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This paper is devoted to the perturbation theory for defective matrices.
We consider the asymptotic expansions of the perturbed spectrum when
a matrix A is changed to A+ tE, where E �= 0 and t > 0 is a small parame-
ter. In particular, we analyse the rational exponents that may occur when
the matrix E varies over the sphere ‖E‖ = ρ > 0. We partially characterize
the leading exponents noting that the description of the set of all leading
exponents remains an open problem.

1. Introduction

We consider the perturbation theory for eigenvalues of real or complex
matrices. Obtaining perturbation bounds (including asymptotic esti-
mates) for the eigenvalues of A under perturbations is one of the most
studied problems in matrix perturbation theory [9]. In particular, the
eigenvalue problem for defective matrices is of great interest in view of
some theoretical and significant numerical difficulties accompanying its
solution, see, for example, [1, 4]. We recall that an n × n matrix A is de-
fective if it has less than n linearly independent eigenvectors, or equiva-
lently, if it has at least one Jordan block of second or higher order in its
complex Jordan canonical form.

There are numerical problems in implementing computer codes for
solving the eigenvalue problem for defective matrices in finite arith-
metic. Reliable codes for this purpose have been proposed in [2, 3] and
further developed in [8]. Also, symbolic computations may be used in
some cases to solve the eigenvalue problem. However, the computer
computation of the eigenstructure of defective matrices is far from its
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satisfactory solution. Thus, obtaining asymptotic perturbation bounds
for perturbed spectra of defective matrices is of great theoretical as well
as practical importance.

In this paper, we analyse the following eigenvalue perturbation prob-
lem. Let A be a real or complex matrix and let it be perturbed to A+ tE,
where ‖E‖ = ρ > 0 and t > 0. Supposing that we know the partial alge-
braic multiplicites of the eigenvalues of A, then characterize, and pos-
sibly compute all (for varying E) leading fractional exponents p/q in
the asymptotically small eigenvalue perturbations of order O(tp/q) for
t→ 0.

We propose a simple procedure to determine some of the leading frac-
tional exponents based on a correspondence between the lattice of inte-
ger partitions and certain sets of fractional exponents called fractional
intervals.

Note that we vary E so as to successively determine the possible frac-
tional exponents in the asymptotic expansion of the eigenvalues of A +
tE. Thus, our problem is different from the classical problem, where the
matrix E is fixed.

The main construction is based on specific perturbations which “fill
in” the zeros in the superdiagonal of the Jordan form of A to create larger
Jordan blocks.

We characterize subsets of the set of leading exponents and give the
complete set for special cases. The general problem remains a challeng-
ing open problem.

2. Notation and preliminaries

We denote by N the set of positive integers, by Q1 = {p/q : p,q ∈ N, p <
q} the set of positive rational numbers less than 1, and by Rn = {p/q :
p,q ∈ N, p < q ≤ n} ⊂ Q1 the set of proper rational fractions with denom-
inator not exceeding n ∈ N.

The entire part of a real number x > 0 is denoted by Ent(x) ∈ N ∪ {0}
and [n] is the least common multiplier of the integers 1, . . . ,n ∈ N. Thus,
[n] is the least positive integer which is divisible by all numbers from
the set {1, . . . ,n}. For example, [3] = 6, [4] = 12, and [5] = [6] = 60.

We denote the set of unordered integer partitions ν = (ν1, . . . ,νn) of
n ∈ N by Πn, that is, ν1 ≥ · · · ≥ νn ≥ 0 and n = ν1 + · · · + νn, and the partial
sums by σi(ν) = ν1 + · · ·+ νi. On Πn, we consider the partial oder 
 such
that µ 
 ν if σi(µ) ≤ σi(ν) for i = 1, . . . ,n.

In Mn(F), the space of n × n matrices over F = R or F = C, we denote
by ‖ · ‖ the spectral norm, by GLn(F) ⊂ Mn(F) the group of invertible
matrices, and by S(F) = {X ∈ Mn(F) : ‖X‖ = ρ}—the sphere of radius ρ >
0 in Mn(F).
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Single nilpotent Jordan blocks are denoted by Nn =
[ 0 In−1

0 0

] ∈ Mn(R),
where for n = 1, we set N1 = 0. The unit basis matrices from Mn(R),
with a single nonzero element 1 in position (i, j), are denoted by En(i, j),
and J(λ,n) = λIn +Nn is an n×n Jordan block with eigenvalue λ. The m
pairwise distinct eigenvalues of a matrix A, with algebraic multiplicities
k1, . . . ,km, are denoted by λ1(A), . . . ,λm(A) where k1 + · · ·+ km = n.

From now on, we introduce fractional intervals. For p,q,s ∈ N, define
the set Bp(q,s) as follows.

(1) If p < s ≤ q, then

Bp(q,s) :=

{
p

q
,

p

q − 1
, . . . ,

p

s

}
. (2.1)

The set Bp(q,s) is referred to as a fractional interval of first kind with end-
points p/q and p/s. It has q− s+ 1 elements.

(2) If s ≤ p < q, then

Bp(q,s) :=

{
p

q
,

p

q− 1
, . . . ,

p

p+ 1

}
. (2.2)

The set Bp(q,s) is referred to as a fractional interval of second kind with
endpoints p/q and p/(p+ 1). It has q − p elements.

(3) If p ≥ q and/or s > q, then

Bp(q,s) := ∅. (2.3)

Hence, the fractional interval Bp(q,s) either has elements less than 1
(if it is of first or second kind) or is empty. Also, if the interval Bp(q,s) is
of second kind, as a set, it is equal to the interval Bp(q,p+ 1) of first kind.

Note that if the fractional intervals Bp(q1, s1) and Bp(q2, s2) are of first
kind, then

Bp

(
q1, s1

)∪Bp

(
q2, s2

)
= Bp

(
q1, s2

)
(2.4)

if and only if s2 ≤ s1 ≤ q2 + 1 and q2 ≤ q1. In particular,

Bp

(
q,s1
)∪Bp

(
s1 − 1, s

)
= Bp(q,s) (2.5)

provided the intervals in the left-hand side are of first kind. Similar re-
sults are valid for intervals of second kind as well.

The following lemma will be used in the construction of specific per-
turbations.
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Lemma 2.1. Let the n numbers t1, . . . , tn be given. Then

det

(
λIn −

n−1∑
i=1

tiEn(i, i+ 1)− tnEn(n,j)

)
= λj−1

(
λn+1−j −

n∏
i=j

ti

)
(2.6)

for all j = 1, . . . ,n. In particular, taking t1 = · · · = tn−1 = 1 and tn = t, we have

det
(
λIn −Nn − tEn(n,j)

)
= λj−1(λn+1−j − t

)
. (2.7)

Proof. Relations (2.6) and (2.7) follow immediately from the fact that the
left-hand side of (2.6) is the determinant of the matrix




λ −t1 0 . . . 0
0 λ −t2 . . . 0
...

...
...

. . .
...

0 0 0 . . . −tn−1

−tn 0 0 . . . λ




(2.8)

for j = 1, or of the block upper-triangular matrix




λ −t1 0 . . . 0
0 λ −t2 . . . 0
...

...
...

. . .
...

0 0 0 . . . −tn−1

−tn 0 0 . . . λ




for j = 1, or of the block upper-triangular matrix




λ −t1 0 . . . 0 0 0 0 . . . 0
0 λ −t2 . . . 0 0 0 0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 . . . −tj−2 0 0 0 . . . 0
0 0 0 . . . λ −tj−1 0 0 . . . 0

0 0 0 . . . 0 λ −tj 0 . . . 0
0 0 0 . . . 0 0 λ −tj+1 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 . . . 0 0 0 0 . . . −tn−1

0 0 0 . . . 0 −tn 0 0 . . . λ




(2.9)

if j ≥ 2. �
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3. Fractional exponents in asymptotic spectral perturbations

In this section, we consider the problem of determining the possible and
the leading fractional exponents in asymptotically small spectral pertur-
bations.

3.1. Problem statement

Let a given matrix A ∈ Mn(F) of unit norm be perturbed to A+ tE where
t > 0 and E ∈ S(F). The aim of asymptotic spectral perturbation analysis is to
find asymptotic bounds of the quantities |λs(A+ tE)−λs(A)| as functions
of the real parameter t for t → 0, where λi(B) are the eigenvalues of B,
and E varies over the sphere S(F).

Under the (small) perturbation A→A+ tE, each eigenvalue λi(A) of
algebraic multiplicity ki perturbs into ki (not necessarily different) eigen-
values of A+ tE, say

λk1+···+ki−1+1(A+ tE), . . . ,λk1+···+ki(A+ tE) (3.1)

(for i = 1, the sum from k1 to k0 is considered void). The corresponding
functions

t �−→ ls(t) := λk1+···+ki−1+s(A+ tE) ∈ C (3.2)

are algebraic. Indeed, their values are the roots of the characteristic poly-
nomial

det
(
λIn −A− tE

)
= λn − c1(t)λn−1 + · · ·+ (−1)ncn(t) (3.3)

of A + tE with coefficients cj(t) which, being sums of the principal jth-
order minors of A+ tE, are polynomials of degree up to j in t. In partic-
ular, the functions ls are continuous on R. In fact, ls are the branches of
algebraic functions which are piecewise differentiable and hence piece-
wise analytic, see [4]. At the isolated set Θ := {t1, . . . , tσ} of exceptional
points in an open interval T ⊂ R, where the functions ls are not differen-
tiable, there exists ε = ε(τ,Θ) > 0, such that differentiability holds on the
pierced neighbourhood

N(τ,ε) := (τ − ε,τ)∪ (τ,τ + ε) = (τ − ε,τ + ε)\{τ} ⊂ T. (3.4)

Indeed, given τ ∈ T , there are two alternatives. If τ /∈ Θ, then ls is dif-
ferentiable on each open subinterval T0 
 τ of T , which does not contain
exceptional points and, in particular, on each N(τ,ε) ⊂ T0. On the other
hand, if τ ∈ Θ, then ls is not differentiable at τ but on T0\{τ}, where
T0 ⊂ T is an open interval such that T0 ∩Θ = {τ}.
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We are interested in the local behaviour of ls in a small neighbour-
hood of t = 0. This behaviour is completely determined by the matrices
A and E if E is fixed. In particular, not only the fractional powers in the
asymptotics of the eigenvalues of A+ tE but also the corresponding co-
efficients are uniquely determined. But, often the matrix E is not known,
for example, the perturbation tE may be due to rounding errors during
the computation of the eigenvalues of A in finite arithmetic. When a nu-
merically stable algorithm is implemented to compute the eigenvalues,
we may assume that t is of order eps‖A‖/ρ, where eps is the rounding
unit.

Our goal is to determine the fractional exponents in the asymptotic
eigenvalue expansions. When E varies over S(F), then the fractional ex-
ponents describe the behaviour of ls modulo S(F) and this is determined
by A only. In this case, the whole information is coded in the Jordan form
of A and, in particular, in the arithmetic invariant of A under the sim-
ilarity action (X,A) �→ X−1AX, X ∈ GLn(F) of the general linear group
GLn(F). The arithmetic invariant consists of the partial algebraic mul-
tiplicities of the eigenvalues of A which are exactly the orders of the
diagonal blocks of the complex Jordan form JA = R−1AR of A relative to
GLn(C). In order to treat, in an uniform way, the cases of real (F = R)
and complex (F = C) matrices, we will always use the complex Jordan
form. Of course, using the real Jordan form for real matrices would give
analogous results.

If A is nondefective (JA is diagonal), then all functions ls are analytic
in a sufficiently small neighbourhood of t = 0. This case is not interesting
from the point of view of asymptotic analysis, since then |ls(t) − ls(0)| =
O(t), t→ 0, see [9].

If A is defective, then the functions ls are analytic in a small pierced
neighbourhood N(0, ε) of t = 0, see [4]. This means that for some ε > 0
and some t0 ∈Nε, all derivatives l(j)s (t0) of ls at t = t0 exist, and

ls(t) =
∞∑
j=0

l
(j)
s

(
t0
)

j!
(
t− t0

)j (3.5)

for all t ∈ Nε. For t = 0, however, some of the functions ls may not be
differentiable since the limit limt→0 |l(j)s (t)| =∞ is possible. In this case, ls
has the asymptotic expansion

ls(t) = ls(0) +O
(
tps/qs

)
+O
(
tps/qs+εs

)
, t −→ 0, (3.6)

where ps/qs ∈ Q1 and εs > 0.
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Consider, for example, the case i = 1 and s = 1, and set

δE(t) :=
∣∣l1(t)− l1(0)

∣∣ = ∣∣λ1(A+ tE)−λ1(A)
∣∣. (3.7)

Note that, here, l1 may be any of the continuous functions ls satisfying
ls(0) = λ1(A) and that l1 is continuous on R and analytic on some N(0, ε).

If the elementary divisors of λIn −A corresponding to λ1 = λ1(A) are
linear, we have

δE(t) ≤ at+O
(
t2
)
, t −→ 0. (3.8)

Here, a > 0 may be taken as

a = min
{‖X‖∥∥X−1∥∥ : X ∈ GLn(C), X−1AX = diag

(
λ1Ik1 ,∗

)}
, (3.9)

where ∗ denotes an unspecified matrix block.
If the matrix A is defective and there are nonlinear elementary divi-

sors corresponding to λ1, then the asymptotics of δE(t) is more involved
and may include fractional exponents, namely, [4, 5]

δE(t) =
∑
i

ait
pi/qi +O(t), t −→ 0. (3.10)

Here, ai are constants and pi/qi ∈ Q1 are fractional exponents, where pi
and qi are coprime integers with pi < qi ≤ n. Note that if we perturb A to
A+ tαE with α = [n], then the fractional powers of tα will become integer
powers of t.

The fractions pi/qi are necessarily elements of Rn, for example,

R2 =
{

1
2

}
, R3 =

{
1
3
,
1
2
,
2
3

}
, R4 =

{
1
4
,
1
3
,
1
2
,
2
3
,
3
4

}
, . . . . (3.11)

This follows from (3.3) and a simple application of the technique of
Newton diagrams.

Let P ⊂ Rn be the set of possible fractional exponents pi/qi in (3.10) when
E varies over S(F). A fraction p/q ∈ Rn is an element of P if and only if
there are E ∈ S(F) and j ∈ N such that p = pj , q = qj , and aj > 0 in the
expression (3.10).

We will also introduce the subset L ⊂ P of leading fractional exponents
as follows. A fraction p/q ∈ Rn is an element of L if and only if there
are E ∈ Sρ(F), a > 0, and ε > 0, such that the expression (3.10) may be
written as

δE(t) = atp/q +O
(
tp/q+ε

)
, t −→ 0. (3.12)
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We stress that the sets P and L correspond to a given eigenvalue
of A, in this case, the eigenvalue λ1(A), and we could denote them by
Pλ1 and Lλ1 , respectively. For the other eigenvalues of A, there are other
(possibly) different sets Pλi and Lλi , i = 2, . . . ,m, of possible and leading
exponents.

It is obvious that we have

L ⊂ P ⊂ Rn. (3.13)

Whether some of these inclusions is proper depends on the Jordan struc-
ture of A. In general, to determine the sets L and P on the basis of the
arithmetic invariant of A is an open problem. We will present partial
results for this problem below.

Example 3.1. For the matrix A =N2 =
[

0 1
0 0

]
, we have L = P = R2. Indeed,

for E = E2(2,1), the characteristic polynomial of A+ tE is λ2 − t with roots
± t1/2. Thus, the only element 1/2 of R2 is an element of L as well.

Example 3.2. Consider the matrix A =N3. For E = E3(3,1), the character-
istic polynomial of A+ tE is λ3 − t, and the eigenvalues are the cube roots
of t, for example,

λ1(A+ tE) = t1/3. (3.14)

For E = E3(3,2), the characteristic polynomial of A + tE is λ(λ2 − t) and
has roots ± t1/2 and 0. Hence,

λ1(A+ tE) = t1/2. (3.15)

For E = E3(3,1) +E3(3,2), the characteristic polynomial is λ3 − tλ− t and
has a root with Pisseaux series [4]

λ1(A+ tE) = t1/3 +
t2/3

3
+ 0 · t3/3 − t4/3

81
+O
(
t5/3), t −→ 0, (3.16)

in t1/3. Hence, 1/3,1/2,2/3 ∈ P and, since these are all elements of R3,
we see that P =R3.

Relations (3.14) and (3.15) show that 1/3 and 1/2 are also elements
of L. To show that 2/3 is also an element of L is more complicated. For
E = E3(2,1)−E3(2,2)−E3(3,2) +E3(3,3), the characteristic polynomial of
the matrix

A+ tE =




0 1 0
t −t 1
0 −t t


 (3.17)
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is λ3 − t2λ+ t2 and has a root

λ1(A+ tE) = −t2/3 − t4/3

3
+O
(
t2
)
, t −→ 0. (3.18)

Hence, 2/3 is also an element of L which gives L = R3. Hence, in this
particular example, we also have L = P = R3.

Example 3.3. For the matrix A = diag(N2,N1), taking E = E3(2,1), we ob-
tain the characteristic polynomial λ(λ2 − t), that is, 1/2 is an element of L.
Taking E = E3(2,3) +E3(3,1), we get the characteristic polynomial λ3 − t2.
Hence, 2/3 is also an element of L. But 1/3 is not an element of L. In-
deed, in this case, the characteristic polynomial of A+ tE must be

λ3 − · · · − (c30t
3 + c31t

2 + c32t
)

(3.19)

with c32 �= 0. But det(A+ tE) is a polynomial in t of degree not less than
2, so c32 = 0 and the exponents 1/3 cannot be leading. Thus, L = P =
{1/2,2/3} are proper subsets of R3 = {1/3,1/2,2/3}.

Note that, in general, if p/q ∈ L, then we can find E so that

δE(t) =
∞∑
i=1

bit
ip/q, t −→ 0. (3.20)

So the numbers ip/q are elements of P for i = 1, . . . ,Ent(q/p).

Example 3.4. Let A ∈ Mn(R) be zero except for the first superdiagonal,
where a1,2 = 1 and ai,i+1 is equal to 1 or 0 in such a way that there are
j − 1 zero elements (1 ≤ j ≤ n − 1). Take a matrix E = F +G so that F has
all its elements equal to zero with the exception of j − 1 elements on its
superdiagonal equal to 1 in the positions of the zero elements ai,i+1, and
G = En(n,1) +En(n,2). Then the matrix λIn − (A+ tE) has the form




λ 1 0 . . . 0
0 λ −t2 . . . 0
...

...
...

. . .
...

0 0 0 . . . −tn−1

−t −t 0 . . . λ



, (3.21)

where j − 1, among the numbers t2, . . . , tn−1, are equal to t and the other
n− j − 1 are equal to 1. Then (2.6) yields det(λIn − (A+ tE)) = λn − tjλ− tj .
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The roots of this polynomial have Pisseaux series [4] in tj/n, for example,

λ1(A+ tE) = tj/n +
t2j/n

n
− n− 3

2n2
t3j/n +O

(
t4j/n

)
, t −→ 0. (3.22)

This example shows that the set L of leading fractional exponents is
of major interest.

The computation (and even the estimation) of ai, pi, and qi in (3.10) is
usually a very difficult task. However, if the orders of the blocks in the
complex Jordan form JA of A are known, then some direct calculations,
together with an implementation of the technique of Newton diagrams,
allow to determine a subset of the set of leading fractional exponents L
for a general defective matrix. In [6, 7], the problem is solved for some
of the leading exponents of a defective matrix with only one eigenvalue.
Here we extend these results, but still the complete analysis is an open
problem.

Of course, we have the fractional exponents

1
k1,1

,
1

k1,1 − 1
, . . . ,

1
2
∈ L (3.23)

corresponding to the largest block J(λ1,k1,1) of J of order k1,1 with eigen-
value λ1. Similarly, we have the exponents

1
k1,j

,
1

k1,j − 1
, . . . ,

1
2
∈ L (3.24)

corresponding to the smaller blocks J(λ1,k1,j) of JA, k1,j < k1,1, but these
exponents are already in the list (3.23). We also have that for each 1/α
from the list (3.23), the integer multiples i/α with i < α belong to P. At
the same time, there may be other fractional exponents with denomina-
tors up to n and numerators up to n − 1 as in the following example of
Wilkinson [10].

Example 3.5. Consider the nilpotent matrix A = diag(J(0,3), J(0,2)) ∈
M5(R) with Jordan blocks of order k1,1 = 3, k1,2 = 2, which is in Jordan
form. Choosing the matrix E as E5(3,1), we get the fractional exponent
1/3, while choosing E as E5(3,2) or E5(5,4), we get the exponent 1/2,
both being in the list (3.23) for k1,1 = 3. However, we have also the lead-
ing exponents 2/5, corresponding to E = E5(3,4) +E5(5,1), and 2/3, cor-
responding to E = E5(3,4) + E5(5,3), which are not in the list (3.23).
Choosing E = E5(2,4) + E5(3,5) − E5(4,1) − E5(4,4) + E5(5,3) + E5(5,5),
we also find the leading exponent 3/4 since the characteristic polyno-
mial of A+ tE in this case is λ(λ4 − t3λ− t3).
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Furthermore, for E = E5(1,4) − E5(2,1) − E5(2,4) + E5(3,2) + E5(3,5) +
E5(5,1), we have det(λI5 −A − tE) = λ5 + t3 which gives 3/5 ∈ L. Simi-
larly, taking E= E5(1,1) +E5(1,4) +E5(2,1)−E5(2,4)−E5(2,5)−E5(3,2) +
E5(3,5) +E5(4,1)−E5(5,2), we see that det(λI5 −A− tE)=λ5−tλ4−2t2λ3 +
t3λ2 + t4λ− t4 and, hence, 4/5 ∈ L.

On the other hand, 1/5 is not an element of L since the lowest power
of t in det(A+ tE) is 2. Whether the other candidate 1/4 is a member of
L is not known. Thus, the list of leading exponents for this case satisfies

{
1
3
,
1
2
,
2
5
,
2
3
,
3
4
,
3
5
,
4
5

}
⊂ L. (3.25)

A key factor in obtaining the fractions 2/5 and 2/3 from L is that for
t > 0, the matrix JA + tE5(3,4) has nonzero superdiagonal and its Jordan
form consists of a single Jordan block J(0,5). Thus an additional pertur-
bation tE5(5, j) gives the fractions 2/(6 − j) with j = 1,2,3 of which 2/5
and 2/3 are “new”, that is, not in the list (3.23). This idea is systemati-
cally developed later on.

In turn, the exponents 3/4,3/5,4/5 ∈ L were found after some trials,
having in mind the desired forms of the characteristic polynomial of A+
tE capable of producing these particular exponents as leading.

3.2. Calculation of fractional exponents

In this subsection, we present a simple algorithm to compute a subset F
of L. This method is based on the idea of perturbing JA to JA + t(F +G)
so that the Jordan form of the matrix JA + tF consists of larger blocks than
those of JA. This is done using perturbations tF which contain matrices
of the form tEn(i, i + 1) whenever the ith row of JA is zero. After that,
the perturbation tG leads to a matrix JA + t(F +G) with a simple char-
acteristic polynomial with roots which are the desired leading fractional
powers of t.

Suppose that A has m distinct eigenvalues λ1, . . . ,λm with algebraic
multiplicities k1 ≥ · · · ≥ km, k1 + · · ·+ km = n, which means that the charac-
teristic polynomial of A is

∏m
i=1(λ−λi)ki . Suppose next that each λi takes

part in ni Jordan blocks of orders ki,1 ≥ · · · ≥ ki,ni , ki,1 + · · ·+ ki,ni = ki. Thus
the minimal polynomial of A is

∏m
i=1(λ−λi)ki,1 .

The numbers ki,j are the partial algebraic multiplicities of λi. The num-
ber ni is the geometric multiplicity of λi, that is, the number of linearly
independent eigenvectors of A, corresponding to λi. If at least one geo-
metrical multiplicity is larger than 1, then the matrix A is derogatory. We
recall that ki − ni is the defect of the eigenvalue λi, while n − n1 − · · · − nm

is the defect of the matrix A and is denoted by def(A). With this notation,



126 Perturbed spectra

the Jordan form of A may be written as

JA = diag
(
J
(
λ1,k1,1

)
, . . . , J

(
λ1,k1,n1

)
, . . . , J

(
λm,km,1

)
, . . . , J

(
λm,km,nm

))
.

(3.26)

The matrices A+ tE and JA + tR−1ER have the same fractional powers
of t in their asymptotic eigenvalue expansions. Since we are interested
in the fractional exponents pi/qi and not in the coefficients ai in (3.10),
we assume, in the following, that the matrix A is already transformed
to Jordan form, that is, A = JA. We also assume that k1,1 > 1, which is
necessary and sufficient for the existence of fractional exponents in the
asymptotic expansion of δE(t), t→ 0 for some E.

To simplify the notation, we set

k := k1; r := n1; κi := k1,i, i = 1, . . . , r. (3.27)

Then, we have the (unordered) partition κ := (κ1, . . . ,κr), κ1 ≥ · · · ≥ κr ,
k = κ1 + · · · + κr of k with κ1 > 1 and r < k. If necessary, we set κi = 0 for
i > r and write the partition as κ = (κ1, . . . ,κk) = (κ1, . . . ,κr ,0, . . . ,0).

Denote σi(κ) := κ1 + · · · + κi. The set Πk of unordered partitions of k
is a lattice with a partial order relation 
 such that α 
 β if and only if
σi(α) ≤ σi(β), i = 1, . . . ,k. This order relation is not linear since for k ≥ 6,
there are incomparable partitions such as (4,1,1) and (3,3).

The set F ⊂ L, that we will determine later on via (3.30) and (3.31),
depends not only on the partition κ of k but also on def(A). As a set
F will consist of pairwise disjoint fractions p/q in which p and q are co-
prime. However, in the description of F given below, in order to simplify
the notation, we allow pi and qi to have common divisors, for example,
sometimes we write 2/6 instead of 1/3, and so forth. For instance, we
use sets of rational fractions as

{
2
q
,

2
q − 1

, . . . ,
2
3

}
(3.28)

with q ≥ 3 in which some of the fractions may not be prime.
Finally, introduce the number

πi := min
{
σi(κ)− i− 1,n− r −def(A)

}
(3.29)

(we recall that n− r = n2 + · · ·+nm) which depends not only on κ but also
on the defect of A.

Now we can state our main result.
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Theorem 3.6. Consider the fractional intervals

Fij :=Bi+j
(
σi(κ),1+k −σr+1−i(κ)

)
= Bi+j

(
σi(κ),1+κr+2−i + · · ·+κr

)
(3.30)

for i = 1, . . . , r and j = 0, . . . ,πi (here the sum from r + 1 to r for i = 1 above is
considered void).

Then, for the set of leading fractional exponents L corresponding to the eigen-
value λ1 of A, we have

F :=
r,πi⋃

i=1, j=0

Fij ⊂ L. (3.31)

Furthermore, for n = 2, we have F = L, while for n > 2, the inclusion in
(3.31) may be proper.

Proof. When studying the absolute perturbations in λ1, we may always
assume, without loss of generality, that λ1 = 0 (otherwise, we may con-
sider the matrix A − λ1In with the same Jordan structure and a zero
eigenvalue of multiplicity k). For the proof, we consider two cases. First,
we consider the case when A has a single zero eigenvalue and second,
the case when A has two or more pairwise distinct eigenvalues.
Case 1. If A has a single zero eigenvalue, that is, m = 1, then k = k1 = n
and π1 = · · · = πr = 0. In this case, we have to show that L contains the
union of the sets

F10 = B1
(
σ1(κ),2

)
=

{
1
κ1

,
1

κ1 − 1
, . . . ,

1
2

}
,

F20 = B2
(
σ2(κ),1+κr

)
=

{
2

κ1 +κ2
,

2
κ1 +κ2 − 1

, . . . ,
2

1+κr

}
\{1},

...

Fi0 = Bi

(
σi(κ),1+ k −σr+1−i(κ)

)
=

{
i

σi(κ)
,

i

σi(κ)− 1
, . . . ,

i

1+κr+2−i + · · ·+κr

}
\{1},

...

Fr0 = Br

(
k,1+ k −σ1(κ)

)
=

{
r

k
,

r

k − 1
, . . . ,

r

1+κ2 + · · ·+κr

}
\{1}.

(3.32)

Here we have used the fact that κr+2−i + · · ·+κr = k −σr+1−i(κ), i ≥ 2.
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Recall that for m = 1, the Jordan form of A is

JA = diag
(
J
(
0,κ1

)
, . . . , J

(
0,κr

))
. (3.33)

We show successively how each member p/q of F10, . . . ,Fr0 appears as
an actual leading exponent in a term O(tp/q) in the asymptotic expan-
sion of δE(t), t→ 0, for an appropriate choice of E. Note that to have an
exponent p/q with p and q coprime, we must have at least p nonzero el-
ements ei1,j1 , . . . ,eip,jp of E in different rows and columns, that is, i1 < · · · <
ip, j1 < · · · < jp. Only in this case, a term tp may appear in the characteristic
polynomial of JA + tE.

The set F10

Consider perturbations which affect only one block J(0,κj) of JA from
(3.33) with κj ≥ 2. Since κ1 ≥ 2, then at least one such block exists. Taking
the matrix E = En(σj(κ),σj−1(κ) + s) for s = 1, . . . ,κj and using relation
(2.7), we see that det(λIn − JA − tE) = λn−s(λs − t). Hence, the fractions

1
κj

,
1

κj − 1
, . . . ,

1
2

(3.34)

are among the leading exponents. All these exponents are in the frac-
tional interval F10 = B1(κ1,2), while for j = 1, they are exactly the ele-
ments of F10.

The set Fi0, 1 < i < r (this case exists for r ≥ 3)

Take first a perturbation E = E1 which affects the superdiagonal over the
first i blocks J(0,κ1), . . . , J(0,κi) of the matrix J . Let E1 = F1 +G1 where

F1 :=
i−1∑
j=1

En

(
σj(κ),σj(κ) + 1

)
, G1 := En

(
σi(κ), s

)
, 1 ≤ s ≤ κ1. (3.35)

According to relation (2.6), we have

det
(
λIn − JA − tE1

)
= λn−1+s−σi(κ)

(
λ1−s+σi(κ) − ti

)
. (3.36)

This gives us exponents from the set

{
i

σi(κ)
,

i

σi(κ)− 1
, . . . ,

i

1+κ2 + · · ·+κi

}
\{1}

= Bi

(
σi(κ),1+κ2 + · · ·+κi

)
= Bi

(
σi(κ),1+σi(κ)−σ1(κ)

)
,

(3.37)
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some of which are in the fractional interval Fi0. The set Fi0 may contain
larger elements than the elements of the set (3.37). Now we show that
these larger elements are also leading exponents by the construction of
suitable perturbations E2, E3, and so forth.

Determine the perturbation E = E2 which affects the superdiagonal
over the next i blocks J(0,κ2), . . . , J(0,κi+1) of JA as E2 = F2 +G2, where

F2 :=
i∑

j=2

En

(
σj(κ),σj(κ) + 1

)
, G2 := En

(
σi+1(κ), s

)
, κ1 + 1 ≤ s ≤ σ2(κ).

(3.38)
We have

det
(
λIn − JA − tE2

)
= λn−1+s−σi+1(κ)+κ1

(
λ1−s+σi+1(κ)−κ1 − ti

)
(3.39)

which gives exponents from the set
{

i

κ2 + · · ·+κi+1
,

i

κ2 + · · ·+κi+1 − 1
, . . . ,

i

1+κ3 + · · ·+κi+1

}
\{1}

= Bi

(
σi+1(κ)−σ1(κ),1+σi+1(κ)−σ2(κ)

)
.

(3.40)

Since κi+1 ≥ 1, we have

i

κ2 + · · ·+κi+1
≤ i

κ2 + · · ·+κi
. (3.41)

Hence the first (smallest) element of (3.40) is not strictly larger than the
last (largest) element of (3.37). Therefore, the union of the fractional in-
tervals (3.37) and (3.40) is{

i

σi(κ)
,

i

σi(κ)− 1
, . . . ,

i

1+κ3 + · · ·+κi+1

}
\{1}

= Bi

(
σi(κ),1+σi+1(κ)−σ2(κ)

)
.

(3.42)

Continuing this process with a matrix E3, affecting the superdiagonal
over the blocks J(0,κ3), . . . , J(0,κi+2) of JA, and so forth, we see that all
exponents from the set

{
i

σi(κ)
,

i

σi(κ)− 1
, . . . ,

i

1+κr+1−i + · · ·+κr

}
\{1}

= Bi

(
σi(κ),1+σr(κ)−σr+1−i(κ)

) (3.43)

are leading. But the set (3.43) is exactly the fractional interval Fi0.
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The set Fr0

Here we may take E = F +G with

F :=
r−1∑
j=1

En

(
σj(κ),σj(κ) + 1

)
, G := En(n,s), 1 ≤ s ≤ κ1. (3.44)

The characteristic polynomial of JA + tE is λn−k−1+s(λk+1−s − tr) and there-
fore, all exponents from Fr0 are leading.

Thus, we have proved the inclusions F10, . . . ,Fr0 ⊂ L.
Case 2. If A has more than one eigenvalue, or m ≥ 2, then we take a per-
turbation tF that puts a quantity t in the places of the zero elements of
the superdiagonal of JA over i blocks J(0,κα1), . . . , J(0,καi) of JA with zero
eigenvalue, and over j blocks J(λβ1 ,κβ1), . . . , J(λβj ,κβj ) with eigenvalues
λβ1 , . . . ,λβj �= 0 (we recall that in JA, the first blocks have eigenvalue zero).

Add a perturbation tG with

G := En

(
kα1 + · · ·+ kαi + kβ1 + · · ·+ kβj , γ

)
, 1 ≤ γ ≤ α1. (3.45)

Then, the characteristic polynomial of JA + tE is

λ
n−1+γ−kα1−···−kαi−kβ1−···−kβj

(
λkα1+···+kαi+1−γ

j∏
ρ=1

(
λ−λβρ

)κβρ − ti+j
)
. (3.46)

This polynomial has q := kα1 + · · ·+ kαi + 1− γ zeros of the form

eωbt
(i+j)/q

(
1+O

(
t1/q
))

, t −→ 0, ω = 0, . . . ,q− 1, (3.47)

where eω := exp(2πωı/q) are the q roots of 1, and

b :=

(
j∏

ρ=1

(−λβρ
)κβρ

)−1/q

. (3.48)

Thus, we have the leading exponents (i + j)/q for j < q − i. Also, j can-
not exceed n − r − def(A), which is the number of eigenvalues of A,
which are different from zero. Hence, we have proved that the fractional
intervals

Bi+j
(
kα1 + · · ·+ kαi + 1− γ,1+ kα2 + · · ·+ kαi

)
, 1 ≤ γ ≤ α1, (3.49)

are subsets of L. Taking all combinations of α1, . . . ,αi from the partition
κ and repeating the argument from Case 1, we see that the union of the
intervals (3.49) is Fij , that is, Fij ⊂ L.
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The case n = 2 is trivial, see Example 3.1, which gives F = L = R2 =
{1/2}. That the inclusion F ⊂ L may be proper for n > 2 is demonstrated
below by examples. �

Remark 3.7. In view of (2.1), (2.2), (2.3), (2.6), (2.7), (3.3), (3.10), (3.12),
(3.13), (3.14), (3.15), (3.23), and (3.30), the sets Fij and their union F
are in fact easily computable despite of their not very pleasant appear-
ance. Thus, Theorem 3.6 gives a simple algorithm to compute some of
the leading fractional exponents in the eigenvalues of the matrix A+ tE,
t → 0, given the partial algebraic multiplicities κi,j of the eigenvalues
λi(A) of A.

Remark 3.8. The key step in the constructive proof of Theorem 3.6 is the
splitting of the matrix E as E = F +G. The perturbation tF puts a quantity
t in positions (i, i + 1) whenever the ith row of JA is zero, that is, it fills
in the superdiagonal of JA. Thus, the partition of n containing the par-
tial multiplicities of the eigenvalues of JA + tF is larger (relative to the
partial order 
) than the partition containing the partial multiplicities
of the eigenvalues of JA. Finally, a perturbation tG gives the necessary
fractional exponents from the set F.

To see that F may be a proper subset of L, consider the following
examples.

Example 3.9. For n = 3, the first possible case (producing fractional expo-
nents) is A = diag(N2,N1). Here we have F = L = {1/2,2/3}. Indeed, if
F �=L, then L must contain the fraction 1/3. The only possibility for 1/3
to appear as a leading exponent is when the λ-free term −det(A+ tE) in
the characteristic polynomial of A + tE has t in first power (see also the
Appendix). But this is impossible since the lowest possible degree of t in
the polynomial det(A + tE) is 2. Hence 1/3 is not an element of L and
hence F =L. The second possible case is A =N3. But Example 3.2 shows
that here we have F = {1/3,1/2} and L = R3 = {1/3,1/2,2/3}, see also
[6]. Thus F is a proper subset of L.

Example 3.10. For 4× 4 matrices, we have 4 subcases.
(1) For A= diag(N2,N1,N1), we have F =L = {1/2,2/3,3/4}. Indeed,

the leading fractions 1/2, 2/3, and 3/4 from F are achieved for E equal to
E4(2,1), E4(2,3) + E4(3,1), and E4(2,3) + E4(3,4) + E4(4,1), respectively.
We will show that L has no other elements than these of F. The other
elements from R4 are 1/4 and 1/3. The exponent 1/4 cannot be leading
since it requires the polynomial det(A+ tE) to contain a multiple of t. But
the lowest possible degree of t in this polynomial is 3. The fraction 1/3
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also cannot be a leading exponent because there are no principal minors
of A+ tE of order 3 containing t in first power (see also the next subcase).

(2) For A=diag(N2,N2), we have F={1/2,2/3} but L={1/2,2/3,3/4}
and hence F is a proper subset of L. Indeed, F does not contain the el-
ements 1/4, 1/3, and 3/4 from R4 which are candidates for members of
L. We prove first that 1/4 and 1/3 can not be elements of L and then we
show that 3/4 ∈ L by a special choice of E.

Note that for each E, the lowest power of t in the polynomial c4(t) :=
det(A+ tE) is 2, that is,

c4(t) = γ40t
4 + γ41t

3 + γ42t
2. (3.50)

If 1/4 ∈ L, then the characteristic polynomial of A+ tE must have the
form λ4 + · · · + c4(t) with c4(t) = γ40t

4 + γ41t
3 + γ42t

2 + γ43t and γ43 �= 0. The
last inequality is impossible in view of (3.50).

Suppose now that 1/3 ∈ L. Then the characteristic polynomial A+ tE
must have the form (λ − τt)(λ3 + b1(t)λ2 + b2(t)λ + b3(t)), where b3(t) =
β30t

3 + β31t
2 + β32t and β32 �= 0. Hence b3(t) − τtb2(t) = −c3(t) and at least

one principal minor of order 3 of the matrix A+ tE must contain t in first
degree. But all such minors contain t in second or higher degree.

To show that 3/4 is an element of L, take E as E = E4(1,3) +E4(2,3)−
E4(3,1)−E4(3,3) +E4(4,2) +E4(4,4). Then the characteristic polynomial
of the matrix

A+ tE =




0 1 t 0
0 0 t 0
−t 0 −t 1
0 t 0 t


 (3.51)

is λ4 − t3λ− t3 and has roots of the form λ = t3/4 +O(t3/2), t→ 0.
(3) For A = diag(N3,N1), we have F = {1/3,1/2,2/3}. That 1/4 is not

element of L is clear from the fact that the lowest power of t in the poly-
nomial det(A + tE) is 2 (see subcase 2). Whether 3/4 is a member of L,
and hence F is a proper subset of L, is an open question.

(4) For A = N4, we have F = {1/4,1/3,1/2}. The set L contains the
fraction 2/3. Indeed, according to Example 3.2, we can take E = E4(2,1)−
E4(2,2) − E4(3,2) + E4(3,3), which gives the characteristic polynomial
λ(λ3 − t2λ+ t2) of A+ tE with one zero root and three roots of order t2/3,
t → 0. Thus F is a proper subset of L. Whether L contains 3/4 is not
known.
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3.3. Use of Newton diagram

The set L can be studied via the characteristic polynomial of A+ tE and
the technique of Newton diagrams [7]. The coefficients cj(t) of this poly-
nomial are polynomials in t of degrees not exceeding j, cj(t) = cj0t

j +
cj1t

j−1 + · · ·+ cj,j−1t and cαβ ∈ F.
Define the numbers dj , j = 1, . . . ,n, as follows. If cj(t) is the zero poly-

nomial set dj = 0 and if cj(t) �= 0, set dj = cj,αj , where αj := max{s : cjs �= 0}.
Thus dj is the coefficient corresponding to the lowest degree αj of t in
cj(t). Keeping only the lowest powers of t in each cj(t), we get the poly-
nomial λn −d1t

α1λn−1 + · · ·+ (−1)ndnt
αn which is, in general, different from

the characteristic polynomial of A+ tE but has roots of the same low as-
ymptotic order for t → 0. We call two such polynomials asymptotically
equivalent. Such asymptotically equivalent polynomials are used in the
Appendix. For low-order matrices, they allow to calculate directly some
of the leading exponents. This was demonstrated in the examples pre-
sented above.

4. Fractional exponents for low-order matrices

In this section, we present the fractional exponents from the set F ac-
cording to Theorem 3.6 for matrices of order up to 7.

4.1. Matrices with a single eigenvalue

In this case, m=1, k=k1=n, and κ is a partition of n; namely, n=κ1+· · ·+κr .
Table 4.1 gives the fractional exponents from F for different partitions

of n. Note that the Wilkinson’s example, see [7, 10] and Example 3.5,
corresponds to 5 = 3+ 2.

The smallest partition n = 1+ · · ·+ 1 does not produce fractional expo-
nents. The largest partition n = n gives exponents 1/p, p = 2, . . . ,n, which
are exactly the elements of B1(n,2). The partition n = 2+ 1+ · · ·+ 1 gives
the exponents p/(p + 1) which are exactly the elements of the union of
one-element sets Bp(p+ 1,p+ 1) for p = 1, . . . ,n− 1.

4.2. Matrices with two or more eigenvalues

Table 4.1 describes the union of the sets Fi0. If the matrix A has more
than one eigenvalue, then the sets Fij with j ≥ 1 also “contribute” to F.

If the number m, of different eigenvalues of A, is close to n, the set F
is small as shown below.

(i) For m = n, n ≥ 2, we have k = 1, there are no fractional exponents
and F = ∅.

(ii) For m = n− 1 and n ≥ 3, we have k = 2 and hence F = {1/2}.
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Table 4.1

Partition Fractional exponents from F
2 = 2 1/2

3 = 3 1/3, 1/2

3 = 2+ 1 1/2; 2/3

4 = 4 1/4, 1/3, 1/2

4 = 3+ 1 1/3, 1/2; 2/3

4 = 2+ 2 1/2; 2/3

4 = 2+ 1+ 1 1/2; 2/3; 3/4

5 = 5 1/5, 1/4, 1/3, 1/2

5 = 4+ 1 1/4, 1/3, 1/2; 2/5, 2/3

5 = 3+ 2 1/3, 1/2; 2/5, 2/3

5 = 3+ 1+ 1 1/3, 1/2; 2/3; 3/5, 3/4

5 = 2+ 2+ 1 1/2; 2/3; 3/5, 3/4

5 = 2+ 1+ 1+ 1 1/2; 2/3; 3/4; 4/5

6 = 6 1/6, 1/5, 1/4, 1/3, 1/2

6 = 5+ 1 1/5, 1/4, 1/3, 1/2; 2/5, 2/3

6 = 4+ 2 1/4, 1/3, 1/2; 2/5, 2/3;

6 = 4+ 1+ 1 1/4, 1/3, 1/2; 2/5, 2/3; 3/5, 3/4

6 = 3+ 3 1/3, 1/2; 2/5

6 = 3+ 2+ 1 1/3, 1/2; 2/5, 2/3; 3/5, 3/4

6 = 3+ 1+ 1+ 1 1/3, 1/2; 2/3; 3/5, 3/4; 4/5

6 = 2+ 1+ 1+ 1+ 1 1/2; 2/3; 3/4; 4/5; 5/6

7 = 7 1/7, 1/6, 1/5, 1/4, 1/3, 1/2

7 = 6+ 1 1/6, 1/5, 1/4, 1/3, 1/2; 2/7, 2/5, 2/3

7 = 5+ 2 1/5, 1/4, 1/3, 1/2; 2/7, 2/5, 2/3

7 = 5+ 1+ 1 1/5, 1/4, 1/3, 1/2; 2/5, 2/3; 3/7, 3/5, 3/4

7 = 4+ 3 1/4, 1/3, 1/2; 2/7, 2/5

7 = 3+ 3+ 1 1/3, 1/2; 2/5, 2/3; 3/7, 3/5

7 = 4+ 2+ 1 1/4, 1/3, 1/2; 2/5, 2/3; 3/7, 3/5, 3/4

7 = 4+ 1+ 1+ 1 1/4, 1/3, 1/2; 2/5, 2/3; 3/5, 3/4; 4/7, 4/5

7 = 3+ 2+ 2 1/3, 1/2; 2/5, 2/3; 3/7, 3/5

7 = 3+ 2+ 1+ 1 1/3, 1/2; 2/5, 2/3; 3/5, 3/4; 4/7, 4/5

7 = 2+ 2+ 1+ 1+ 1 1/2; 2/3; 3/5, 3/4; 4/5; 5/7, 5/6

7 = 2+ 1+ 1+ 1+ 1+ 1 1/2; 2/3; 3/4; 4/5; 5/6; 6/7
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(iii) For m = n− 2 and n ≥ 4, we have k = 3 and there are two possible
subcases: κ = (3) and κ = (2,1). For both of them, F = {1/3,1/2;2/3}.

(iv) For m = n− 3, n ≥ 5, there are 7 subcases as follows.
(1) If k = 4, κ = (4), and n = 5, then F = {1/4,1/3,1/2;2/3}.
(2) If k = 4 and n ≥ 6, then F = {1/4,1/3,1/2;2/3;3/4}.
(3) If k = 4 and κ = (3,1), then F = {1/3,1/2;2/3;3/4}.
(4) If k = 4 and κ = (2,2) or κ = (2,2,1), then F = {1/2;2/3;3/4}.
(5) If k = 3 and κ = (3), then F = {1/3,1/2;2/3}.
(6) If k = 3 and κ = (2,1), then F = {1/2;2/3}.
(7) If k = 2, then F = {1/2}.
Now consider the possible fractional exponents for n ≤ 7 and m ≤ n− 4

since the cases with m ≥ n− 3 have been already analysed. Here we have
additional exponents to those given in Table 4.1. We will consider the
cases n = 6 with m = 2, n = 7 with m = 2, and n = 7 with m = 3. For each of
these case, there are subcases depending on the multiplicity k of λ1 and
its partitions κ. We do not consider the partition k = 2+ 1+ · · ·+ 1 since it
gives no additional exponents other than 1/2,2/3, . . . ,(k − 1)/k.

(1) Case n = 6, m = 2, and k = 5. Here we have 5 subcases according
to the partitions of 5 in Table 4.1 except the last one. In addition to the
exponents from the second column of Table 4.1, we have new exponents
as in Table 4.2.

Table 4.2

Partition Additional fractional exponents

5 = 5 2/5, 2/3

5 = 4+ 1 3/5, 3/4; 4/5

5 = 3+ 2 3/5, 3/4

5 = 3+ 1+ 1 4/5

5 = 2+ 2+ 1 4/5

(2) Case n = 6, m = 2, and k = 4. There are 3 subcases according to the
partitions of 4 in Table 4.1. In addition to the exponents from the second
column of Table 4.1, we have new exponents as in Table 4.3.

Table 4.3

Partition Additional fractional exponents

4 = 4 2/3

4 = 3+ 1 3/4

4 = 2+ 2 3/4
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(3) Case n = 6, m = 2, and k = 3 or k = 2. No additional exponents are
added to the exponents already mentioned in the second column of Table
4.1 for the partitions of 3 and 2.

(4) Case n = 7, m = 2, and k = 6. We have 7 subcases according to the
partitions of 6 in Table 4.1. In addition to the exponents from the second
column of Table 4.1, the new exponents are shown in Table 4.4.

Table 4.4

Partition Additional fractional exponents

6 = 6 2/5, 2/3

6 = 5+ 1 3/5, 3/4

6 = 4+ 2 3/5, 3/4

6 = 4+ 1+ 1 4/5

6 = 3+ 3 2/3; 3/5, 3/4

6 = 3+ 2+ 1 4/5

6 = 3+ 1+ 1+ 1 5/6

(5) Case n = 7, m = 2, and k = 5. There are 5 subcases according to the
partitions of 5 in Table 4.1. In addition to the exponents from the second
column of Table 4.1, there are new exponents as in Table 4.5.

Table 4.5

Partition Additional Fractional Exponents

5 = 5 2/5, 2/3

5 = 4+ 1 3/5, 3/4

5 = 3+ 2 3/5, 3/4

5 = 3+ 1+ 1 4/5

5 = 2+ 2+ 1 4/5

(6) Case n = 7, m = 2, and k = 4. There are 3 subcases according to the
partitions of 4 in Table 4.1. In addition to the exponents from the second
column of Table 4.1, we have new exponents as in Table 4.6.

Table 4.6

Partition Additional fractional exponents

4 = 4 2/3

4 = 3+ 1 3/4

4 = 2+ 2 3/4
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Table 4.7

Partition Additional fractional exponents

5 = 5 2/5, 2/3; 3/5, 3/4

5 = 4+ 1 3/5, 3/4; 4/5

5 = 3+ 2 3/5, 3/4; 4/5

5 = 3+ 1+ 1 4/5

5 = 2+ 2+ 1 4/5

(7) Case n = 7, m = 2, and k = 3 or k = 2. No additional exponents are
added to the exponents already listed in Table 4.1 for the partitions of 3
and 2.

(8) Case n = 7, m = 3, and k = 5. Here we have 5 subcases according
to the partitions of 5 in Table 4.1. In addition to the exponents from the
second column of Table 4.1, the new exponents are shown in Table 4.7.

(9) Case n = 7, m = 3, and k = 4. Here we have 3 subcases according
to the partitions of 4 in Table 4.1. In addition to the exponents from the
second column of Table 4.1, there are new exponents as in Table 4.8.

Table 4.8

Partition Additional fractional exponents

4 = 4 2/3; 3/4

4 = 3+ 1 3/4

4 = 2+ 2 3/4

(10) Case n = 7, m = 3, and k = 3 or k = 2. No additional exponents are
added.

Consider finally a particular example of higher order. Suppose that
n = 19 and the matrix A has three eigenvalues λ1,λ2,λ3 (m = 3) with par-
tial multiplicities 7,4,2 for the first, 3,1 for the second, and 1,1 for the
third. Then k = 13 = 7 + 4 + 2, r = 3, the defect of A is 12 and n − r −
def(A) = 4 (the number of Jordan blocks with eigenvalues λ2 or λ3). The
sets Fi0 are

F10 =

{
1
7
,
1
6
,
1
5
,
1
4
,
1
3
,
1
2

}
,

F20 =

{
2
11

,
2
10

=
1
5
,
2
9
,
2
8
=

1
4
,
2
7
,
2
6
=

1
3
,
2
5
,
2
4
=

1
2
,
2
3

}
,

F30 =

{
3
11

,
3
10

,
3
9
=

1
3
,
3
8
,
3
7

}
(4.1)
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and their union is the 15-element set
{

1
7
,
1
6
,
1
5
,
1
4
,
1
3
,
1
2

;
2
11

,
2
9
,
2
7
,
2
5
,
2
3
,

3
11

,
3
10

,
3
8
,
3
7

}
. (4.2)

The consideration of Fij for i = 1,2,3 and j = 1,2,3,4 gives 22 new expo-
nents 3/5, 3/4; 4/13, 4/11, 4/9, 4/7, 4/5; 5/13, 5/12, 5/9, 5/8, 5/7, 5/6,
6/13, 6/11, 6/7; 7/13, 7/12, 7/11, 7/10, 7/9, 7/8. Thus F has 37 elements
in this case.

5. Conclusions

In this paper, we have presented a simple description of a subset F of the
set L of leading fractional exponents in the asymptotic expansion of the
eigenvalue perturbations of a defective matrix. The set L corresponding
to a given eigenvalue depends on its partial algebraic multiplicities and
on the defect of the whole matrix. For each case, we have explicitly con-
structed the perturbation which produces the corresponding fractional
exponent.

Computationally, the problem of determining the Jordan structure of
a general matrix is very difficult, see [2, 3, 8]. The standard codes for
eigenvalue analysis based on the QR algorithm in general do not pro-
duce reliable results in this case. Only the codes based on regularisa-
tion, techniques for root localization and clustering and, other sophisti-
cated tools [2, 3, 8] may give satisfactory results for defective matrices.
A preliminary knowledge of possible and leading fractional exponents,
based on theoretical or experimental considerations (e.g., computation
of the pseudospectra of the matrix), may be very helpful in this area. As
a whole, the numerical solution of the eigenvalue problem for general
dense (and even very low order) matrices remains a challenging prob-
lem in numerical linear algebra scientific computing.

Another problem is the determination of the whole set L. Even the
completion of the list of leading exponents for low-order matrices (of
order say up to 7) is still an open problem.

Appendix

Here we present conditions for the characteristic polynomial of the ma-
trix A+ tE to have a root λ0 with an asymptotic expansion

λ0 = atp/q +O
(
t2p/q

)
, t −→ 0, (A.1)

where p < q and p, q are coprime.
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Keeping only the leading terms djt
αj in the coefficients cj(t) of the

characteristic polynomial of A+ tE, we obtain asymptotically equivalent
polynomial. Now λ0 is a root of this latter polynomial satisfying (A.1)
only if it has a multiplier of the form

λrq +
rq−1∑
j=1

γjt
αj λj + γ0t

rp, γ0 �= 0, (A.2)

where r ∈ N and rq ≤ n. Substituting (A.1) in (A.2), we obtain

arq + γ0 +
rq−1∑
j=1

γjt
αj+jp/q−rp +O

(
tp/q
)
, t −→ 0. (A.3)

Hence for each j = 1, . . . , rq − 1, we have either γj = 0 or γj �= 0 and jp ≥
q(rp−αj).

Suppose that γj1 , . . . , γjs are the nonzero coefficients in the sum from
(A.2) for which jp = q(rp − αj). Then the coefficient a in (A.1) may be
determined from

a =
(− γ0 − γj1 − · · · − γjs

)1/(rq)
. (A.4)

These considerations are illustrated by the next example.

Example A.1. Let A = N3 and suppose we are interested in the leading
exponent 2/3. The characteristic polynomial of N3 + tE may be written
as

λ3 − c10tλ
2 +
(
c20t

2 + c21t
)
λ− (c30t

3 + c31t
2 + c32t

)
. (A.5)

We obtain that c10 = c21 = c32 = 0, c31 �= 0.
If we are interested only in the first two coefficients in the asymptotic

expansion λ = a1t
2/3 + a2t

4/3 +O(t2), t → 0, then we may omit the term
containing t3. Hence we have the asymptotically equivalent polynomial
λ3 + c20t

2λ− c31t
2 which gives a1 = c1/3

31 , a2 = −c20/(3c
1/3
31 ).
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