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A variational formulation has been developed to solve a parabolic partial
differential equation describing free-surface flows in a porous medium.
The variational finite element method is used to obtain a discrete form of
equations for a two-dimensional domain. The matrix characteristics and
the stability criteria have been investigated to develop a stable numerical
algorithm for solving the governing equation. A computer programme
has been written to solve a symmetric positive definite system obtained
from the variational finite element analysis. The system of equations
is solved using the conjugate gradient method. The solution generates
time-varying hydraulic heads in the subsurface. The interfacing free sur-
face between the unsaturated and saturated zones in the variably satu-
rated domain is located, based on the computed hydraulic heads. Ex-
ample problems are investigated. The finite element solutions are com-
pared with the exact solutions for the example problems. The numerical
characteristics of the finite element solution method are also investigated
using the example problems.

1. Introduction

The parabolic partial differential equations are solved to describe the
variations of hydraulic heads in groundwater systems including unsat-
urated (above groundwater table) and saturated (below groundwater
table) zones. Galerkin finite element methods were widely used by re-
searchers for solving unsaturated and/or saturated flow and contami-
nant transport problems [6, 9, 11, 12, 13, 16]. In these works, the
Galerkin method was used directly by employing appropriate shape
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functions. The mathematical and numerical analyses associated with the
continuity, stability, and growth of solution was not investigated in great-
er detail in these works. For a better understanding of the application of
the finite element method for solving a parabolic equation in the ground-
water system, it is important to investigate the mathematical and numer-
ical aspects of the techniques for ensuring smooth and stable solutions.

In earlier studies, Galerkin approximations with error and continu-
ity analyses were performed for general second-order parabolic partial
differential equations [2, 10]. The norm error estimates for semidiscrete
Galerkin finite element methods for parabolic problems were analyzed
as well [14]. In that study, a fully discrete approximation of the solu-
tions of diffusion equations was presented to investigate the density or
concentration of fluids in fissured media. Convergence of the method
was proved in addition to the numerical experiments to confirm theoret-
ical results. In another study, an automatic adaptation of finite element
approximation space with time for the solution of a general class of par-
abolic linear equations was described [7]. In all these analyses, mathe-
matical and numerical investigations were done to establish the finite
element formulations for the class of parabolic partial differential equa-
tions. But, the attempts were not made to implement the formulation
for solving the real-world physical problems described by the parabolic
partial differential equations.

In the present paper, mathematical and numerical analyses are per-
formed to solve a parabolic partial differential equation representing
variably saturated flow in a porous medium. Variational problem formu-
lation is investigated for generating finite element solutions. The growth
estimates and matrix characteristics for the fully discrete method based
on backward Euler formulation are investigated. The backward Euler
formulation is implemented in a computer programme to simulate the
time history of hydraulic heads for variably saturated flow in a porous
medium. The time history of the free surface representing groundwater
table in a porous medium is also located, based on the simulated hy-
draulic heads.

2. Variational problem formulation

The governing equation describing variably saturated flow in the sub-
surface can be written with the initial and boundary conditions (see
Figure 2.1) as follows [1, 3]:

E(ψ)
∂ϕ

∂t
=∇ · [K(ψ)∇ϕ]+ q in Ω× I,
ϕ = ϕd on Γd × I,
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K(ψ)
∂ϕ

∂n
= g on Γn × I,

ϕ(x,0) = ϕ0 in Ω.

(2.1)

Here boundary Γ is divided such that Γ = Γn ∪ Γd (Γn = Neumann bound-
ary, Γd = Dirichlet boundary). The domain Ω is a two-dimensional
bounded region. The time interval I = (0,T), where T is a given time.
The dependent variable ϕ represents hydraulic head in the subsurface
which is the sum of pressure head (ψ) and elevation z. The expression
ϕ(x,0) = ϕ0 gives the distribution of initial hydraulic heads in the do-
main.

Γn

Ω

Γd

Figure 2.1. A domain with boundary conditions.

The nonlinear functions E(ψ) and K(ψ) represent soil-moisture ca-
pacity and hydraulic conductivity in the subsurface. These are evalu-
ated assuming that the value of ψ is known. The actual value of ψ will
be described later. The functions E(ψ) and K(ψ) are used, based on the
empirical formulations as a function of pressure head ψ [1, 15].

For the aforementioned initial boundary value problem (IBVP), some
function spaces are defined to obtain a variational formulation for prob-
lem as described in (2.1). We define function spaces on the domain Ω ⊂
R

2, where R
2 defines a two-dimensional plane, as follows:

L2(Ω) =
{
v : v is defined on Ω and

∫
Ω
v2dx <∞

}
,

H1(Ω) =
{
v ∈ L2(Ω) : ∇v ∈ L2(Ω)

}
,

V =
{
v ∈H1(Ω) : v = ϕd on Γd

}
,

V 0 =
{
v ∈H1(Ω) : v = 0 on Γd

}
.

(2.2)

Here L2(Ω), H1(Ω), and V 0 are Hilbert spaces with the appropriate sca-
lar products.
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Let ϕd be extended to all of Ω. Set ϕ = ϕd +u in (2.1) to obtain homo-
geneity in the Dirichlet boundary conditions as follows:

E(ψ)
∂u

∂t
=∇ · [K(ψ)∇u]+ q̃ in Ω× I,
u = 0 on Γd × I,

K(ψ)
∂u

∂n
= g on Γn × I,

u(x,0) = u0 in Ω,

(2.3)

where

q̃ = q +∇ · (K(ψ)∇ϕd
)−E(ψ)∂ϕd

∂t
. (2.4)

Here u(t) ∈ V 0.
Without loss of generality, we can take ϕ = 0 on Γd and use problem

(2.1) with ϕd = 0. Multiplying (2.1) by a test function v ∈ V 0, integrating
over Ω, and using Green’s formula, we obtain

∫
Ω
E
∂ϕ

∂t
vdΩ =

∫
Γ
K
∂ϕ

∂n
vdΓ−

∫
Ω
K∇ϕ · ∇vdΩ+

∫
Ω
qvdΩ. (2.5)

Therefore, the variational formulation can be defined as follows:
(V) to find ϕ(t) ∈ V 0 such that

(
Eϕ̇(t),v

)
+a
(
ψ;ϕ(t),v

)
=
(
q(t),v

)
+
〈
g(t),v

〉
Γn

∀v ∈ V 0, t ∈ I,(
ϕ(·,0),v) = (ϕ0,v

) ∀v ∈ V 0,
(2.6)

where

a(ψ;v,w) =
∫
Ω
K(ψ)∇v · ∇wdΩ,

(
Eϕ̇(t),v

)
=
∫
Ω
Eϕ̇(t)vdΩ,

(
q(t),v

)
=
∫
Ω
q(t)vdΩ,

〈
g(t),v

〉
Γn

=
∫
Γn
g(t)vdΓ.

(2.7)
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Equations (2.6) give a variational formulation of the original problem.
Therefore, ϕ is a solution of problem (2.1) given by the variational prob-
lem as shown in (2.6). The variational formulation (2.6) can be also re-
written as

a(ψ;ϕ,v) =
(
h(t),v

)
+ 〈g,v〉, (2.8)

where

(
h(t),v

)
=
(
q(t)−Eϕ̇(t),v). (2.9)

3. Discretization in space and time

We consider a triangulation of the domain Ω, that is, we subdivide Ω
into a set Th of nonoverlapping triangles Ki (i = 1,2, . . . ,m) such that

Ω =
⋃
K∈Th

K =K1 ∪K2 ∪ · · · ∪Km. (3.1)

Let V 0
h

be a finite-dimensional subspace of the space V 0 consisting of
piecewise linear functions. We define P1(K) as the space of linear func-
tions on K, that is,

P1(K) = {v : v is a polynomial of degree ≤ 1 on K}. (3.2)

Here

V 0
h =
{
v ∈ V 0 : v|k ∈ P1(k) and v is continuous at the nodes, ∀K ∈ Th

}
.

(3.3)

Let the basis functions for P1(K) of the finite-dimensional subspace V 0
h

of V 0 be {L1,L2,L3, . . . ,LM}.
For Ω ⊂ R

2 and V 0
h as described, the fully discrete analogue of the

variational problem (2.6) can be obtained using backward Euler method
[8]. Let 0 = t0 < t1 < t2 < · · · < tN = T denote a partitioning of I so that
In = (tn−1, tn). Let kn = tn − tn−1 be the time step size. Let the values of
E(ψ) and K(ψ) be evaluated based on the values of ψ at previous time
step n− 1. Using the backward Euler method, the derivative ϕ̇(tn) in (2.6)
can be replaced by the difference quotient (ϕnh − ϕn−1

h )/kn with the dis-
cretization error O(kn). Therefore, the fully discrete variational problem
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(2.6) can be written as follows: to find ϕnh ∈ V 0
h , n = 1,2, . . . ,N, such that

(
E
(
ϕnh −ϕn−1

h

)
,v
)
+ kna

(
ψ;ϕnh,v

)
= kn

(
q
(
tn
)
,v
)
+ kn
〈
g
(
tn
)
,v
〉 ∀v ∈ V 0

h ,(
ϕh(·,0),v

)
=
(
ϕ0,v

) ∀v ∈ V 0
h .

(3.4)

Writing ϕh(x,t) as ϕh(x,t) =
∑M

i=1 ξi(t)Li(x), ξi(t) ∈ R, and taking v = Lj ,
we can write (3.4) in a matrix form as

(
Bn−1 + knAn−1)ξn = Bn−1ξn−1 ± knF

(
tn
)
, (3.5)

where

B =
(
bij
)
, bij =

∫
Ω
E
(
ψn−1)LiLj dΩ,

A =
(
aij
)
, aij =

∫
Ω
K
(
ψn−1)∇Li · ∇Lj dΩ,

F =
(
fi
)
, fi =

∫
Ω
qLi dΩ+

∫
Γn
gLi dΓ.

(3.6)

4. Matrix characteristics

It is necessary to prove certain conditions associated with the variational
problem [8]. The bilinear form a(·, ·) defines the stiffness matrix A. The
conditions associated with the bilinear form and the right-hand side of
(2.8) are the following:

(i) a(·, ·) is symmetric;
(ii) a(·, ·) is continuous, that is, there exists γ > 0 such that |a(v,w)| ≤

γ‖v‖v‖w‖v for all v,w ∈ V 0;
(iii) a(·, ·) is V -elliptic, that is, there exists α > 0 such that a(v,v) ≥

α‖v‖2
v for all v ∈ V 0;

(iv) the right-hand side of (2.8) should be continuous. Let �(v) =
(h,v) + 〈g,v〉 and �(ν) is continuous, that is, there exists Λ > 0
such that |L(v)| ≤Λ‖v‖v for all v ∈ V 0.

Proof of (i). Here

a(ψ;v,w) =
∫
Ω
K(ψ)∇v · ∇wdΩ. (4.1)

Now

a(ψ;w,v) =
∫
Ω
K(ψ)∇w · ∇vdΩ. (4.2)
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Since K∇v · ∇w = K∇w · ∇v, a(ψ;v,w) = a(ψ;w,v). This implies that
a(·; ·, ·) is symmetric.

Proof of (ii). We introduce the scalar products and norm in V 0:

(v,w) =
∫
Ω
K(ψ)∇v · ∇wdΩ,

‖v‖ =
(∫

Ω
K(ψ)∇v · ∇vdΩ

)1/2

.

(4.3)

Here

a(ψ;v,w) =
∫
Ω
K(ψ)∇v · ∇wdΩ. (4.4)

Now

a(ψ;v,v) =
∫
Ω
K(ψ)∇v · ∇vdΩ = ‖v‖2. (4.5)

By Cauchy’s inequality,

a(ψ;v,w) ≤ a(ψ;v,v)1/2a(ψ;w,w)1/2, (4.6)

which can be written as

a(ψ;v,w) ≤ ‖v‖‖w‖. (4.7)

Therefore, a(ψ;v,w) is continuous.

Proof of (iii). As before,

a(ψ;v,v) =
∫
Ω
K(ψ)∇v · ∇vdΩ = ‖v‖2. (4.8)

This implies that a(ψ;v,v) is V -elliptic.

Proof of (iv). Here, �(v) = (h,v) + 〈g,v〉.
By Cauchy’s inequality and the Poincaré inequality, there is a constant

C such that

∣∣(h,v)∣∣ ≤ C‖h‖L2(Ω)‖v‖,∣∣〈g,v〉∣∣ ≤ C‖g‖L2(Γ)‖v‖.
(4.9)
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Therefore,

∣∣�(v)∣∣ ≤ C(‖h‖L2(Ω) + ‖g‖L2(Γ)
)‖v‖ or

∣∣�(v)∣∣ ≤Λ‖v‖. (4.10)

Therefore, �(v) is continuous with Λ = C(‖h‖L2(Ω) + ‖g‖L2(Γ)).

Analysis of matrix B

Here

b(ψ;v,w) =
∫
Ω
E(ψ)vwdΩ. (4.11)

Now

b(ψ;w,v) =
∫
Ω
E(ψ)wvdΩ. (4.12)

Since vw = wv, b(ψ;v,w) = b(ψ;w,v). This implies that b(·; ·, ·) is sym-
metric. It can be written as

b(ψ;v,v) = b

(
ψ;

m∑
i=1

ηiϕi,
m∑
j=1

ηjϕj

)
=

m∑
i,j=1

ηib
(
ψ;ϕi,ϕj

)
ηj = η ·Bη.

(4.13)

Also,

b(ψ;v,v) =
∫
Ω
E(ψ)v2dΩ. (4.14)

From Poincaré’s inequality, there exists a constant C > 0 such that

∫
Ω
v2dΩ ≤ C

∫
Ω
|∇v|2dΩ ∀v ∈ V 0. (4.15)

Since E(ψ) > 0,

∫
Ω
E(ψ)v2dΩ ≤ C

∫
Ω
E(ψ)|∇v|2dΩ > 0 ∀v ∈ V 0. (4.16)

From (4.14) and (4.16), we get that

η ·Bη = b(ψ;v,v) > 0 =⇒ B is positive definite. (4.17)
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The matrix B was proved to be symmetric earlier, so B is a symmetric
positive definite matrix. By the proofs of (i), (ii), and (iii), matrix A is
symmetric positive definite. Therefore, B + knA is a symmetric positive
definite matrix. This implies that all the eigenvalues of B + knA must
be real and positive. For a symmetric positive definite system, conjugate
gradient method is used. In this method, an efficient algorithm is used by
operating on the half of the bandwidth of the symmetric positive definite
coefficient matrix.

5. Growth estimate

With q = 0 and g = 0, a growth estimate is done to prove the reliability of
the finite element formulation. It can be proved that

max
n

∥∥ϕnh −ϕn−1
h

∥∥ ≤ C
∥∥ϕ0
∥∥

√
E

(
1+ log

T

k1

)1/2

. (5.1)

In (3.4), with q = 0 and g = 0, we can write

(
E
(
ϕnh −ϕn−1

h

)
,v
)
+ kna

(
ψ;ϕnh,v

)
= 0. (5.2)

Setting v = tn(ϕnh −ϕn−1
h ), summing over n, and rearranging, we get

N∑
n=1

Etn

∥∥∥∥∥ϕ
n
h −ϕn−1

h

kn

∥∥∥∥∥
2

kn =
N∑
n=1

a
(
ψ;ϕnh −ϕn−1

h ,knϕ
n−1
h

)
. (5.3)

Since a(·; ·, ·) is continuous, for a constant γ > 0,

a
(
ψ;ϕnh −ϕn−1

h ,knϕ
n−1
h

) ≤ γ∥∥ϕnh −ϕn−1
h

∥∥∥∥knϕn−1
h

∥∥. (5.4)

Since ‖ϕnh −ϕn−1
h ‖ ≤ ‖ϕ0‖ and ‖ϕn−1

h ‖ ≤ ‖ϕ0‖,

a
(
ψ;ϕnh −ϕn−1

h ,knϕ
n−1
h

) ≤ γkn∥∥ϕ0∥∥2
. (5.5)

Substituting (5.5) in (5.3), we get

(
N∑
n=1

Etn

∥∥∥∥∥ϕ
n
h −ϕn−1

h

kn

∥∥∥∥∥
2

kn

)1/2

≤ C∥∥ϕ0∥∥, C =
√
γkn. (5.6)
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Now

N∑
n=1

∥∥∥∥∥ϕ
n
h −ϕn−1

h

kn

∥∥∥∥∥kn (5.7)

can be written as

N∑
n=1

∥∥∥∥∥ϕ
n
h −ϕn−1

h

kn

∥∥∥∥∥kn =
N∑
n=1

{√
E

∥∥∥∥∥ϕ
n
h −ϕn−1

h

kn

∥∥∥∥∥
√
kntn

}√
kn
Etn

. (5.8)

Then, by Cauchy’s inequality,

N∑
n=1

∥∥∥∥∥ϕ
n
h −ϕn−1

h

kn

∥∥∥∥∥kn ≤
(

N∑
n=1

Etn

∥∥∥∥∥ϕ
n
h −ϕn−1

h

kn

∥∥∥∥∥
2

kn

)1/2(
1√
E

)( N∑
n=1

kn
tn

)1/2

.

(5.9)

From (5.6) and (5.9), we get

N∑
n=1

∥∥∥∥∥ϕ
n
h −ϕn−1

h

kn

∥∥∥∥∥kn ≤ C
∥∥ϕ0
∥∥

√
E

(
N∑
n=1

kn
tn

)1/2

. (5.10)

The last summation term in (5.10) can be expressed as

N∑
n=1

kn
tn

≈
∫T

0

1
t
dt =

∫ t1
0

1
t
dt+

∫T
t1=k1

1
t
dt. (5.11)

By approximating
∫ t1

0 (1/t)dt ≈ 1, we can write

N∑
n=1

kn
tn

≤ 1+ log
T

k1
. (5.12)

Therefore, (5.10) can be written as

N∑
n=1

∥∥∥∥∥ϕ
n
h −ϕn−1

h

kn

∥∥∥∥∥kn ≤ C
∥∥ϕ0
∥∥

√
E

(
1+ log

T

k1

)1/2

, (5.13)
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from which we get that

max
n

∥∥ϕnh −ϕn−1
h

∥∥ ≤ C
∥∥ϕ0
∥∥

√
E

(
1+ log

T

k1

)1/2

. (5.14)

Similarly, following a stability estimate, the time step control can be
adopted as follows [4].

Suppose that δ > 0 is a given tolerance and suppose that we want the
discrete solution ϕh(t) to satisfy

max
t≤tN

∥∥ϕ(t)−ϕh(t)∥∥ ≤ δ. (5.15)

The time step kn can be chosen so that, for n = 1,2, . . . ,N,

knmax
t∈I

‖ϕ̇‖ ≈ δ

C
. (5.16)

It is assumed that the size of the constant is known approximately (up
to, say, a factor 2). The above condition can be replaced by the condition

∥∥ϕnh −ϕn−1
h

∥∥ ≈ δ

C
. (5.17)

Based on the above conditions, an algorithm can be adopted for choosing
kn, assuming that ϕn−1

h has been computed.

6. Examples to evaluate numerical characteristics

Two numerical examples are described to demonstrate the application
of the variational finite element analysis to simulate the hydraulic heads
and free surface in a porous medium. The analytical solutions are ob-
tained for the two-dimensional example problems using some simplify-
ing assumptions. The following assumptions are considered:

(i) the domain is assumed to be rectangular in shape;
(ii) the medium is assumed to be homogeneous and isotropic;
(iii) the hydraulic conductivity is assumed to be constant with an ef-

fective value for the medium.
Based on the above assumptions, the governing equation can be written
as

∂ϕ

∂t
= α∆ϕ+ q for ϕ ∈ C2(Ω)∪C1(Γ). (6.1)

Here α = K/E. Two analytical solutions are obtained for different
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z

(0,M)
(L,M)

(0, 0) (L, 0)
x

Figure 6.1. Computational domain for the example problems.

(0, 0) (15, 0)

(0, 20) (15, 20)

Figure 6.2. Finite elements in the computational domain.

boundary conditions in a rectangular domain as shown in Figure 6.1.
The method of separation of variables is used to derive the analytical
solution for both problems. For the finite element solutions, the domain
is discretized using triangles as shown in Figure 6.2. The hydraulic con-
ductivity is assumed to be 1 ft/d and the storage term is assumed to be
0.025.

6.1. Example 1

In the first example, Dirichlet boundary conditions are used on all sides
of the rectangular domain (Figure 6.1). The boundary conditions are

ϕ(0,z, t) = f1(z), 0 < z <M, t > 0,
ϕ(x,0, t) = f2(x), 0 < x < L, t > 0,
ϕ(L,z, t) = f3(z), 0 < z <M, t > 0,
ϕ(x,M,t) = f4(x), 0 < x < L, t > 0.

(6.2)
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Here, f1(z), f2(x), f3(z), and f4(x) can be expressed as follows:

f1(z) = a+ b
z

M
,

f2(x) = a+
bx

L

(
1− x

L

)
,

f3(z) = a+ c
z

M
,

f4(x) = a− bx
L

(
1− x

L

)
,

(6.3)

where a,b,c,d ∈ R.
Using the method of separation of variables, the solution for the hy-

draulic head ϕ(x,z, t) for the Dirichlet problem is written as

ϕ(x,z, t) =
∞∑
n=1

[ ∞∑
m=1

Kmn(t)sin
mπz

M
+w(z)

]
sin

nπx

L
+ ζ(x,z), (6.4)

where

Kmn(t) =
∫ t

0
e−αλmn(t−τ)qmn(z,τ)dτ + ge−αλmnt,

qmn =
2
M

∫M
0
q̂sin

mπz

M
dz, m = 1,2,3, . . . ,

q̂ = q̃−αλnw(z), n = 1,2,3, . . . ,

q̃ =
2
L

∫L
0
qsin

nπx

L
dx, n = 1,2,3, . . . ,

λn =
(
nπ

L

)2

, n = 1,2,3, . . . ,

λmn = λm +λn, m = 1,2,3, . . . , n = 1,2,3, . . . ,

λm =
(
mπ

M

)2

, m = 1,2,3, . . . ,

g =
2
M

∫M
0
u0 sin

mπz

M
dz, m = 1,2,3, . . . ,

u0 = v0 −w(z), v0 =
2
L

∫L
0

(
ϕ0 − ζ(x,z))sin

nπx

L
dx,
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ζ(x,z) = a+ b
z

M

(
1− x

L

)
+ c

xz

LM
,

w(z) =
(

1− z

M

)
v(0, t) +

z

M
v(M,t),

v(0, t) =
2
L

∫L
0

(
f2(x)−a

)
sin

nπx

L
dx,

v(M,t) =
2
L

∫L
0

(
f4(x)−a− b

(
1− x

L

)
− cx

L

)
sin

nπx

L
dx.

(6.5)

The results obtained for both the numerical and analytical solutions at
(x,z) = (7.5,10) in the domain for the Dirichlet problem are shown in
Figure 6.3. It is observed that the results obtained from the variational
finite element solutions match well with the analytical solutions for the
Dirichlet boundary conditions.

Time (d)

0 5 10 15 20 25 30

H
yd

ra
ul

ic
he

ad
(f

t)

14

14.5

15

15.5

16

16.5

17

17.5

18

18.5

Analytical
Numerical

Figure 6.3. Finite element and analytical solutions for the Dirichlet problem.

6.2. Example 2

In the mixed problem, both Dirichlet and Neumann boundary condi-
tions are applied on the sides of the two-dimensional rectangular do-
main (Figure 6.1). The boundary conditions used in the mixed problem
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are as follows:

ϕ(0,z, t) = f1(z), 0 < z <M, t > 0,

ϕ(x,0, t) = f2(x), 0 < x < L, t > 0,

ϕx(L,z, t) = f3(z), 0 < z <M, t > 0,

ϕz(x,M,t) = f4(x), 0 < x < L, t > 0.

(6.6)

Here f1(z), f2(x), f3(z), and f4(x) can be expressed as follows:

f1(z) = a+ b
z

M
, f2(x) = c− dx

L
,

f3(z) =
bz

LM
, f4(x) = b− dx

L
.

(6.7)

The initial condition is expressed as follows:

ϕ(x,z,0) = ϕ0, 0 < x < L, 0 < z <M. (6.8)

On using the method of separation of variables, the solution for the hy-
draulic head ϕ(x,z, t) for the mixed problem is written as

ϕ(x,z, t) =
∞∑
n=0

[ ∞∑
m=0

Kmn(t)sin
(2m+ 1)πz

2M
+w(z)

]

× sin
(2n+ 1)πx

2L
+ ζ(x,z),

(6.9)

where

Kmn(t) =
∫ t

0
e−αλmn(t−τ)qmn(z,τ)dτ + ge−αλmnt, m = 0,1,2, . . . ,

n = 0,1,2, . . . ,

qmn =
2
M

∫M
0
q̂sin

(2m+ 1)πz
2M

dz, m = 0,1,2, . . . ,

q̂ = q̃−αλnw(z),

q̃ =
2
L

∫L
0

[
q− αbz

L2M

]
sin

(2n+ 1)πx
2L

dx, n = 0,1,2, . . . ,

λn =
(
(2n+ 1)π

2L

)2

, n = 0,1,2,3, . . . ,



392 Variational analysis for simulating free-surface flows

λmn = λm +λn, m = 0,1,2, . . . , n = 0,1,2, . . . ,

λm =
(
(2m+ 1)π

2M

)2

, m = 0,1,2,3, . . . ,

g =
2
M

∫M
0
u0 sin

(2m+ 1)πz
2M

dz, m = 0,1,2, . . . ,

u0 = v0 −w(z), v0 =
2
L

∫L
0

(
ϕ0 − ζ(x,z))sin

(2n+ 1)πx
2L

dx,

ζ(x,z) = a+ b
z

M

(
1− x2

2L2

)
,

w(z) = v(0, t) +
z2

2M
vz(M,t),

v(0, t) =
2
L

∫L
0

(
f2(x)−a

)
sin

(2n+ 1)πx
2L

dx,

vz(M,t) =
2
L

∫L
0

[
f4(x)− b

M

(
1− x2

2L2

)]
sin

(2n+ 1)πx
2L

dx,

n = 0,1,2, . . . .

(6.10)

The results obtained for both the numerical and analytical solutions at
(x,z) = (7.5,10) in the domain for the mixed problem are shown in Figure
6.4. The variational finite element solutions match well with the analyti-
cal solutions for the mixed problem.

6.3. Simulation characteristics

The relative errors ε for the simulations give a relative measure of the
absolute deviation from the exact solution. It is computed as follows:

ε =
∣∣∣∣ϕ−ϕh

ϕ

∣∣∣∣. (6.11)

Here ϕ and ϕh are the analytical and numerical solutions, respectively.
The relative errors for the point (x,z) = (7.5,10) are shown in Figure 6.5.
The variations of errors in other computational points in the domain are
found to be similar. A maximum relative error of less than about 0.5
percent is obtained for the numerical solutions for both the Dirichlet and
mixed problems. It is observed that the errors do not amplify or grow
in an unbounded fashion with time. The relative error ε varies such that
ε <M (here M ≈ 0.005).

As revealed in the analysis of matrix characteristics, the variational
formulation for this problem generated a symmetric positive definite
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Figure 6.4. Finite element and analytical solutions for the mixed problem.

system. Therefore, the eigenvalues λi, i = 1,2,3, . . . , p, where p = num-
ber of nodes, must be real and positive. This was verified numerically
by computing the values for the coefficient matrix using Jacobi itera-
tion [5]. The real positive values are investigated to determine the condi-
tion number (ratio of maximum-to-minimum eigenvalues) which gives
a measure for the rate of convergence of the numerical solution for a
symmetric positive definite system. The condition number is computed
as ℵ = λmax/λmin ≈ 9. The condition number indicates the rate of conver-
gence of the conjugate gradient method because the required number of
iteration varies with

√
ℵ.

6.4. Free surface

The free surface in the domain represents groundwater table in an un-
confined condition. The solution of the variably saturated flow equa-
tion generates the time-varying free surface in the domain. In a porous
medium, the free surface separates the unsaturated and the saturated
zones. The free surface is located where the pressure head is zero. From
the solution of the hydraulic heads, the pressure heads are obtained by
subtracting the elevation head at the finite element grid points in the do-
main. The contour with zero-pressure head represents the free surface or
the groundwater table in a porous medium. The locations of the free sur-
face at different times for the Dirichlet and mixed problems are shown
in Figures 6.6 and 6.7. The phreatic surface varies with time depend-
ing on the boundary conditions and recharge. In the mixed problem, a
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Figure 6.5. Time-varying relative errors for finite element solutions.
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Figure 6.6. Simulated free surface for the Dirichlet problem at dif-
ferent times.

time-varying Neumann flux (∂ϕ/∂n = 0.001) enters into the right bound-
ary while the hydraulic head (Dirichlet boundary condition) varies with
time on the left boundary. This is depicted by the simulated results in
Figure 6.7.
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Figure 6.7. Simulated free surface for the mixed problem at differ-
ent times.

7. Summary and conclusion

In this paper, variational formulations were developed for the finite el-
ement solutions of a parabolic equation describing variably saturated
flow. The classical backward Euler method was used to obtain a fully
discrete variational problem, which was transformed into a computer
programme for generating time-varying hydraulic heads. The matrix
characteristics and the growth of solutions are examined to establish the
range of validity of the finite element formulation.

A symmetric positive definite system of equations is obtained and
solved for the unknowns. The finite element solutions are compared
with the analytical solutions. The finite element solutions agreed closely
with the analytical solutions. The numerically simulated hydraulic heads
at the grid points helped determine the free surface in the variably sat-
urated flow domain. The successful application and implementation of
the variational finite element analysis are found to be useful to simulate
the variably saturated flow condition in the subsurface.
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