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The present work is concerned with unsteady two-dimensional laminar flow of an incom-
pressible, viscous, perfectly electrically conducting fluid past a nonisothermal stretching
sheet in the presence of a transverse magnetic field acting perpendicularly to the direction
of fluid. By means of the successive approximation method, the governing equations for
momentum and energy have been solved. The effects of surface mass transfer fω, Alfven
velocity α, Prandtl number P, and relaxation time parameter τ0 on the velocity and tem-
perature have been discussed. Numerical results are given and illustrated graphically for
the problem considered.

1. Introduction

Important aspects of biophysics have been derived from physiology, especially in studies
involving the conduction of nerve impulses. It is known that the extracellular fluid has
a high concentration of positively charged sodium ions (Na+) outside the neuron cell,
and a high concentration of negatively charged chloride (Cl−) as well as a lower concen-
tration of positively charged potassium (K+) inside. A peculiar characteristic of all living
cells is that there is always an electric potential difference between the outer and inner
surfaces of the cell surrounding membrane. A potential called resting potential, which
usually measures−75 mV occurs, the minus sign indicating a negative charge inside. The
stimulation of the cell by any physical effect (heat, electric current, light, etc.) causes a
nerve impulse; subsequently, sodium ions are pumped into the cell, potassium ions are
pumped out, and the cell membrane reaches a depolarization stage at which the electric
signals are transmitted from one cell to another when the action potential is conducted at
speeds that range from 1 to 100 m/s, so that the impulse moves along the fiber [7]. (The
Nobel Prize for physiology or medicine was awarded in 1963 for formulating these ionic
mechanisms involved in nerve cell activity.) The extracellular fluid can be considered a
perfect conducting fluid [4].

Many metallic materials are manufactured after they have been refined sufficiently in
the molten state. Therefore, it is a central problem in metallurgical chemistry to study the
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heat transfer on liquid metal which is a perfect electric conductor. For instance, liquid
sodium Na (100◦ C) and liquid potassium K (100◦ C) exhibit very small electrical recep-
tivity, (ρL (exp)= 9.6× 10−6Ω cm) and (ρL (exp)= 12.97× 10−6Ω cm), respectively.

The classical heat conduction equation has the property that the heat pluses propagate
at infinite speed. Much attention was recently paid to the modification of the classical
heat conduction equation, so that the heat pluses propagate at finite speed. Mathemati-
cally speaking, this modification changes the governing partial differential equation from
parabolic to hyperbolic type, and thereby eliminating the unrealistic result that thermal
disturbance is realized instantaneously everywhere within a fluid. Cattaneo [1] was the
first to offer an explicit mathematical correction of the propagation speed defect inherent
in Fourier’s heat conduction law. Puri and Kythe [8] investigated the effects of using the
Maxwell-Cattaneo model in Stokes’ second problem for a viscous fluid and they note that
the nondimensional thermal relaxation time τ0 defined as τ0 = CP, where C and P are,
respectively, the Cattaneo and Prandtl numbers, respectively, is of order (10)−2.

Continuous surfaces are surfaces such as those of polymer sheets or filaments contin-
uously drawn from a die. Boundary layer flow on continuous surfaces is an important
type of flow occurring in a number of technical processes. Sakiadis [9] introduced the
continuous surface concept. Crane [2] considered a moving strip, the velocity of which is
proportional to the local distance. The heat and mass transfer on a stretching sheet with
suction or blowing was investigated by P. S. Gupta and A. S. Gupta [6]. Dutta et al. [3]
studied the temperature distribution on the flow over a stretching sheet. The Newtonian
fluid flow behavior was assumed by these authors (see [2, 3, 6]).

Our aim in this paper is to study the heat transfer to a viscous, perfectly electrically
conducting fluid from a nonisothermal stretching sheet with suction or injection in the
presence of a transverse magnetic field when the medium is taken as a perfect conductor.

2. Formulation of the problem

The basic equations that govern unsteady two-dimensional flow of viscous fluid in rect-
angular Cartesian coordinates xyz with the velocity vector V = [u(x, y, t),v(x, y, t),0] in
the presence of an external magnetic field are

(i) continuity equation

∇·V= 0; (2.1)

(ii) momentum equation

ρ
DV
Dt

=−∇p+µ∇2V + J∧B; (2.2)

(iii) generalized equation of heat conduction

ρCp
D

Dt

(
T + τ0

∂T

∂t

)
= λ∇2T +µ

(
Φ+ τ0

∂Φ

∂t

)
, (2.3)

where T is the temperature, p the pressure, ρ the density, µ the dynamic viscosity, CP
the specific heat at constant pressure, λ the thermal conductivity, J the current density,
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Figure 2.1. Coordinate system for the physical model of the stretching sheet.

B = µ0H0, being the electromagnetic induction, H0 the magnetic field, µ0 the magnetic
permeability, τ0 a constant with time dimension referred to as the relaxation time, Φ the
viscous dissipation function given by

Φ= 2
(
∂u

∂x

)2

+ 2
(
∂v

∂y

)2

+
(
∂v

∂x
+
∂u

∂y

)2

, (2.4)

and the operator D/Dt is defined as

D

Dt
= ∂

∂t
+ (V ·∇). (2.5)

Let a constant magnetic field of strength H0 act in the direction of the y-axis. This pro-
duces an induced magnetic field h and an induced electric field E that satisfy the linearized
equations of electromagnetic, valid for slowly moving media of a perfect conductor [4],

curlh= J + ε0
∂E
∂t

, (2.6)

curlE=−µ0
∂h
∂t

, (2.7)

E=−µ0
(

V∧H0
)
, (2.8)

div h= 0, (2.9)

where ε0 is the electric permeability.
As mentioned above, the applied magnetic field H0 has components (i.e., H0 = (0,

H0,0)). It can be easily seen from the above equations that the induced magnetic field
has components (i.e., h = (h1,h2,0)), and the vectors E and J will have nonvanishing
components only in the z-direction, that is,

E= (0,0,E), J= (0,0, J). (2.10)

We consider the flow past a wall coinciding with plane y = 0, and the flow is confined
to y > 0. Keeping the origin fixed, the wall is stretched by introducing two equal and op-
posite forces along the x-axis (see Figure 2.1). With the usual boundary layer assumption,
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(2.1), (2.2), (2.3) and (2.6), (2.7), (2.8), (2.9) reduce to the following form:

∂u

∂x
+
∂v

∂y
= 0, (2.11)

∂u

∂t
+u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+
α2

H0

(
∂h1

∂y
− ∂h2

∂x
−µ0ε0H0

∂u

∂t

)
, (2.12)

∂T

∂t
+u

∂T

∂x
+ v

∂T

∂y
= λ

ρCp

∂2T

∂y2
+

ν

Cp

(
1 + τ0

∂

∂t

)(
∂u

∂y

)2

− τ0
∂

∂t

(
∂T

∂t
+u

∂T

∂x
+ v

∂T

∂y

)
,

(2.13)

∂h1

∂t
=H0

∂u

∂y
, (2.14)

∂h2

∂t
=−H0

∂u

∂x
, (2.15)

where ν is the kinematics viscosity and α is the Alfven velocity given by α2 = µ0H
2
0 /ρ.

The boundary and initial conditions imposed on (2.5), (2.6), and (2.7) are

y = 0 : u=Dx, v =V0, t = 0,

y = 0 : T −T∞ = T0x
m, t = 0,

y = 0 : u=Dxeωt, v =V0e
ωt, t > 0,

y = 0 : T −T∞ = T0x
meωt, t > 0,

y −→∞, u−→ 0, T −→ T∞,

(2.16)

where D > 0 and ω are constants, V0 is the velocity condition at the surface, T0 the mean
temperature of the surface, T∞ the temperature condition far away from the surface, and
m the power law exponent [10].

Eliminating h1 and h2 between (2.12), (2.14), and (2.15) and taking into account the
boundary layer approximations, equation (2.12) yields

(
1 +α2µ0ε0

)∂2u

∂t2
+u

∂2u

∂t∂x
+
∂u

∂t

∂u

∂x
+ v

∂2u

∂t∂y
+
∂v

∂t

∂u

∂y
=
(

ν
∂

∂t
+α2

)
∂2u

∂y2
. (2.17)

We introduce the following nondimensional quantities:

x∗ =
√
D

ν
x, y∗ =

√
D

ν
y, t∗ =Dt, h∗1 =

h1

H0
,

h∗2 =
h2

H0
, u∗ = u√

Dν
, v∗ = v√

Cν
, P = ρCpν

λ
,

T∗ = T −T∞
T0

, τ∗0 =Dτ0, α∗ = α√
Dν

, Ec =
√
Dν

T0CP
,

fω = V0√
Dν

, ω∗ = ω

D
, E∗ = 1

H0µ0
√
Dν

E,

(2.18)

where fω is the mass transfer, P the Prandtl number, and Ec the Eckert number. The mass
transfer parameter fω is positive for injection and negative for suction.
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Invoking the nondimensional quantities above, equations (2.11), (2.13), and (2.17)
are reduced to the nondimensional equations, dropping the asterisks for convenience,

∂u

∂x
+
∂v

∂y
= 0, (2.19)

a1
∂2u

∂t2
+u

∂2u

∂t∂x
+
∂u

∂t

∂u

∂x
+ v

∂2u

∂t∂y
+
∂v

∂t

∂u

∂y
=
(
∂

∂t
+α2

)
∂2u

∂y2
, (2.20)

∂T

∂t
+u

∂T

∂x
+ v

∂T

∂y
= 1
P

∂2T

∂y2
+Ec

(
1 + τ0

∂

∂t

)(
∂u

∂y

)2

− τ0
∂

∂t

(
∂T

∂t
+u

∂T

∂x
+ v

∂T

∂y

)
,

(2.21)

where a1 = 1 +α2/c2 and c is the speed of light given by c2 = 1/ε0µ0.
From (2.16), the reduced boundary conditions are

y = 0 : u=Dx, v = fω, t = 0,

y = 0 : T = xm, t = 0,

y = 0 : u=Dxeωt, v = fωe
ωt, t > 0,

y = 0 : T = xmeωt, t > 0,

y −→∞, u−→ 0, T −→ 0.

(2.22)

3. The method of successive approximations

A process of successive approximations [10] will integrate the unsteady boundary layer
equations (2.19), (2.20), and (2.21). Selecting a system of coordinates, which is at rest
with respect to the plate and the magnetohydrodynamic flow of a perfectly conducting
fluid that moves with respect to the plane surface, we can assume that the velocities u, v,
angular velocity ω, and the temperature T possess a series solution of the form

u(x, y, t)=
∞∑
i=0

ui(x, y, t),

v(x, y, t)=
∞∑
i=0

vi(x, y, t),

T(x, y, t)=
∞∑
i=1

Ti(x, y, t),

(3.1)

where ui = 0(εi) is an i-integer and ε is a small number.
Each term in the series (3.1) must satisfy the continuity equation (2.19):

∂ui
∂x

+
∂vi
∂y
= 0 (i= 0,1,2, . . .). (3.2)
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Substituting the series (3.1) into equations (2.20) and (2.21) and setting equal to zero
terms of the same order, one obtains equations for finding components of the series (3.1):

(
∂

∂t
+α2

)
∂2u0

∂y2
− a1

∂2u0

∂t2
= 0, (3.3)

(
∂

∂t
+α2

)
∂2u1

∂y2
− ∂4u1

∂t2∂y2
− a1

∂2u1

∂t2
= u0

∂2u0

∂t∂x
+
∂u0

∂t

∂u0

∂x
+ v0

∂2u0

∂t∂y
+
∂v0

∂t

∂u0

∂y
, (3.4)

∂2T0

∂y2
−P

(
1 + τ0

∂

∂t

)
∂T0

∂t
= 0, (3.5)

∂2T1

∂y2
−P

(
1 + τ0

∂

∂t

)
∂T1

∂t
= P

(
1 + τ0

∂

∂t

){
u0
∂T0

∂x
+ v0

∂T0

∂y

}
−Ec

(
1 + τ0

∂

∂t

)(
∂u0

∂y

)2

.

(3.6)

Combining (3.1) and (2.22), we have the corresponding boundary conditions

y = 0 : u0 = xeωt, ui = 0, i= 1,2, . . . , t > 0,

y = 0 : v0 = fωe
ωt, vi = 0, i= 1,2, . . . , t > 0,

y = 0 : T0 = xmeωt, Ti = 0, i= 1,2, . . . , t > 0,

y −→∞, ui −→ 0, Ti −→ 0, i= 0,1,2, . . . .

(3.7)

In the following analysis, the first two terms in the series solution (3.1) will be re-
tained. It is a known fact that such solution is satisfactory in the phases of the nonperi-
odic motion after it has been started from rest (till the moment when the first separation
of boundary layer occurs) and in the case of periodic motion when the amplitude of os-
cillation is small. Higher-order approximations u3 can be easily obtained in principle.
However, the complexity of the method of successive approximations increases rapidly as
higher approximations are considered. It is also known that the third- and higher-terms
series solutions give small changes in the results, compared with the two-terms series
solutions.

4. Solution of the problem

We suppose that the exact solutions of the differential equations (3.3) and (3.5) are of the
form

u0(x, y, t)= xeωt f ′1 (y), (4.1)

T0(x, y, t)= xmeωtψ1(y), (4.2)

using (3.2), and

v0(x, y, t)=−eωt f1(y). (4.3)
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Then from (3.3) and (3.5) and using (4.1) and (4.2), one obtains the differential equations
of the unknown functions f1(y), ψ1(y) and the corresponding boundary conditions

f ′′′1 − k2
1 f

′
1 = 0,

ψ′′1 −P1ψ1 = 0,

y = 0 : f1 =− fω, f ′1 = 1,

y = 0 : ψ1 = 1,

y −→∞, f ′1 −→ 0, ψ1 −→ 0,

(4.4)

where k2
1 = a1ω2/(α2 +ω) and P1 = ωP(1 +ωτ0).

The solutions of system (4.4) are of the form

f1(y)= 1
k1

(
1− e−k1 y

)− fω, (4.5)

ψ1(y)= e−
√
P1 y. (4.6)

Assuming the solutions of the differential equation (3.4) is of the form

u1(x, y, t)= xe2ωt f ′2 (y), (4.7)

we can obtain an exact solution of (3.6) if we consider the case m= 2:

T1(x, y, t)= x2e2atψ2(y), (4.8)

and using (4.1), (4.2), (4.3), (4.7), and (4.8), one obtains from (3.4), (3.6), and (3.7) the
differential equations for f2(y) and ψ2(y) and the corresponding boundary conditions

f ′′′2 − k2
2 f

′
2 =

k2
2

2ωa1

[
f ′21 − f1 f

′′
1

]
,

ψ′′2 −P2ψ2 = P2

2a

[
2ψ1 f

′
1 −ψ′1 f1

]−E′c f ′′21 ,

y = 0 : f2 = 0, f ′2 = 0,

y = 0 : ψ2 = 0,

y −→∞, ψ2 −→ 0, f ′2 −→ 0,

(4.9)

where

k2
2 =

4a1ω2[
2ω+α2

] , E′c = Ec
(
1 + 2τ0ω

)
, P2 = 2ωP

(
1 + 2ωτ0

)
. (4.10)

Using (4.5) and (4.6), one obtains the solutions of system (4.9):

f2(y)= A1 +A2e
−k1 y +A3e

−k2 y , (4.11)

ψ2(y)= B1e
−
√
P1 y +B2e

−2k1 y +B3e
−(k1+

√
P1)y +B4e

−
√
P2 y , (4.12)
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where

A1 =−A2−A3, A3 =−k1

k2
A2, A2 = k1

[
1− k1 fω

]
2a1ω

(
k2

2 − k2
1

) ,

B1 = P2
√
P1
(
1− k1 fω

)
2ak1

(
P1−P2

) , B2 =− E′ck
2
1

P1−P2
,

B3 =
(
2k1−

√
P1
)
P2

2ak1
(
P1−P2

) , B4 =−
(
B1 +B2 +B3

)
.

(4.13)

From (2.14) and (2.15), by virtue of the transform equation (2.18), we get

∂h1

∂t
= ∂u

∂y
,

∂h2

∂t
=−∂u

∂x
.

(4.14)

Now, from (4.1),(4.7), and (4.14), the components of the induced magnetic field are
given by

h1(x, y, t)= xeωt

2ω

(
2 f ′′1 (y) + εeωt f ′′2 (y)

)
,

h2(x, y, t)=−e
ωt

2ω

(
2 f ′1 (y) + εeat f ′2 (y)

)
.

(4.15)

From (2.6), (2.8), (4.1), and (4.7), by virtue of the transform equation (2.18), the electric
field and the electric current density are given by

E(x, y, t)=−xeωt( f ′1 (y) + εeωt f ′2 (y)
)
,

J(x, y, t)= eωt

2a

[
2
(
f ′1 − x f ′′′1

)
+ εeat

(
f ′2 − x f ′′′2

)]
.

(4.16)

From the velocity filed, we can study the wall shear stress τ, as given by

τ(x, t)= µ
(
∂u

∂y

)
y=0

. (4.17)

Form (3.1), (4.1), (4.5), (4.7), and (4.11), we obtain

τ = µD
(
∂u

∂y

)
y=0
= µDxeωt[− k1 + εeωt

(
k2

1A2 + k2
2A3

)]
. (4.18)
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The local friction coefficient Cf is then given by

Cf = τ

(1/2)µD
. (4.19)

It follows from (4.19) that

Cf = 2xeωt
[− k1 + εeωt

(
k2

1A2 + k2
2A3

)]
. (4.20)

Fourier’s law may write the local heat flux q.
Let q = x2eatq0 + x2eatq1, where q0 and q1 are given by

q0 =− λ

1 + τ0n
Ψ′1(0), q1 =− λ

1 + 2τ0n
Ψ′2(0). (4.21)

The local heat transfer coefficient is given by

q =−λ
(
∂T

∂y

)
y=0

. (4.22)

From (4.3), (4.11), (4.17), (4.21), and (4.22), we obtain

q = λU0

ν

(
T0−T∞

)(∂T
∂y

)
y=0

=−λx2eωt
U0

ν

(
T0−T∞

)[√
P1B1 + 2k1B2 +

(
k1 +

√
P1

)
B3 +

√
P2B4

]
.

(4.23)

The local heat transfer coefficient is given by

h(x, t)= q(x, t)
(T0−T∞)

=−λx2eωt
U0

ν

[√
P1B1 + 2k1B2 +

(
k1 +

√
P1

)
B3 +

√
P2B4

]
.

(4.24)

The local Nusselt number is given by

N(x, t)= h(x, t)
λ

=−x2eωt
U0

ν

[√
P1B1 + 2k1B2 +

(
k1 +

√
P1

)
B3 +

√
P2B4

]
. (4.25)
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Figure 5.1. Effect of surface mass transfer on velocity distribution, where fω = 3.0,1.0,0.0,
−1,−2,−3.
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Figure 5.2. Effect of Alfven velocity α on velocity distribution, where α= 0.6,0.3,0.0.

5. Results and discussion

The velocity profiles for ωt = 1.0, α = 0.2, and for different values of fω are shown in
Figure 5.1. As might be expected, suction ( fω < 0) broadens the velocity distribution and
thickens the boundary-layer thickness, while injection ( fω > 0) thins it. Also, the wall
shear stress would be increased with the application of suction whereas injection tends to
decrease the wall shear stress. This can be readily understood from the fact that the wall
velocity gradient is increased with the increase of the value of fω. The effects of Alfven
velocity α on the velocity profiles are presented in Figure 5.2 for fω = 2, and ωt = 1. In
this figure, the dotted lines represent the solution of this flow, when ω = 0.2, and the solid
lines represent the solution of this flow obtained when ω = 0.5. It can be seen from this
figure that the velocity field increases with the increase of values of the Alfven velocity
parameter α, and an increase in the value of ω leads to a decrease in the velocity.
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Figure 5.3. Temperature distribution for various values of Prandtl number P, where P =
0.7,1.0,2.0,3.0,4.0, 5.0.
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Figure 5.4. Effect of Alfven velocity α on friction coefficient, where α= 0.0,0.2,0.4.

Results for a typical temperature profile are illustrated in Figure 5.3 for various values
of Prandtl number and relaxation time. The thermal boundary layer thickness is more
reduced together with a larger wall temperature gradient when the relaxation time τ0 =
0.02. Also, it is observed that an increase in the value of P leads to a decrease in the
temperature field.

The skin friction coefficient Cf is plotted against x in Figure 5.4 for different values of
α and two values of ω. The effects of Alfven velocity α are observed from Figure 5.4. An
increase in the value of α leads to a decrease in the skin fraction coefficient. Also, the skin
fraction coefficient is found to increase when ω= 0.5 as compared to when ω = 0.2.

The effects of Prandtl number is observed from Figure 5.5. An increase in the Prandtl
number leads to an increase in the local Nusselt number. Also, it can be seen from this
figure that the local Nusselt number increases slowly when τ0 increases.
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Figure 5.5. Local Nusselt number, where P = 0.9,0.7,0.5, versus x.

6. Concluding remarks

The electromagnetic flow has many applications in electric heating, mathematical biol-
ogy, biofluid mechanics, biomedical engineering, and the blood. To study the effect of
the electric field on the particles, we must take another term in the governing equation
(2.2); it will lead to the discussion of the attraction force among the particles suspended
in the fluid (in a forthcoming paper). For liquid metals, the term ε0(∂E/∂t) is usually
negligible.

The generalized thermofluid with one relaxation time based on a modified Fourier
law of heat conduction for isotropic media in the absence of heat sources was developed
in Section 2. This modification allows for so-called second-sound effects in fluid, hence
thermal disturbances propagate with finite wave speeds. This remedies the physically un-
acceptable situation in classical thermofluid that predicts infinite speed of propagation
for such disturbance [5].

In this work, we use a more general model of equations, which includes the relaxation
time of heat conduction and the electric permeability of the electromagnetic field. The
inclusion of the relaxation time and electric permeability modifies the governing thermal
and electromagnetic equations, changing them from parabolic to hyperbolic type, and
thereby eliminating the unrealistic result that thermal disturbance is realized instanta-
neously everywhere within a fluid [10].
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