. Each G is open and dense in C(X). But since
n n n

every function in C(X) is bounded, then G
I

n G
2

n --. Therefore, C(X) is of

first category in itself. Then in Theorem 2, "paracompact" cannot be omitted, or

even replaced by "first countable."

Finally, there are some questions which come to mind her.

Questions

i. Can "first countable" be omitted from Theorem 3?

2. Can "paracompact" be omitted from Theorem 4?

3. Is there a characterization of C(X) being pseudo-complete which is
analogous to Theorem 8.4 of [4]?

In fact the only completeness property on C(X) which has a known characteriza-

tion in terms of a property on X (for general Tychonoff spaces X) is that of

complete metrizability. So there are many other questions which arise naturally

in this topic.

REFERENCES

i. ARENS, R.F. A Topology for Spaces of Transfprmations, Annals of Math. 47
(1946), 480-495.

2. BECKENSTEIN, E., NARICI, L., AND SUFFEL, C. Topological Algebras, Notas de
Mathematica (60), North-Holland Publishing Co., New York, 1977.

3. LEHNER, W. Uber die Bedeutung gewisser Varianten des Baire’schen Kategorien-
begriffs fr die Funktionenrume C (T), dissertation, Ludwig-Maxlmillans-
Universitt, Mnchen, 1978.

4. LUTZER, D.J. AND MCCOY, R.A. Category in Function Spaces I, Pacific J. Math.
90 (1980), 145-168.

5. POL, R. Normality in Function Spaces, Fund. Math. 84 (1974), 145-155.


