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We revisit the two standard dense methods for matrix Sylvester and
Lyapunov equations: the Bartels-Stewart method for A1X +XA2 +D = 0
and Hammarling’s method for AX + XAT + BBT = 0 with A stable. We
construct three schemes for solving the unitarily reduced quasitriangu-
lar systems. We also construct a new rank-1 updating scheme in Ham-
marling’s method. This new scheme is able to accommodate a B with
more columns than rows as well as the usual case of a B with more
rows than columns, while Hammarling’s original scheme needs to sep-
arate these two cases. We compared all of our schemes with the Matlab
Sylvester and Lyapunov solver lyap.m; the results show that our schemes
are much more efficient. We also compare our schemes with the Lya-
punov solver sllyap in the currently possibly the most efficient control
library package SLICOT; numerical results show our scheme to be com-
petitive.

1. Introduction

Matrix Sylvester equation and Lyapunov equation are very important
in control theory and many other branches of engineering. We discuss
dense methods for the Sylvester equation

A1X+XA2 +D = 0, (1.1)

where A1 ∈ R
m×m, A2 ∈ R

n×n, and D ∈ R
m×n; and the Lyapunov equation
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AX+XAT +BBT = 0, (1.2)

where A ∈ R
n×n, A is stable, and B ∈ R

n×p.
The Bartels-Stewart method [3] has been the method of choice for

solving small-to-medium scale Sylvester and Lyapunov equations. And
for about twenty years, Hammarling’s paper [11] remains the one and
only reference for directly computing the Cholesky factor of the solution
X of (1.2) for small to medium n.

Many matrix equations that arise in practice are small to medium
scale. Moreover, most projection schemes for large scale matrix equa-
tions require efficient and stable direct methods to solve the small-to-
medium scale projected matrix equations. Therefore, it is worthwhile to
revisit existing dense methods and make performance improvements.

In Section 1, we briefly review the Bartels-Stewart method for (1.1),
this method is implemented as lyap.m in Matlab; we introduce three
modified schemes for solving the reduced quasitriangular Sylvester
equation in the real case. Numerical evidence indicates that our schemes
are much more efficient than the Matlab function lyap.m. In Section 2,
we revisit Hammarling’s method for (1.2), again for the reduced trian-
gular Lyapunov equation. We present our new updating formulations
of the Cholesky factor of X for (1.2) both in complex arithmetic and
in real arithmetic. We give computational evidence that our methods
are much more efficient than the Matlab function lyap.m. We also com-
pare our method with possibly the most efficient Lyapunov solver cur-
rently available: sllyap in the control library package SLICOT [4] (see
http://www.win.tue.nl/niconet/NIC2/slicot.html); numerical results
show our formulations to be competitive.

For other applications of triangular Sylvester and Lyapunov equa-
tions and recent recursive methods, see the eloquent and beautifully
written paper [14]. Numerical methods for generalized or coupled ma-
trix equations can be found in [5, 14, 16].

2. Bartels-Stewart algorithm and its improvements in the real case

The Bartels-Stewart method provided the first numerically stable way
to systematically solve the Sylvester equation (1.1). For the backward
stability analysis of Bartels-Stewart algorithm, see [12] and [13, page
313]. Another backward error analysis can be found in [7]. The Bartels-
Stewart algorithm is now standard and is presented in textbooks (e.g.,
[10, 17]).

The main idea of the Bartels-Stewart algorithm is to apply the Schur
decomposition [10] to transform (1.1) into a triangular system which can
be solved efficiently by forward or backward substitutions. Our formu-
lation for the real case uses the same idea.

http://www.win.tue.nl/niconet/NIC2/slicot.html
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Throughout, we assume that A1 and −A2 have no common eigenval-
ues. This is a necessary and sufficient condition for (1.1) to have a unique
solution.

2.1. A2 is transformed into upper quasitriangular matrix

We first discuss the case when A2 is transformed into (quasi-) upper
triangular matrix. The other cases will be discussed in the next section.

Let the Schur decomposition of A1, A2 be

A1 = Q1R1QH
1 , A2 = Q2R2QH

2 , (2.1)

where Q1, Q2 are unitary and R1, R2 are upper triangular. Then (1.1) is
equivalent to

R1X̃+ X̃R2 + D̃ = 0, where D̃ = QH
1 DQ2. (2.2)

Once X̃ is solved, the solution X of (1.1) can be obtained by X = Q1X̃QH
2 .

Denote

X̃ =
[
x̃1, x̃2, . . . , x̃n

]
, x̃i ∈ R

m,

D̃ =
[
d̃1, d̃2, . . . , d̃n

]
, d̃i ∈ R

m.
(2.3)

Denote R2 = [r(2)ij ], i, j = 1, . . . ,n. By comparing columns in (2.2), we ob-
tain the formula for the columns of X̃,

(
R1 + r

(2)
kk I

)
x̃k = −d̃k −

k−1∑
i=1

x̃ir
(2)
ik , k = 1,2, . . . ,n. (2.4)

Since Λ(A1)∩Λ(A2) = ∅, for each k, (2.4) always has a unique solution.
We can solve (2.2) by forward substitutions, that is, solving x̃1 first, put-
ting it into the right-hand side of (2.4), then we can solve for x̃2. All
x̃3, . . . , x̃n can be solved sequentially. The Matlab function lyap.m imple-
ments this complex version of the Bartels-Stewart algorithm.

When the coefficient matrices are real, it is possible to restrict compu-
tation to real arithmetic as shown in [3]. A discussion of this may also
be found in Golub and Van Loan [10]. Both of these variants resort to
the equivalence relation between (2 × 2)-order Sylvester equations and
(4× 1)-order linear systems via Kronecker product when there are com-
plex conjugate eigenvalues.

We introduce three columnwise direct solve schemes which do not
use the Kronecker product. Our column-wise block solve scheme is more
suitable for a modern computer architecture where cache performance is
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important. The numerical comparison results done in the Matlab envi-
ronment show that our schemes are much more efficient than the com-
plex version lyap.m.

We first perform real Schur decomposition of A1, A2:

A1 = Q1R1QT
1 , A2 = Q2R2QT

2 . (2.5)

Note now that all matrices in (2.5) are real, Q1, Q2 are orthogonal matri-
ces, and R1, R2 are now real upper quasitriangular, with diagonal block-
size 1 or 2 where block of size 2 corresponds to a conjugate pair of eigen-
values.

Equation (2.4) implies that we only need to look at the diagonal blocks
of R2. When the kth diagonal block of R2 is of size 1 (i.e., r(2)

k+1,k = 0), we
can apply the same formula as (2.4) to get xk; when the size of the kth
diagonal block is of size 2 (i.e., r(2)

k+1,k �= 0), we need to solve for both x̃k,
x̃k+1 at the kth step and then move to the (k + 2)th block.

Our column-wise elimination scheme for size-2 diagonal block proceeds
as follows: denote

[
r11 r12

r21 r22

]
:=


 r

(2)
k,k r

(2)
k,k+1

r
(2)
k+1,k r

(2)
k+1,k+1


 . (2.6)

By comparing the {k,k + 1}th columns in (2.2), we get

R1
[
x̃k, x̃k+1

]
+
[
x̃k, x̃k+1

][r11 r12

r21 r22

]
= −[d̃k, d̃k+1

]−
[

k−1∑
i=1

x̃ir
(2)
i,k

,
k−1∑
i=1

x̃ir
(2)
i,k+1

]
.

(2.7)

Since at the kth step {xi, i = 1, . . . ,k − 1} are already solved, the two col-
umns in the right-hand side of (2.7) are known vectors, we denote them
as [b1,b2]. Then by comparing columns in (2.7), we get

R1x̃k + r11x̃k + r21x̃k+1 = b1, (2.8)

R1x̃k+1 + r12x̃k + r22x̃k+1 = b2. (2.9)

From (2.8), we get

x̃k+1 =
1
r21

{
b1 −

(
R1 + r11I

)
x̃k
}
. (2.10)

From (2.9),

(
R1 + r22I

)
x̃k+1 = b2 − r12x̃k. (2.11)
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Combining (2.10) and (2.11) gives

{(
R1 + r22I

)(
R1 + r11I

)− r12r21I
}

x̃k =
(
R1 + r22I

)
b1 − r21b2. (2.12)

Solving (2.12) we get x̃k. We solve (2.12) using the following equiva-
lent equation:

{
R2

1 +
(
r11 + r22

)
R1 +

(
r11r22 − r12r21

)
I
}

x̃k = R1b1 + r22b1 − r21b2. (2.13)

This avoids computing (R1 + r22I)(R1 + r11I) at each step, we compute
R2

1 only once at the beginning and use it throughout. Solving (2.13) for
x̃k provides one scheme for x̃k+1, namely, the 1-solve scheme: plug x̃k into
(2.10) to get x̃k+1, that is, we obtain {x̃k, x̃k+1} by solving only one (quasi)-
triangular system. Another straightforward way to obtain x̃k+1 is to plug
x̃k into (2.11), then solve for x̃k+1.

We can do much better by rearranging (2.9),

x̃k =
1
r12

{
b2 −

(
R1 + r22I

)
x̃k+1

}
. (2.14)

Combining (2.14) and (2.8) as above, we get

{
R2

1 +
(
r11 + r22

)
R1 +

(
r11r22 − r12r21

)
I
}

x̃k+1 = R1b2 + r11b2 − r12b1. (2.15)

From (2.13) and (2.15), we see that {x̃k, x̃k+1} now can be solved simulta-
neously by solving the following equation:

{
R2

1 +
(
r11 + r22

)
R1 +

(
r11r22 − r12r21

)
I
}[

x̃k, x̃k+1
]
=
[
b̃1, b̃2

]
, (2.16)

where

b̃1 = R1b1 + r22b1 − r21b2,

b̃2 = R1b2 + r11b2 − r12b1.
(2.17)

We call this scheme the 2-solve scheme. This scheme is attractive because
(2.16) can be solved by calling block version system-solve routine in LA-
PACK [1], which is usually more efficient than solving for columns se-
quentially.

Our third scheme is also aimed at applying block version (quasi-)tri-
angular system-solve routine to solve for {x̃k, x̃k+1} simultaneously. It is
very similar to the above 2-solve scheme but derived in a different way.
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We denote this scheme as E-solve scheme since it uses eigendecomposi-
tion. The derivation is as follows: from (2.7) we get

R1
[
x̃k, x̃k+1

]
+
[
x̃k, x̃k+1

][r11 r12

r21 r22

]
=
[
b1,b2

]
. (2.18)

Let the real eigendecomposition of
[ r11 r12
r21 r22

]
be

[
r11 r12

r21 r22

]
=
[
y1,y2

][ µ η
−η µ

][
y1,y2

]−1
, (2.19)

where y1,y2 ∈ R
2. Then (2.18) is equivalent to

R1
[
x̂k, x̂k+1

]
+
[
x̂k, x̂k+1

][ µ η
−η µ

]
=
[
b̂1, b̂2

]
, (2.20)

where

[
x̂k, x̂k+1

]
=
[
x̃k, x̃k+1

][
y1,y2

]
,

[
b̂1, b̂2

]
=
[
b1,b2

][
y1,y2

]
. (2.21)

From (2.20), we get

(
R1 +µI

)[
x̂k, x̂k+1

]
+η

[
x̂k, x̂k+1

][ 0 1
−1 0

]
=
[
b̂1, b̂2

]
, (2.22)

and multiplying (R1 +µI) on both sides of (2.22) we get

(
R1 +µI

)2[x̂k, x̂k+1
]
+η

(
R1 +µI

)[
x̂k, x̂k+1

][ 0 1
−1 0

]
=
(
R1 +µI

)[
b̂1, b̂2

]
.

(2.23)

Combining (2.22) and (2.23) and noting that
[

0 1
−1 0

]2 =
[−1 0

0 −1

]
, we finally

get

((
R1 +µI

)2 +η2I
)[

x̂k, x̂k+1
]

= −η[b̂1, b̂2
][ 0 1
−1 0

]
+
(
R1 +µI

)[
b̂1, b̂2

] (2.24)

or, equivalently,

(
R2

1 + 2µR1 +
(
µ2 +η2)I

)[
x̂k, x̂k+1

]
= η

[
b̂2,−b̂1

]
+
(
R1 +µI

)[
b̂1, b̂2

]
.

(2.25)



D. C. Sorensen and Y. Zhou 283

From (2.25), we can solve {x̂k, x̂k+1} simultaneously by calling block ver-
sion system-solve routine in LAPACK. Finally,

[
x̃k, x̃k+1

]
=
[
x̂k, x̂k+1

][
y1,y2

]−1 (2.26)

leads to the two columns we need for system (2.18).

Remark 2.1. Even though the 2-solve and E-solve schemes are derived in
two different ways, they are closely related to each other because of the
following relation of each 2× 2 block:

2µ = r11 + r22, µ2 +η2 = r11r22 − r12r21. (2.27)

Hence, the left-hand side coefficient matrices in (2.16) and (2.25) are the-
oretically exactly the same, while 2-solve does not need to perform eigen-
decomposition of each 2 × 2 block and the back transformation (2.26),
hence 2-solve is a bit more efficient and accurate than E-solve. However,
the derivation of E-solve is in itself interesting and would be useful in
developing block algorithms.

In the next sections, we will mainly use the 2-solve scheme since it is
the most accurate and efficient among the three schemes.

2.2. A2 is transformed into lower quasitriangular matrix and other cases

We address the case when A2 is orthogonally transformed into lower
quasitriangular matrix. This case is not essential since even for Lyapunov
equation AX + XAT + D = 0, we can apply Algorithm 2.1 without using
“one upper triangular-one lower triangular” form by a simple reorder-
ing. But the direct “one upper triangular-one lower triangular” form is
more natural for Lyapunov equations, hence we briefly mention the dif-
ference in the formula for the sake of completeness.

Let A1 = Q1R1QT
1 as before, let A2 = Q2L2QT

2 , and let L2 be lower qua-
sitriangular.

Denote L2 = [lij], i, j = 1, . . . ,n. The transformed equation correspond-
ing to (1.1) is

R1X̃+ X̃L2 + D̃ = 0, where D̃ = QT
1 DQ2. (2.28)

Denote X̃ = [x̃1, x̃2, . . . , x̃n] and D̃ = [d̃1, d̃2, . . . , d̃n], where x̃i, d̃i ∈ R
m. Now,

we need to solve X̃ by backward substitutions.
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For k =m down to k = 1, when lk−1,k = 0, we solve for x̃k by

(
R1 + lk,kI

)
x̃k = −d̃k −

n∑
i=k+1

x̃ili,k. (2.29)

When lk−1,k �= 0, we solve for {x̃k−1, x̃k} simultaneously. Since at this kth
step

R1
[
x̃k−1, x̃k

]
+
[
x̃k−1, x̃k

][lk−1,k−1 lk−1,k

lk,k−1 lk,k

]

= −[d̃k−1, d̃k

]−
[

n∑
i=k+1

x̃ili,k−1,
n∑

i=k+1

x̃ili,k

]
,

(2.30)

the two vectors in the right-hand side are known. Denote them as [b1,
b2], then the same column-wise elimination scheme in Section 2.1 can be
applied which leads to the following equation:

{
R2

1 +
(
lk−1,k−1 + lk,k

)
R1 +

(
lk−1,k−1lk,k − lk−1,klk,k−1

)
I
}[

x̃k−1, x̃k
]
=
[
b̃1, b̃2

]
,

(2.31)

where

b̃1 = R1b1 + lk,kb1 − lk,k−1b2,

b̃2 = R1b2 + lk−1,k−1b2 − lk−1,kb1.
(2.32)

Solving (2.31), we get {x̃k−1, x̃k}, and the process can be carried on until
k = 1.

Note that for Sylvester equation of form (1.1), if we solve X column
by column, then we only need to look at the diagonal blocks of the trans-
formed quasitriangular matrix of A2.

We can also solve X row by row (i.e., by taking the transpose of (1.1),
then solving column by column). In this case, we only need to look at
the diagonal blocks of the transformed quasitriangular matrix of AT

1 , the
choice of this approach is necessary when R1 is much more ill-
conditioned than R2 or L2. The solution formula for all these cases may
be derived essentially in the same way as what have been discussed in
Sections 2.1 and 2.2.

2.3. Computational complexity

We note that our schemes can be adapted easily to use the Hessenberg-
Schur method [9]; the only modification necessary is in the first step:
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instead of doing Schur decomposition of A1 we do Hessenberg decom-
position A1 = Q1H1QT

1 , where H1 is upper Hessenberg. This saves flops
when A1 and A2 have no connection (i.e., A1 �= A2 or AT

2 , the Schur de-
composition of A2 provides no information for the Schur decomposition
of A1). The numerical study we will present in Section 2.4 still uses the
Schur decomposition because we also deal with the Lyapunov equation
and the case A1 = A2. For these two cases, the Hessenberg-Schur method
offers no advantage.

The computational advantage of our 2-solve scheme can be seen from
the following perspective. It is clear that for the real eigenvalues of A2,
our scheme is the same as Bartels-Stewart algorithm (or Hessenberg-
Schur algorithm if we apply the above-mentioned modification). The
major difference is in how to deal with the complex eigenvalues of A2.
All the other flop counts in [3, 9] work the same for our scheme.

As seen from (2.7) or (2.30), the Bartels-Stewart and Hessenberg-
Schur algorithms essentially solve the corresponding (2m × 2m)-linear
equation equivalent to (2.7) or (2.30) (via Kronecker product). With a
suitable reordering, the coefficient matrix becomes upper triangular with
two nonzero subdiagonals in the lower triangular part. The flop count
for this (2m× 2m)-equation, without counting the formation of the right-
hand side vector, is 6m2 as counted in [9]. Additional 2m2 storage is re-
quired.

While we solve the equivalent (m×m)-order equation (2.16) or (2.31),
the coefficient matrix is quasi-upper triangular, hence the solution flop
is m2 (each column costs m2/2 flops). Updating the two right-hand side
vectors via the additional multiplication by R1 costs about m2 flops (one
triangular matrix vector product costs about m2/2). Forming R2

1 once
costs about m3/6, this adds about m3/6n0 flops for each two columns of
the solution, where n0 is the number of conjugate eigenpairs of A2. Form-
ing the coefficient matrix in (2.16) or (2.31) costs about m2/2 flops. So the
total flop is about 5m2/2+m3/6n0 for each two columns of the solution.
We see that the more conjugate eigenpairs A2 has the fewer flops our
scheme requires in comparison to Bartels-Stewart or Hessenberg-Schur
algorithm. We also note that when n0 is small (i.e., n0 < m/21), then
forming R2

1 may not be worthwhile; in this case we would use standard
Bartels-Stewart or Hessenberg-Schur algorithm. In the case n0 > m/21,
our scheme uses less flop than Bartels-Stewart or Hessenberg-Schur al-
gorithm.

Certainly, the flop count is not the only issue in determining the ef-
ficiency of an algorithm. We point out that the major advantage of our
column-wise elimination scheme (which avoids equivalent Kronecker
form) is that we can call block version system-solve routines in LA-
PACK [1], no reordering or additional data movement is necessary. This
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feature is more suitable for many computer architectures where cache
performance is an important issue. Also, the Kronecker form implies
(2m)2 additional storage; by suitable reordering, 2m2 additional storage
is usually necessary. While we need m2 additional storage for R2

1.
The disadvantage of our scheme is in conditioning. If R1 is ill-condi-

tioned, forming R2
1 can be numerically problematic.

2.4. Algorithm and numerical results

We present the algorithm of the 2-solve scheme for Sylvester equations
in Algorithm 2.1. The 1-solve and E-solve schemes can be coded by small
modifications on the 2-solve scheme. In the algorithm, we handled the
case that A2 is transformed into quasi-upper triangular matrix. For other
cases discussed in Section 2.2, the codes may be developed similarly.

Note that our algorithm also handle the Lyapunov equation

AX+XAT +D = 0, (2.33)

and the special Sylvester equation of the form

AX+XA+D = 0. (2.34)

We point out that the current Matlab code lyap.m does not solve (2.34)
as efficiently as possible since it performs two complex Schur decompo-
sition to the same matrix A.

We report some computational comparison between our schemes and
the Matlab function lyap.m, the computation is done in Matlab 6.0 on
a Dell Dimension L800r PC (Intel Pentium III, 800 MHz CPU, 128 MB
memory) with operating system Win2000. Figure 2.1 shows the com-
parison between lyap.m and our three schemes for the special Sylvester
equation (2.34). Figure 2.2 is about the Lyapunov equation (2.33). These
results show that our schemes are much more efficient than the Matlab
lyap.m, the CPU time difference between lyap.m and our schemes will
be greater when n becomes larger. And the accuracy of our schemes is
similar to that of lyap.m.

These results also show that even though the 1-solve scheme theoret-
ically use less flops than the 2-solve scheme, it does not necessary use
less CPU time. In modern computer architecture, the cache performance
and data communication speed are also important aspects [6]. The 2-
solve scheme often may have better cache performance than the 1-solve
scheme (for the former, matrix A needs to be accessed only once for two
system solves, this reduces memory traffic), hence it is able to consume
less CPU time when n becomes larger. This observation also supports
our choice in not using the Kronecker form.
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Input data: A1 ∈ R
m×m, A2 ∈ R

n×n, D ∈ R
m×n

Output data: solution X ∈ R
m×n

(1) Compute real Schur decomposition of A1, A1 = Q1R1QT
1 .

(2) If A2 = A1, set Q2 = Q1, R2 = R1;

else if A2 = AT
1 , get Q2, R2 from Q1, R1 as follows:

idx = [size(A1,1) : −1 : 1]; Q2 = Q1(:, idx);
R2 = R1(idx, idx)T ;

else, compute real Schur decomposition of A2, A2 = Q2R2QT
2 .

(3) D←QT
1 DQ2, Rsq← R1 ∗R1, I← eye(m), j ← 1.

(4) While (j < n+ 1)

if j < n and R2(j + 1, j) < 10 ∗ ε∗max(|R2(j, j)|, |R2(j + 1, j + 1)|)
(a) b←−D(:, j)−X(:,1 : j − 1) ∗R2(1 : j − 1, j);
(b) solve the linear equations (R1+R2(j, j)I)x=b for x, set X(:, j)←x;
(c) j ← j + 1

else
(a) r11 ← R2(j, j), r12 ← R2(j, j + 1),

r21 ← R2(j + 1, j), r22 ← R2(j + 1, j + 1);
(b) b←−D(:, j : j + 1)−X(:,1 : j − 1) ∗R2(1 : j − 1, j : j + 1);

b←[R1b(:,1)+r22b(:,1)−r21b(:,2),R1b(:,2)+r11b(:,2)−r12b(:,1)]
(c) block solve the linear equations

(Rsq+(r11+r22)R1+(r11r22−r12r21)I)x=b for x, set X(:, j : j + 1)← x;
(d) j ← j + 2

end if.
(5) The solution X in the original basis is: X←Q1XQT

2 .

Algorithm 2.1. The 2-solve scheme for Sylvester equation A1X +
XA2 +D = 0.

The accuracy of the 1-solve scheme is not as high as the 2-solve scheme
(this can be explained by (2.10), the errors in x̃k would be magnified if
r21 is small). The 2-solve scheme is much better since no explicit divides
are performed.

3. Hammarling’s method and new formulations

Since the solution X of (1.2) is at least semidefinite, Hammarling found
an ingenuous way to compute the Cholesky factor of X directly. His pa-
per [11] remains the main (and the only) reference in this direction since
its first appearance in 1982. Penzl in [16] generalized exactly the same
technique to the generalized Lyapunov equation.
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Figure 2.1. Comparison of performance for Sylvester equation (2.34).
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3.1. Solving by complex arithmetic

We first discuss the method using complex arithmetic. Hammarling’s
method depends on the following observation: triangular structure nat-
urally allows forward or backward substitution, that is, there is an intrin-
sic recursive-structure algorithm for triangular systems. Algorithms for
triangular matrix equations in a recursive style are derived in Jonsson
and Kågström [14]. The original paper of the Bartels-Stewart algorithm
[3] used orthogonal transformation to transform one coefficient matrix
A2 to upper triangular form and the other matrix A1 to lower triangular
form, then the transformed triangular matrix equation can be reduced
to another triangular matrix equation with the same structure but with 1
or 2 orders less. Hammarling [11] explained this reduction very clearly
using Lyapunov equation of the form

AHX+XA+D = 0 (3.1)

as an example, and he used backward substitution.
Here, we consider Lyapunov equation of the form

AX+XAH +D = 0, where D = DH. (3.2)

We point out that essentially the same reduction process also works for
Sylvester equations.

Let the Schur decomposition of A be

A = QRQH, (3.3)

let X̃ = QHXQ and D̃ = QHDQ, then (3.2) becomes

RX̃+ X̃RH + D̃ = 0. (3.4)

Partition R, X̃, and D̃ as follows:

R =
[

R1 r
0 λn

]
,

X̃ =
[

X1 x
xH xnn

]
,

D̃ =
[

D1 d
dH dnn

]
,

(3.5)
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where R1,X1,D1 ∈ C
(n−1)×(n−1) and r,x,d ∈ C

n−1. Then (3.4) gives three
equations

(
λn + λ̄n

)
xnn +dnn = 0, (3.6)(

R1 + λ̄nI
)
x+d+xnnr = 0, (3.7)

R1X1 +X1RH
1 +D1 + rxH + xrH = 0. (3.8)

From (3.6), we get

xnn = − dnn(
λn + λ̄n

) . (3.9)

Plugging xnn in (3.7), we can solve for x, after x is known, and (3.8)
becomes a Lyapunov equation which has the same structure as (3.4) but
of order (n− 1):

R1X1 +X1RH
1 = −D1 − rxH − xrH. (3.10)

We can apply the same process to (3.10) till R1 is of order 1. Note un-
der the condition that λi + λ̄i �= 0, i = 1, . . . ,n, at the kth step (k = 1,2, . . . ,n)
of this process, we get a unique solution vector of length (n+ 1− k) and
a reduced triangular matrix equation of order (n− k).

Hammarling’s idea [11] was based on this recursive reduction (3.10).
He observed that when D = BBT in (3.2), it is possible to compute the
Cholesky factor of X directly without forming D. The difficulty in the
reduction process includes expressing the Cholesky factor of the right-
hand side of (3.10) as a rank-1 update to the Cholesky factor of D1 with-
out forming D1. For more details, see [11].

In [11], the case where B has more columns than rows is emphasized.
When B has more rows than columns, a different updating scheme must
be used. Our updating scheme is able to treat both of these cases. In LTI
system model reduction, we are primarily interested in B ∈ R

n×p, where
p	 n and (A,B) is controllable [19]. Our scheme naturally includes this
case. We mainly use block Gauss elimination, and our derivation in com-
puting the Cholesky factor directly is perhaps more systematic than the
derivation in [11].

We first discuss the complex case. We will treat the transformed trian-
gular Lyapunov equation

RP+PRH +BBH = 0, (3.11)

where R comes from (3.3), R is stable, P←QHPQ, and B←QHB.
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Let P = UUH be the Cholesky decomposition of P; we want to com-
pute U directly. Partition U as

U =
[

U1 u
τ

]
, (3.12)

where U1 ∈ C
(n−1)×(n−1), u ∈ C

n−1, and τ ∈ C. Under the controllability as-
sumption, P > 0, so we set τ > 0. Then

P = UUH =

[
U1UH

1 +uuH τu

τuH τ2

]
. (3.13)

The main idea is to block-diagonalize P, this can be done via an ele-
mentary matrix

[ I −(1/τ)u
1

]
since it can be verified that


I −1

τ
u

1


P




I

−1
τ

uH 1


 =


U1UH

1

τ2


 . (3.14)

By some well-known inverse formula of elementary matrices, we get

P =


I

1
τ

u

1




U1UH

1

τ2






I

1
τ

uH 1


 . (3.15)

Plugging (3.15) into (3.11) and multiplying two elementary matrices
from the left and from the right, we get





I −1

τ
u

1


R


I

1
τ

u

1







U1UH

1

τ2




+


U1UH

1

τ2







I −1

τ
u

1


R


I

1
τ

u

1






H

+


I −1

τ
u

1


BBH




I

−1
τ

uH 1


 = 0.

(3.16)
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Partition B and R as

B =


B1

bH


 , R =


R1 r

λ


 , (3.17)

where r, b are vectors and λ is a scalar. We get

I −1

τ
u

1


B =


B1 − 1

τ
ubH

bH


 :=


 B̂1

bH


 , (3.18)

where the rank-1 update of B1 is

B̂1 = B1 − 1
τ

ubH, (3.19)
I −1

τ
u

1


R


I

1
τ

u

1


 =


R1

1
τ

(
R1 −λI

)
u+ r

λ


 . (3.20)

Plugging (3.18) and (3.20) into (3.16), we get


R1

(
U1UH

1

) (1
τ

(
R1 −λI

)
u+ r

)
τ2

λτ2


+




(
U1UH

1

)
RH

1(1
τ

(
R1 −λI

)
u+ r

)H
τ2 λ̄τ2




+


 B̂1B̂H

1 B̂1b

(
B̂1b

)H bHb


 = 0.

(3.21)

Equation (3.21) contains exactly the same recursive structure that we
have just discussed in (3.4), (3.6), (3.7), and (3.8), that is, (3.21) leads
to three equations

(
λ+ λ̄

)
τ2 +bHb = 0, (3.22)(

R1 −λI
)
u+ τr+

1
τ

B̂1b = 0, (3.23)

R1
(
U1UH

1

)
+
(
U1UH

1

)
RH

1 + B̂1B̂H
1 = 0. (3.24)

Under the condition that R is stable, (3.22) has a unique solution (since
we choose τ > 0)

τ =
‖b‖2√
−2real(λ)

. (3.25)
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Input data: R ∈ R
n×n, R is upper triangular and stable, B ∈ R

n×p

Output data: the Cholesky factor U of the solution P, U ∈ R
n×n

U← n by n zero matrix
for j = n : −1 : 2 do
(1) b← B(j, :); µ← ‖b‖2, µ1 ←

√−2 ∗ real(R(j, j))
(2) if µ > 0

b← b/µ; I← (j − 1) order identity matrix
btmp← B(1 : j − 1, :) ∗bH ∗µ1 +R(1 : j − 1, j) ∗µ/µ1

solve (R(1 : j−1,1 : j−1)+R(j, j)H ∗ I)u=−btmp for u,
B(1 : j − 1, :)← B(1 : j − 1, :)−u ∗b ∗µ1

else
u← length (j − 1) zero vector
end if

(3) U(j, j)← µ/µ1

(4) U(1 : j − 1, j)← u
U(1,1)← ‖B(1, :)‖2/

√
−2 ∗ real(R(1,1))

Algorithm 3.1. Modified Hammarling’s algorithm using complex
arithmetic.

Plugging (3.25) and (3.19) into (3.23), we get the formula for u

(
R1 + λ̄I

)
u = −τr− 1

τ
B1b. (3.26)

Solving (3.26) gives u, so we get the last column of U. Plugging τ and
u into (3.19), we see that (3.24) is now an order (n − 1) triangular Lya-
punov equation, with U1 the only unknown. We can solve (3.24) using
the same technique: first solve the last column of U1, then reduce it to an-
other triangular Lyapunov of order (n − 2). This process can be carried
on till R1 is of order 1, then all the unknown elements of U are solved.
One key step at each stage of the process is the rank-1 update formula
(3.19) that we got via the elementary matrix manipulations.

The above derivation is summarized in Algorithm 3.1.
Besides the less flop counts, another main advantage in computing

Cholesky factor U directly instead of the full solution P is that κ(P) =
κ(U)2. When the Lyapunov equation (3.11) is slightly ill-conditioned,
that is, the corresponding Kronecker operator I ⊗R + R ⊗ I is not well
conditioned, κ(X) will be large and the numerical solution of U will be
more accurate than P. A thorough discussion of this conditioning issue is
given in [11]. We will not discuss conditioning in this section. However,
we do wish to point out that when the original Lyapunov equation is
highly ill-conditioned, the direct implementation of the Bartels-Stewart
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algorithm or the Hammarling method (even with iterative refinement)
will not give a satisfactorily accurate solution. In this case, special effort
needs to be taken to handle the ill conditioning. See [8] for one possi-
ble approach. A significant motivation for computing Cholesky factor
U directly is from model reduction by balanced truncation. The Hankel
singular values can be computed directly from the SVD of the product
of the Cholesky factors of the two system Gramians. This avoids an un-
necessary squaring that happens if one works directly with the product
of Gramians [2, 15].

3.2. Solving by real arithmetic only

Techniques for computing in real arithmetic similar to those developed
for the Sylvester equations in Section 2 can be applied to Lyapunov equa-
tions with real coefficients. The difficulty again comes from how to han-
dle the (2× 2)-blocks in the diagonal of R.

Let the real Schur decomposition of A be

A = QRQT , (3.27)

where R ∈ R
n×n is real quasi-upper triangular, with diagonal block size

less than or equal to 2, a (2 × 2)-diagonal block corresponds to a conju-
gate pair of complex eigenvalues.

Again for simplicity of notation we denote the transformed Lyapunov
equation as

RP+PRT +BBT = 0. (3.28)

We want to solve for the Cholesky factor U of P = UUT directly.
In the case that the diagonal block size is one, we partition U, R, and

B as follows

U =

[
U1 u

τ

]
, R =

[
R1 r

λ

]
, B =

[
B1

bT

]
, (3.29)

where u, r, and b are vectors and λ, τ are scalars, then

P = UUT =

[
U1UT

1 +uuT τu

τuT τ2

]
, (3.30)

all the update formulations in Section 3.1 can be applied directly.
Note that the last column of P is τ times the last column of U. As in the

Sylvester equation case, from (3.28), the last column of P can be solved
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directly from

(R+λI)x = −Bb, where x =
(
τ

[
u
τ

])
. (3.31)

Thus from the solution x of (3.31), we can obtain τ and u as

τ =
√

x(n), u =
1
τ

x(1 : n− 1). (3.32)

The rank-1 update formula of B remains the same as (3.19) except that
we only need real arithmetic here,

B̂1 = B1 − 1
τ

ubT . (3.33)

In the case that the diagonal block of R is of size 2, we partition U, R,
and B as follows:

U =




U1 u1 u2

τ11 τ12

τ22


 , R =




R1 r1 r2

λ11 λ12

λ21 λ22


 , B =




B1

bT
1

bT
2


 , (3.34)

where ui, ri, and bi, i = 1,2, are vectors and λij , τij , i, j = 1,2, are scalars.
Then,

P = UUT =




U1UT
1 +u1uT

1 +u2uT
2 τ11u1 + τ12u2 τ22u2

(sym) τ2
11 + τ2

12 τ12τ22

(sym) τ12τ22 τ2
22


 . (3.35)

We also notice that the last two columns of U can be obtained from the
last two columns of P. As discussed in the real Sylvester equation case,
from (3.28), the last two columns of P can be solved via our column-
wise elimination process: the same three 1-solve, 2-solve, and E-solve
schemes. Details of the 2-solve scheme can be found from the Matlab
codes in [18]. We chose the 2-solve scheme here because it is the best
among the three in terms of CPU time and accuracy.

After solving the last two columns of P via (3.35), we will be able to
get the formula for the last two columns of U; the updates of B remain
the same as (3.33).

The algorithm which fulfills solving (3.28) in only real arithmetic is
stated in Algorithm 3.2. The Matlab codes may be found in [18].



D. C. Sorensen and Y. Zhou 297

Input data: R ∈ R
n×n, R is upper triangular and stable, B ∈ R

n×p

Output data: the Cholesky factor U of the solution P, U ∈ R
n×n

set U← n by n zero matrix; j ← n;
while (j > 0)

if j > 1 and R(j, j − 1) = 0
µ← R(j, j); b←−B(1 : j, :) ∗B(j, :)H ; I← eye(j);
solve (R(1 : j,1 : j) +µI)x = b for x; set U(1 : j, j)← x,
if U(j, j) > 0,

U(j, j)←√
U(j, j);

U(1 : j − 1, j)←U(1 : j − 1, j)/U(j, j);
B(j, :)← B(j, :)/U(j, j);
B(1 : j − 1, :)← B(1 : j − 1, :)−U(1 : j − 1, j) ∗B(j, :);

end if
j ← j − 1

else
set r11 ← R(j − 1, j − 1); r12 ← R(j − 1, j);
r21 ← R(j, j − 1); r22 ← R(j, j);
b←−B(1 : j, :) ∗B(j − 1 : j, :)H ;
M← R(1 : j,1 : j); Msq←M ∗M; I← eye(j);
btmp← [M ∗b(:,1) + r22 ∗b(:,1)− r21 ∗b(:,2),

M ∗b(:,2) + r11 ∗b(:,2)− r12 ∗b(:,1)];
block solve
(Msq+ (r11 + r22)M+ (r11r22 − r12r21)I)x = btmp for x;
set U(1 : j, j − 1 : j)← x;
set U(j − 1, j)← (U(j − 1, j) +U(j, j − 1))/2;
U(j, j − 1)← 0;
if U(j, j) > 0

U(j, j)←√
U(j, j);

U(1 : j − 1, j)←U(1 : j − 1, j)/U(j, j);
B(j, :)← B(j, :)/U(j, j);
B(1 : j − 1, :)← B(1 : j − 1, :)−U(1 : j − 1, j) ∗B(j, :);

end if
j ← j − 1
if U(j, j) > 0

U(j, j)←√
U(j, j);

U(1 : j − 1, j)←U(1 : j − 1, j)/U(j, j);
B(j, :)← B(j, :)/U(j, j);
B(1 : j − 1, :)← B(1 : j − 1, :)−U(1 : j − 1, j) ∗B(j, :);

end if
j ← j − 1

end if
end while

Algorithm 3.2. Modified Hammarling’s algorithm using real
arithmetic only.



298 Direct methods for matrix equations

3.3. Numerical comparisons and discussions

Figure 3.1 shows the performance comparison of four Lyapunov solvers
lyap.m, lyapU.m, lyapUR.m, and lyapUE.m, where lyap.m is the original
function in Matlab, lyapU.m, lyapUR.m, and lyapUE.m are our Lyapunov
solvers, lyapU.m uses complex arithmetic, lyapUR.m uses only real arith-
metic with the 2-solve scheme, and lyapUE.m uses only real arithmetic
with the E-solve scheme. We did not list the 1-solve scheme here since
it is not as accurate as the other schemes. Figure 3.1 is one of the many
computations we did using Matlab 6.0 in a Dell Dimension L800r PC (In-
tel Pentium III 800 MHz CPU). Each of the computations obtained simi-
lar results. The CPU time shows, as expected, that computing Cholesky
factor directly is faster than computing the full solution; and when the
original matrix equation is real, using real arithmetic is faster than using
complex arithmetic.

We also did rough comparisons between our scheme lyapUR and the
very efficient Lyapunov solver sllyap in the control library SLICOT [4].
Figure 3.2 was sent to us by Dr. Peter Benner, this comparison was done
in Matlab 6.0. From Figure 3.2, we see that sllyap is very efficient, the
CPU time difference will be larger if the comparison is done in Matlab
5.3.

We did not compare our Matlab code directly with sllyap in Matlab be-
cause sllyap is essentially Fortran code which calls the fine-tuned subrou-
tines in BLAS and LAPACK, while we wrote Fortran 90 code which also
called BLAS and LAPACK. The reason for choosing Fortran 90 is that
one can program in Fortran 90 quite similarly as in Matlab, this saved a
lot of programming time in translating our Matlab codes to Fortran 90
codes.

We compared our Fortran 90 codes and the Fortran 77 sllyap in an Ul-
traSPARC II SunOS5.6 workstation with 450 MHz CPU. Figure 3.3 con-
tains one of the many similar results we obtained. From Figure 3.3, we
see that our code, even though it is not well tuned, is competitive to
the routine from the well tuned, very efficient SLICOT library. We used
Fortran 90 features like operator overloading and assumed shape arrays
and allocatable arrays for programming simplicity which may cost more
CPU time during execution. Also the f77 compiler has higher optimiza-
tion level than f90 which generally leads to faster executable codes when
the f77 programs are fine tuned. Under these circumstances, our code
still gives competitive results. This suggests that our modified formula-
tions of the Bartels-Stewart algorithm and the Hammarling method are
promising.

Remark 3.1. We observed that Hammarling’s method implemented in
SLICOT routine linmeq(3) is much slower than sllyap (which is essentially
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(Matlab 6.0).
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Performance comparison: lyap versus sllyap
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Figure 3.2. CPU time comparison: sllyap versus Matlab 6.0 lyap.m.

linmeq(2)) on Unix workstations. Therefore, we compared our code to the
more efficient sllyap.

As pointed out in a recent paper by Jonsson and Kågström [14], the
Bartels-Stewart algorithm and Hammarling’s method carried out explic-
itly (as done in Matlab, LAPACK, and SLICOT) are mainly level-2 BLAS
routines. Recursive algorithms in solving triangular matrix equations
(the second stage of the Bartels-Stewart algorithm) are constructed in
[14] based on the level-3 BLAS. The formulations can more fully exploit
the advantages provided by modern high-performance computer hard-
ware which contain several-level cache memories. Hence, algorithms in
[14] are very efficient for triangular matrix equations with large n and
should be the choice for large-scale triangular matrix equations.

Our modifications in this section are also mainly of level 2 since our
targets are small-to-medium scale matrix equations, this does not be-
come a serious drawback comparing to level-3 routines. For recursive
algorithms in [14], it is observed that a faster lowest-level kernel solver
(with suitable block size) leads to very efficient solver of triangular ma-
trix equations, what we presented here also contribute to the efficiency of
the last-level kernel solver. For models with large dimension n, usually
the matrix A has a banded or a sparse structure, applying the Bartels-
Stewart type algorithm becomes impractical because the first stage of
the Bartels-Stewart algorithm is Schur decompositions (or Hessenberg-
Schur [9]), which cost expensive O(n3) flops, and the sparse or banded
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Figure 3.3. Performance comparison: lyapUR versus sllyap.

structure will be destroyed. Hence one usually resorts to iterative pro-
jection methods when n is large, and the Bartels-Stewart type algorithms
including the ones presented in this section become suitable for the re-
duced small-to-medium matrix equations.
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4. Concluding remarks

In this paper, we revisited the Bartels-Stewart algorithm for Sylvester
equations, and the Hammarling algorithm for positive (semi-)definite
Lyapunov equations. We proposed column-wise elimination schemes to
handle the (2× 2)-diagonal blocks, we also constructed a new rank-1 up-
date formula for the Hammarling method. Flop comparison and numer-
ical results show that our modifications improve the performance of the
original formulations of these two standard methods. For the compar-
ison with lyap.m, our codes are also written in Matlab, hence it is the
efficiency of the algorithm reformulation that leads to the superior per-
formance, not because of the programming language. The efficiency of
our modified formulation can also be shown when we compared our
Fortran 90 code with the Fortran 77 sllyap. Our formulations hopefully
will enrich the dense methods for small-to-medium scale Sylvester and
Lyapunov matrix equations.
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