ASYMPTOTICS FOR ORTHOGONAL POLYNOMIALS
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We study the strong asymptotics of orthogonal polynomials with respect to a measure
of the type du/2m + Zf:l A;jé(z — zi), where u is a positive measure on the unit circle T
satisfying the Szeg6 condition and {z; }}?":1 are fixed points outside I'. The masses {A j };°=1
are positive numbers such that Z;ZI Aj < +oo. Our main result is the explicit strong as-
ymptotic formulas for the corresponding orthogonal polynomials.

1. Introduction

Let v be a finite positive measure defined on the Borelian o-algebra of C and concentrated
on the set T U {zx};_,, where I' = {z € C: |z| = 1} and z are such that |z| > 1. The
measure 7 is defined as follows:

‘Ll [e)
v=5+k§Ak8(z—zk), (1.1)

where p is concentrated on I' and is absolutely continuous with respect to the Lebesgue
measure df on [—m,+7], that is,

du(0) =p(6)ds, p=0, pelL'([-m+r],db). (1.2)

The masses {A} ., satisfy

A >0, > Ap<+o, (1.3)
k=1

and §(z — zx) is the Dirac measure supported at the point z.

We denote by {®,(z)} and {¢,(z)} the systems of orthonormal polynomials associated
to the measures v and y/27, respectively.

For ¢ = 1, we denote vp = p/2m + Z£=1Ak8(z — zx), and by {®’(z)} we denote the
system of orthonormal polynomials associated to .
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{D,,} e satisty the following orthonormality relations:

Du(2) =y +---  (yn>0),

1 +m

q)m(z)q)n(z)f)(e)de + Z A Dy (Zk)q)n (Zk) = 8m,m (1.4)

21 Jn k=1

mn=0,1,2,..., z=e",

For the system {¢,},_y, one gets

on(2) =ky2"+ -+ (k,>0),

- , (15)
ZJ om(2pn@p(0)d0 = Sny  mMn=0,1,2,..., 2 = .
Finally we also have the system {®%}, _:
Op(2) =ypz+-o- (y>0),
+7 ¢
i J 0L, () DE)p(0)dO+ S AxDS, (2) D (25) = Sy (1.6)
r k=1

mn=0,1,2,..., z= et

The goal of this paper is the study of the asymptotic behavior of the polynomials ®,(z)
outside I'.

A similar study has been done by Benzine in [2] and Khaldi and Benzine in [6], in
the case of a curve instead of a circle. To prove their results, Benzine and Khaldi imposed
some conditions on the measure v which are difficult to check. In [2, 6] v is concentrated
on EU {z};",, E being a curve.

In the present work, we prove the same result in the case of a circle instead of a curve
with some assumptions on ¥ which are not difficult to check.

To get the asymptotic formula of ®,(z) (Theorem 5.4), we prove two intermediate
results, Theorems 5.1 and 5.2. Theorem 5.1 establishes that the coefficients ! of z" of
the polynomials ®¢(z) tend (when £ — ) to the coefficient y, of z" of the polynomials
D,(2).

The new conditions on the measure v, Theorems 5.1 and 5.2, as well as their conse-
quences on the proof of Theorem 5.3 constitute our main contribution with respect to
previous works by Benzine and Khaldi [2, 6].

The asymptotic behavior of the orthogonal polynomials {¢,(z)} has been deeply stud-
ied by Szeg6 [14] and Smirnov [11, 12, 13], when g is absolutely continuous, and by
Akhiezer and Krein [1] and Geronimus [4] if y is not absolutely continuous.

The asymptotic behavior of the polynomials {®%(z)} has been established by Li and
Pan [9] in the case where the measure y is not absolutely continuous, and by Kaliaguine
and Benzine [5] in the case of a curve with y an absolutely continuous measure.
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2. The space H*(G,p)

We denote G = {z € C: |z| >1} U {c0o}. We say that f € H*(G) if f is analytic in G and
Je, 1 f(2)|*ldz] < C, r>1,C, = {z€ C: |z| = r}, and C is a constant independent of .

In what follows, we suppose that the weight function p (which defines the measure y)
belongs to the Szego class, that is,

p=0, p €L ([-m,+nr],db), log(p) € L' ([—m,+m],d0). (2.1)

This allows us to construct the so-called Szego function D associated with the domain G
and weight function p:

D(w) = exp {i J n10g (p(6) 2* ¢

4 ) _n w—e it

dt} (lwl >1) (2.2)

such that

DeHX(G), D(z)#0, D(w)>0, |D(e?)|*=p(6),

(a.e. on [—m,+7]), 23)

where D is the angular limit of D. We say that f € H2(G,p) ifand only if f(z) is analytic in
Gand (f - D) € H%(G). Finally, the space L*(T,p|d£]) is the space of functions f defined
on the unit circle T, with values in C and for which [ | f(e/)|2p(0)d < +co. Let f and
g bein L*(T,p|dé]), we define

1 (" R
(foghiapan =5 | f g p(©)ds,

”f”]zf(l",pldfl) = (faf)Lz(l",p\d{\b

(2.4)

then (L*(T,pldé&]), Il - |l 12(r,plde))) is a Hilbert space. We summarize the basic properties of
the space H2(G,p) in the following theorem and lemma.

THEOREM 2.1 [5]. Let f € H*(G,p). Then f has a.e. in T an angular limit which is denoted
by f, f(e?) =1lim,_ s f(z). Moreover,

(1) f € LT, pldEl),
(2) (H*(G,p), |l - ) is a Hilbert space, where

IFI15 = Cf e
~ 1 tro —
<f’g>p = <f’g>L2(F,p\dE|) = o J:ﬂ f(elo)g(e'e)P(e)dH
for f € HX(G,p) and g € H*(G,p),

(3) if f € H%(G,p), then for every compact set K C G, there is a constant C(K) (C(K)
depends only on K) such that

(2.5)

sup | f(2)| < CLK)II fl,. (2.6)

zeK
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LemMma 2.2 [5, page 35]. Let { f,} be a sequence of functions from H*(G,p) and
(1) fu — f uniformly on the compact sets of G,
(ii) I full, < M (constant).

Then f € H*(G,p) and || f|l, < liminf || £, [| ..

3. The set of measures A

3.1. Definitions. We will give in this part the new conditions on the discrete part of
the measure v which allows us later to get the asymptotic formula of the orthonormal
polynomials {®,(z)}.

We need to introduce some notation. The *-transform (P,)*(z) of a polynomial P, (z)
of degree n is defined as

(P0)"(2) :ann<%>- (3.1)

Definition 3.1. Say that the measure v = p/2m + > AkS(z — zx) belongs to the class A
(and v € A) if the absolutely continuous part y/27 satisfies the Szegd condition and if the
discrete part X5, AxS(z — zx) of v satisfies

§(|2k|—1)<+°°, (3.2)
m#'i_l > | (@) *(ze41)|? forl=0,1,2,..., (3.3)

where
(@%)"(2) = (¢n) " (2). (3.4)

Condition (3.2) guarantees the convergence of the Blaschke product B (z) associated

to the points {zx};” ;:
2
z—z |z]
zzrk—1 zx

Bu(z)=]] (3.5)
k=1

As an example of families of points and masses satisfying condition (3.3), we can take
the subsequences of the points {z;};, and the masses {Ax};_, of the following form:

11° 1317
{Zk eC: |Zk| = l+p}k=l, {Ak = ?}k:l. (3.6)

Such a choice is possible since limg_o((|zx|*> —1)/Ax) = +o and the sequence
{(®9)*(2)};>, is uniformly bounded in |z| < 1/p for

1/n

<1. (3.7)

p = limsup ‘ (P';ci(o)
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On the other hand, the sequence {(®%)*(z)},; (£ > 1) is locally bounded in |z| < 1/7 <
1/p, where

r=ma§{|zj|”}=|a|” (3.8)

1<j

(see [9, pages 66-67]).

4. Extremal properties of the orthogonal polynomials

In this section and the following one, we assume that the measure » belongs to the class A.
We denote by P, the vector space of all polynomials of degree at most #, and by %,,; the
set of monic polynomials of degree exactly equal to n. It is easy to see that the polynomial
(1/yn) Dy, is the optimal solution of the following extremal problem:

2

2
(YL) :‘ y%q)n v=min{llQnII3:Qne@m}=mn(v) (4.1)
with
1l = 5 | 1Qu(e®) P06+ 3 Ax] Qu () | (12)
o k=1

We define p, (v), pn(€), un(p), u(p), u(v), my(p), and m,(€) to be the optimal values of
the extremal problems

() = min{% [ ) Potore

I~ (4.3)
+ ZAk|Zk|2n|1//n(Zk) |2:1/’n = %> Qn e Py, 1//11(00) = 1})
k=1
) 1 '
() = mm{g [ lvate) Ppteras
(4.4)
d 2n 2 Qn
+ZAk|zk| |1//n(zk)| :1//11:27) Qn e Py, y/n(oo):]},
k=1
. 1 + . N
pn(p) = mm{g J |y () | *p(6)d0 : y, = f—n,
(4.5)

Q. € g)na 1[/,[(00) = 1};
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ulp) = inf{% |l @0y € (G, pio) = 1}, (4:6)
) =inf 32 [ 1y () Pp0)d0: y € HA(Gyp), yioo) = 1,
2 )
(4.7)
v(z) =0, k= 1,2,...},
1 ? 1 ’
my(€) = ()/") =‘ W(Df, =min{||Qn||12/Z:Q,, 69)”1} (4.8)

Ve

with

7 4
L Qe p@)d0+ > Al Qulze) |2,
2w ) n
k=1 (4.9)

)= () =[[on] = min flleuf s < 2]

Denote by v, wt, wh, ¥, and y> the optimal solutions of the extremal problems (4.3),
(4.4), (4.5), (4.6), and (4.7), respectively. We are now ready to state the lemmas which we
need in the sequel.

The proof of Lemma 4.1 is trivial.

2
1Qull5, =

1 2

K, "

P

LemMa 4.1. The optimal solutions w°, wt, wh, U, and w*, and the extremal values u,(v),
mn(v)) Un (f), mn(g)» ,Un(P)> and mn(P) Vefif)/

1 ®,(2)

_ 1 95(2) p
Yn 2"

1 ¢a(2)
> 1//11 7 ¢

@ = (4.10)

,“n(v) =my(v), ["n(e) =my(£), ,un(P) = mn(P)

, Y2 =

A

v, (2)

=~

Lemma 4.2 [2]. Let ¢ € HX(G,p) be such that ¢(o0) =1 and ¢(z¢) =0, k= 1,2,..., and
B, the Blaschke product (3.5). Then

Bo € HX(G,p), Bw(0)=1, |Bu(e®)| =17z (4.11)
k=1
with
Bo () = lim B (2), (4.12)
L e H2(G,p). (4.13)

Bo
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LemMa 4.3. The optimal value u(v) verifies the following equality:
2

u) =ulp1) withp =p- (l—[ IZk|>
k=1

Proof. Let ¢ € H*(G,p) be such that ¢(c0) = 1 and verifies

1 +

ulpr) = o lp(e®) | *pi(0)dO

1 +

S |o(e®) |*| Bu () | *p(6)d6.

Now consider the function y = ¢ - B.. Note that

v e HYG,p), w(o)=1,  y(z)=0, k=12,...

Then, considering (4.7),

1 (™ .
ulp) =5 | lo(@)*pi(6)do
l +

|y (e) |*p(0)dO = u(v).

=5 y
Conversely, consider y; € H?(G, p) such that

y1(0) =1, vi(z) =0, k=12,...,

1 (" )
uoy =5 |y () |*p(6)do.

Consider the function

_ v1(2)
 Bu(2)

(Pl(Z)

Lemma 4.2 implies that ¢; € H?(G,p) and ¢;() = 1. Then

1 +

u) ly1(e®) |*p(6)d6

=
e RN O
L7 () 1201008 = (o).

:27'[ 7

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)
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LEMMA 4.4 [2]. For u(v),

© 2
u(v) = ulp) - [1_[ IZkI] , (4.21)
k=1
¥(2) = §(2) - Bo(2), (4.22)

where { and y* are, respectively, the optimal solutions of the extremal problems (4.6) and
(4.7).

5. Main results

THEOREM 5.1. Let v = p/2m + X5 Ak (z — zi), where y is a positive measure whose sup-
port is the unit circle,

ZAk<+OO, A >0,

o (5.1)
D (lak| - 1) <+o0, |z] >1.
k=1
Then
Lim p(€) = i (v), (5.2)
}im yﬁ = Yn- (5.3)
Proof. The extremal property of (1/y%)®%(z) yields
1 2 1 +m 1 0 2
un(v) = <E) =) ﬁq)n(e )| p(6)do
=S} 1 2
+ D Ak | @y (2x)
k=1 "
R St 2
> i —®,(e?) p(0)do + ZAk —®,(z) (5.4)
- | Yn k=1 n
L (71 o] : L e ?
ZE . Ean(e ) P(e)de-FIg:lAk E(Dn(Zk)
2
= (E) = #n(e)
Then
B) L veso. (5.5)

//‘n(g) -
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On the other hand (see (4.3) and (4.4)),

2 2

LI B I S 1 pe
(V) < E E(Dn(e ) 9)d9+]§AJ —flq)n(Zj)
= L7 Lot porae
2 ) Ly "
¢ ] 2 ] 2 (5.6)
DA 5 0u(z) |+ DA Pn(z)
=1 ' In j=t+1 n
1) &
~n@+ () 3 4101
Yu/ jZen
The reproducing kernel polynomial K1, is defined by
Kpi1(2,€) = Z(pk(z Pk(&). (5.7)

k=0

From the reproducing property of K,.11(,z) (see [12]) and the fact that ®%(z) € P, we
get that

1 +

D (zj) = el I D () K1 (e0,2;) p(0)dO. (5.8)

The Cauchy-Scharwz inequality implies that

|t (z;) |

< <$J |(D€ 19 | (6)d9> (%Jn |Kn+1(ei9,zj) |2p(9)d9> (5.9)

1 (™ ,
=on L | Kur1 (e7,2) | *p(0)d0 = Ky (2),2)).

Equations (5.6) and (5.9) imply that (once we remark that p, (£) = 1/(y%)?)

pn(v) < /4,,(6)[1 + > AjK,,H(zj,zj)]

j=e+1

. (5.10)
sw(e)[w sup K1 (2),2) > AJ}
jze+1 j=t+1
or else
w0 _ S
+ sup K1 ( z],zJ Z Aj. (5.11)

pn(6) jzt+l j=t+1
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Using (1.3), (5.5), and (5.11), we obtain

pn(v) < lilglinf[,t,,(f) <limsupu,(€) <pn(v) Vn.
—oo AR

This implies that
}im pn(€) = ua(v) Vn.

Relation (5.3) is a direct consequence of (5.13) once we remark that

THEOREM 5.2. If v € A, then there holds

U|Zk)-

:-\‘:

(5.12)

(5.13)

(5.14)

(5.15)

Proof. We prove (5.15) by induction. We need to introduce some notation. The repro-

ducing kernel polynomial R, is defined by

Ri(z,&) = z D (2)®

In case € = 1, from [8, formula 11, page 61], we have

2

k, ky

(y}) = 1+A1E®}l(zl) “on(z1).
On the other hand,
}(2) - Z"gon( 2) = ~A10}(21) Ky (21,2).

Thus

kn 1 ¢n(z1)

yan ( ) 1+A1K (Zl,Zl)

and (5.17) implies that

2
k) _y, Ao
Yn 1+AK,(21,21)

Then by using the Christoffel-Darboux formula, we have

(kn>2 ETiE
R ..
Y (1217 =1)/A1 | @a(z1) |7+ 1= | (@n) " (21)/u(21) |

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)
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Taking (3.3) and (3.4), for I = 0, we get that

[ (pn) " (21) |

IA

(5.22)

Thus, (5.21) and (5.22) imply that

2
(I;T) <|al” (5.23)

n

We assume the relation (5.15) to be true for the index £.
Note that the orthonormality of ®¢(z) yields (on writing ®4"(z) = (y§t1/y%) ®4(z) +
p(z), withp e P,)

1 o 0+1 0+1 Yfl+1
ol q> (z) - DE(z)p(0)dO + ZiA JOL (/) D4 (2) = v
] n

(5.24)

On the other hand, the orthonormality of ®%(z) yields (on writing ®(z) = (y%/
yerH @4 (2) + q(z), with g € P,,_1)

n
%J Q4 (2) - DE(2)p(6) d0+ZA DL (2)) D8 (2;)
j=1
1 o+1
— | OYN(z)- DL(2)p(0)dO+ > A; DL (z;) DL (z;
G e AU EUE 5o
—Ag+1CI)f,+1(Zg+1)®fl(Zg+1)
€ _
_VHI A€+ICD (Z€+1)(D$(Z€+1)-
So we have
Vi y£+1+A D (20,1 ) DE (2041). (5.26)
Yf;“ = Yn e+1 9L, (Ze+1) P 2e41 )5 .
and finally
b\ (k) -
<y$jl> :<y;;) [1+Ag+1y’;jlq>f“( 1) - q)f;(zm)}. (5.27)

As in the proof of [8, Corollary 5], by the reproducing property of the kernel R (z,&),
and using a similar Christoffel-Darboux formula (we consider here ®2!, ®¢, and RL(z,¢)
instead of @, ¢,,, and K,,(z,&) in [8], respectively), we get that

0+1
O (2) - (yy )@‘f( ) = —Ap1 5 (z41) * R (241,2). (5.28)

n
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Letting z = z¢4 in (5.28) gives

4 q)é’

Thus, (5.27) and (5.29) imply that

IS
yflJrl yﬁ 1/(A€+1) +R£, (Z€+1)Z€+1)

(%) [H(!zm (el =]

This, with (3.3), implies that

2

TaEOREM 5.3. Consider a measure v of the form

Me

_# _
V= o + AkS(Z Zk)

k=1

such thatv € A. Then
lim p (v) = p(v).

Proof
(A) An upper bound of limsupu,(v). Ifv € A, then

()

2

< <§[1 |zk|>2 Vn, VE.

Since

we have that

¢ 2
,Un(e) S.“n(,o)[n |Zk|] .

k=1

1 +A€+1R£1 (Z€+1)Z€+1) '

)

Ky ¢
(m) S( 'Zf"2>(”|zf+1|21)=ﬂ|2f|2-
Vn j=1 j=1

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)
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Hence, taking limit when ¢ tends to infinity and using Theorem 5.1,

0 2
un(v) < pn(p) [ [ 1121 } . (5.37)
k=1
On the other hand, it is well known that (see [3, 7, 12])
. 1 . .
Jim 37 = Jim un(p) = lim m(p) = p) = (D(e))’, (5.38)
and by Lemma 4.4,
w0 2
limsup p,(v) < u(p) [ |BNES |} =u(v). (5.39)
n—eo k=1

(B) A lower bound of liminf,, .., (v). We will present two proofs of this affirmation.

(B1) First proof. For extremal functions y,°, the relation (5.39) leads to
||1//,‘1’°||/2) < M = constant. (5.40)
Inequality (5.40) and Theorem 2.1 imply that
sup | v’ (z)| < C(K)M = constant. (5.41)
zeK
For every compact set K C G, put
V =liminf [y, (5.42)
then for some subsequence {[|y;°[l,}nea, V = limeuep) ly; [l < +oo0. From (5.41), we de-
duce that {y;° } ,ea is a normal (or Montel) family in G. Therefore, we can find a function
¢ that is the uniform limit (on the compact subsets of G) of some subsequence {y;°} pen,
of {y,°}nea (see[10]). From Lemma 2.2, we get that
lpl? < liminf ||y2[|2 = liminf||ly2]5 ¢ € HX(G,p). (5.43)
n—oo(nei) P n—oo P
Inequality (5.43) with the definition of y,(v) imply that

lpll2 < liminf (7). (5.44)

On the other hand, it is obvious that ¢(c0) = 1, and (5.39) implies that

> A | D(z) | "y (zx)|* < M = constant. (5.45)
k=1
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Since |zx| > 1, then lim,_ ¥ (zx) = 0, so we have ¢(zx) = 0, k > 1. Finally, from
(5.44), we get that

uv) < IIgollf, < ligll}io?fyn(v). (5.46)
(B2) Second proof. Using (5.5), we have that
Un(v) = pp(€) VE€>0. (5.47)
It is well known [5, pages 40—43] that

lim p, (€) = u(f), (5.48)

n— oo

where

we) = mf{% j [y () |°p(8)d6: y € H*(G,p), y(w) =1,

(5.49)
y(zx) =0, k= 1,2,...,3}.
We also have (see [5, Lemma 4.2])
¢ 2
u(e) =u(p)[1_[ IZkI] . (5.50)
k=1
We then obtain that
¢ 2
li{lllié}lf‘un(v) > u(p) [ 1_[ | zk |} Ve >0. (5.51)
k=1
Finally, by using (4.21), we obtain that
~ 2
liminf 1, (v) = p(p) [ [Tz ] = u(v). (5.52)
k=1 (Il

Next, we state the asymptotic formula of the orthonormal polynomials {®,(z)}
THEOREM 5.4. Consider a measure v of the form
y="t 4 > Akd(z—z) (5.53)

2 P}

such that v € A, and {®,(z)},_, is the system of orthonormal polynomials associated to v
which is satisfying relations (1.4). Then

lim [y -y, =0, (5.54)
. D, (z) = z a1
lim =2 (ﬂ Gm-1 )ﬁ (55
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uniformly for every compact subset of {z € C: |z| > 1}. y> and y* are, respectively, the

optimal solutions of the extremal problems (4.3) and (4.7).

Proof. Set
H, = %(vf:" +y%),
then
H,() =1, 11i_11010H,,(zk)=0, k=1,2,....
This implies that

liminf ||H, [, > u(v).
Using the parallelogram law in H2(G, p), we obtain that

llya ==l =2( 1yl + llw=1ly) = 4l Hlly.

Hence

limsup| |y —y |l < 2(4(v) +4(v)) ~ 4u(») = 0

so that

lim [y — [} = 0.

n—oo

There remains the asymptotic formula (5.55). Recall that

V= 2
z
Y™ (2) = §(2) - Bo(2) = §/(2) - ]_[ ZZZk _zkl |szk|
It is not difficult to show that
~. . D(c0)

Let K C {z € C: |z| > 1} be a compact set. Theorem 2.1 implies that

0 2
lim 3 Max ‘iq)n(Z) ~ D(e) Z-% | 2 |
n—oo Yn 2" D(z) 72z—1 z

cexff-o

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)



52 Asymptotics for orthogonal polynomials off the circle

On the other hand, we know that (see Theorem 5.3, Lemma 4.4, and [12])

2
() =) Jmp o) =p0) =) (HIZkI)

Vn (5.65)

We obtain
lim — = (]‘[ |zk|>(D(oo)). (5.66)

To get the asymptotic formula (5.55), we use (5.64) and (5.66) and the fact that

(a0 -(ma) (g2 oo

k=1
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