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This paper deals with feedback stabilization of a flexible beam clamped at a rigid body and
free at the other end. We assume that there is no damping and the rigid body rotates with
a nonconstant angular velocity. To stabilize this system, we propose a feedback law which
consists of a control torque applied on the rigid body and either a dynamic boundary
control moment or a dynamic boundary control force or both of them applied at the
free end of the beam. Then it is shown that the closed loop system is well posed and
exponentially stable provided that the actuators, which generate the boundary controls,
satisfy some classical assumptions and the angular velocity is smaller than a critical one.

1. Introduction

The aim of this paper is to study the stabilization of the system presented in Figure 1.1.
This system, introduced in [2], consists of a disk (D) with an elastic beam (B) attached
to its center and perpendicular to the disk plan (see Figure 1.1). The disk (D) rotates
freely around its axis with a nonconstant angular velocity, and the motion of the beam
(B) is confined to a plane perpendicular to the disk. Such systems arise in the study of
large-scale flexible space structures and are well known as a rotating body-beam system.

To stabilize this system, we propose a feedback law composed of either a dynamic
boundary control force or a dynamic boundary control moment (or both of them) ap-
plied at the free end of the beam while a control torque is present on the disk. With
classical assumptions (see [19, 20]) on the actuator which generates the boundary con-
trols, we prove that for any given angular velocity smaller than a critical one, the beam
vibrations are forced to decay exponentially to zero and the disk rotates with a desired an-
gular velocity. This is important because exponential stability is a very desirable property
for such structures. Additionally, this result permits, on one hand, to have a wide class
of exponentially stabilizing controllers. On the other hand, the dynamic nature of the
proposed boundary controls provides extra degrees of freedom in designing controllers
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Figure 1.1. The body-beam system.

which could be exploited in solving control problems among which are pole assignment,
disturbance rejection, and so on. From a practical viewpoint, one way of implementing
the dynamic controls is to use gas jets at the tip of the beam and control the gas pressure
by a dynamic actuator [19].

The global system is governed by the beam equation (PDE) nonlinearly coupled with
the dynamical angular momentum equation (ODE) of the disk (D), that is,

ρytt +EI yxxxx = ρω2(t)y,

y(0, t)= yx(0, t)= 0,

EI yxxx(l, t)= α1Θ1(t),

−EI yxx(l, t)= α2Θ2(t),

ω̇(t)= Θ3(t)− 2ρω(t)
〈
y, yt

〉
L2(0,l)

Id + ρ‖y‖2
L2(0,l)

,

(1.1)

where the positive constants l, EI , ρ, and Id are, respectively, the length of the beam,
the flexural rigidity, the mass per unit length of the beam, and the disk’s moment of
inertia; where ω(t) is the angular velocity of the disk at time t, while y(·, t) is the beam’s
displacement in the rotating plane at time t. Moreover, α1 and α2 are two nonnegative
constants such that

α1 +α2 �= 0, (1.2)

and Θ1(t), Θ2(t), and Θ3(t) are, respectively, the control force, the control moment, and
the control torque to be determined so that the solution’s energy of the resulting closed
loop system decays to zero in a suitable functional space.

The stabilization problem of the body-beam system has been extensively studied in the
literature. In [2], the authors showed that with structural damping and without control,
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the body-beam system has a finite number of rotating equilibrium states. Later, Bloch and
Titi [3] showed that in the more difficult case of viscous damping, a linear inertial man-
ifold exists for the body-beam system. By taking into account the effect of damping, and
for any constant angular velocity smaller than a critical one, an exponentially stabilizing
feedback torque control law has been given in [24]. In the same case, and by adding a
boundary force control, the system is also stabilizable for any constant angular velocity
[25]. The stabilization problem of similar systems has been studied in [17, 18, 20]. For in-
stance, in [20], the author considered a linear rotating body-beam subsystem, which is a
reduced model of (1.1), by assuming that the angular velocity of the disk is constant, and
thus the angular momentum equation of (1.1) is omitted. In this case, the author pro-
posed dynamic boundary controls at the free end of the beam to obtain an exponential
stabilization result. However, the presence of a force control was there necessary to achieve
exponential stability. Later, for the body-beam system without damping, exponential sta-
bilization was established in [16] as soon as at least one of two boundary controls (force
or moment) is present at the free end of the beam with, in addition, a control torque of the
disk. Recently, it was shown in [9] that the body-beam system without damping can be
asymptotically stabilized by only a nonlinear feedback torque control law. The last result
on this subject was obtained in [7] where the authors propose a wide class of nonlinear
controls to establish the exponential stability of the body-beam system.

The main contribution of this paper is to show that the body-beam system is exponen-
tially stabilized by means of a control torque on the disk and dynamic boundary controls
(force and/or moment) applied at the free end of the beam. To prove this main result,
we first consider a decoupled subsystem and use LaSalle’s principle together with Ing-
ham’s inequality [12] to show the strong stability of the subsystem. Next, the frequency
domain method [11] and a compact perturbation result [22] are used to obtain the ex-
ponential stability of the subsystem. Finally, the exponential stability of the global system
is shown. This generalizes earlier results due to [16, 20]. More precisely, in this work, the
angular velocity of the disk is not assumed to be constant, contrary to [20]. In addition,
we are able to conclude the exponential stabilization even if one only applies a dynamic
control moment at the free end of the beam with of course a control torque on the disk.
This is not the case in [20], since the presence of control force was impossible to cir-
cumvent for the exponential stability. Furthermore, the controls proposed in [16] (static
feedback) can be obtained by deleting the actuator state in our dynamic controls. How-
ever, we forewarn the reader that as in [16], the decay rate, although exponential, is not
uniform.

Now we briefly outline the content of this paper. In Section 2, we propose a dynamic
feedback law satisfying classical hypotheses and we formulate the global closed loop sys-
tem as a standard form of evolution equation. Next, we prove in Section 3 the existence
and uniqueness of solutions for the global system. The key step is to show the well-
posedness of a decoupled subsystem, and then we consider an appropriate Lyapunov
function. Section 4, containing the essential part of the paper, is devoted to establishing
the strong stability and uniform stability of the decoupled subsystem. Finally, we prove
in Section 5 the main result, namely, the exponential stability of the global closed loop
system. Our conclusions are given in Section 6.
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2. Preliminaries and main result

In order to stabilize system (1.1), we propose the following feedback control law as long
as αi �= 0 for i= 1,2:

Θi(t)= cTi wi(t) +diui(t), i= 1,2,

ẇi(t)= Aiwi(t) + biui(t), i= 1,2,

Θ3(t)=−γ(ω(t)−ω∗
)
, for each ω∗ ∈R,

(2.1)

where γ is a positive constant and, for i = 1,2, wi ∈ Rni is the actuator state, Ai ∈ Rni×ni

is a constant matrix, bi,ci ∈Rni are constant column vectors, the superscript T stands for
the transpose, di ∈R is a constant real number, and the input ui(t) is defined as

u1(t)= yt(l, t), u2(t)= yxt(l, t), t ∈R
+. (2.2)

Note that, for i = 1,2, αi = 0 in (1.1) means that the corresponding boundary control
Θi(t) is not applied, and therefore the corresponding controller given by the first two
equations of (2.1) is absent. It is also important to recall that we assume throughout this
paper that α1 and α2 are two nonnegative constants such that α1 +α2 �= 0, that is, at least
one of the dynamic boundary controls in (2.1) is applied.

As in [20] (see also [19]), when αi �= 0, i= 1,2, the following hypotheses are assumed
to be satisfied throughout this paper. For i= 1,2,

(H.I) all eigenvalues of the matrix Ai are in the open left half-plane,
(H.II) the triplet (Ai,bi,ci) is both observable and controllable,

(H.III) di ≥ 0; moreover, there exists a constant γi such that di ≥ γi ≥ 0 and the transfer
function

Gi(s)= di + cTi
(
sI −Ai

)−1
bi (2.3)

satisfies

�{Gi(iµ)
}
> γi, i= 1,2, µ∈R, (2.4)

where � denotes the real part. Furthermore, when di > 0, we assume γi > 0 as
well.

Remark 2.1. (1) Assumption (H.III) implies that the transfer function Gi is a strictly
positive real function for i = 1,2. Now we will give a more explicit description of the
transfer function Gi(·). Indeed, one can write Gi(iµ) = �(µ) + i�(µ), where � denotes
the imaginary part. Then, it follows immediately from (2.3) that for µ sufficiently large,

�(µ)= �
(
µ−1), (2.5)
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where for a function J and for µ sufficiently large, we denote by �(J(µ)) any function
satisfying �(J(µ)) ≤ KJ(µ) for some positive constant K . Furthermore, combining (2.4)
and (2.5) yields

�(µ) > γi, �(µ)−→ γi as µ−→∞. (2.6)

(2) Using the well-known Kalman-Yakubovich lemma, one can conclude that, given
any symmetric positive definite matrix Qi ∈Rni×ni , there exist a symmetric positive defi-
nite matrix Pi ∈Rni×ni and a vector qi ∈Rni such that

AT
i Pi+PiAi =−qiqTi − εiQi,

Pibi− ci
2
=
√
di− γiqi,

(2.7)

for εi > 0 sufficiently small [23].

We now turn to the formulation of the problem. Let

Hn
0 =

{
f ∈Hn(0, l); f (0)= fx(0)= 0

}
for n= 2,3, . . . , (2.8)

and let � be the state space, defined by

�=H2
0 ×L2(0, l)×R

n1 ×R
n2 ×R=�×R, (2.9)

equipped with the following inner product:
〈(
y,z,w1,w2,ω

)
,
(
ỹ, z̃,w̃1,w̃2, ω̃

)〉

=
∫ l

0

(
EI yxx ỹxx + ρzz̃

)
dx+ 2

i=2∑
i=1

αiw̃
T
i Piwi +ωω̃.

(2.10)

Note that the norm induced by this scalar product is equivalent to the usual one of the
Hilbert space H2(0, l)× L2(0, l)×Rn1 ×Rn2 ×R by means of (2.8) and the properties
of the matrix Pi, i = 1,2 (see part (2) of Remark 2.1). Next, setting z(·, t) = yt(·, t) and
Φ(t) = (y(·, t),z(·, t),w1(t),w2(t),ω(t)), the closed loop system (1.1)–(2.1)–(2.2) can be
written into the following abstract form:

Φt(t)=�Φ(t), (2.11)

where � is an unbounded linear operator defined by

�(�)= {
Φ= (

y,z,w1,w2,ω
)∈H4

0 ×H2
0 ×R

n1 ×R
n2 ×R;

−EI yxxx(l) +α1
[
cT1 w1 +d1z(l)

]= 0;

EI yxx(l) +α2
[
cT2 w2 +d2zx(l)

]= 0
}

,

(2.12)

and for Φ∈�(�),

�Φ=
(
z,−EI

ρ
yxxxx +ω2

∗y,A1w1 + b1z(l),A2w2 + b2zx(l),0
)

+ �Φ, (2.13)



112 Dynamic boundary controls of a rotating body-beam

where � is a nonlinear operator in � defined by

�Φ=
(

0,
(
ω2−ω2

∗
)
y,0,0,

−γ(ω−ω∗
)− 2ρω〈y,z〉L2(0,l)

Id + ρ‖y‖2
L2(0,l)

)
∀Φ∈�. (2.14)

The main result of this paper is the following theorem.

Theorem 2.2. Assume that di > 0 whenever the feedback gain αi > 0, for i = 1,2. Then,

for each desired angular velocity ω∗ satisfying |ω∗| < (1/l2)
√

12EI/ρ and for each initial
data Φ0 ∈�(�), the solution Φ(t) of (2.11) exponentially tends to the equilibrium point
(0�,ω∗) in � as t→∞.

3. Well-posedness of the problem

In this section, we study the existence and uniqueness of the solutions of (2.11). First,
consider the following subsystem in the space �=H2

0 ×L2(0, l)×Rn1 ×Rn2 :

φt(t)= Aω∗φ(t), φ(0)= φ0, (3.1)

where Aω∗ is an unbounded linear operator defined by

�
(
Aω∗

)= {
φ = (

y,z,w1,w2
)∈H4

0 ×H2
0 ×R

n1 ×R
n2 ;

−EI yxxx(l) +α1
[
cT1 w1 +d1z(l)

]= 0;

EI yxx(l) +α2
[
cT2 w2 +d2zx(l)

]= 0
}

,

(3.2)

and for φ ∈�(Aω∗),

Aω∗φ =
(
z,−EI

ρ
yxxxx +ω2

∗y,A1w1 + b1z(l),A2w2 + b2zx(l)
)
. (3.3)

One can claim that �=H2
0 ×L2(0, l)×Rn1 ×Rn2 , endowed with the inner product

〈(
y,z,w1,w2

)
,
(
ỹ, z̃,w̃1,w̃2

)〉
� =

∫ l

0

(
EI yxx ỹxx− ρω2

∗y ỹ + ρzz̃
)
dx+ 2

i=2∑
i=1

αiw̃
T
i Piwi,

(3.4)

is a Hilbert space, provided that the assumption |ω∗| < (1/l2)
√

12EI/ρ of Theorem 2.2 is
satisfied. The following lemma concerns the well-posedness of system (3.1).

Lemma 3.1. Assume that |ω∗| < (1/l2)
√

12EI/ρ. Then

(i) the linear operator Aω∗ , defined by (3.2)–(3.3), generates a C0-semigroup of contrac-
tions etA

ω∗ on �=�(Aω∗),
(ii) for any initial data φ0 ∈�(Aω∗), system (3.1) admits a unique strong solution φ(t)=

etA
ω∗φ0 ∈�(Aω∗) for all t ≥ 0 such that φ(·)∈ C1(R+;�)∩C(R+;�(Aω∗)); more-

over, the function t �→ ‖Aω∗φ(t)‖� is decreasing,
(iii) for any initial data φ0 ∈�, system (3.1) has a unique weak solution φ(t)= etA

ω∗φ0 ∈
� such that φ(·)∈ C0(R+;�).



Boumediène Chentouf 113

Proof of Lemma 3.1. (i) Let φ = (y,z,w1,w2) ∈ �(Aω∗). Using the inner product (3.4),
one can obtain after a double integration by parts,

〈
Aω∗φ,φ

〉
� = 2

i=2∑
i=1

αiw
T
i Pi

(
Aiwi + biui(t)

)−EI yxxx(l)u1(t) +EI yxx(l)u2(t), (3.5)

where ui(t) is given in (2.2). From the boundary conditions in (3.2) and the properties
(2.7), it follows that

〈
Aω∗φ,φ

〉
� =−

i=2∑
i=1

αi
(√

di− γiui(t)−wT
i qi

)2−
i=2∑
i=1

αiγiu
2
i (t)−

i=2∑
i=1

αiεiwT
i Qiwi. (3.6)

Therefore, the operator Aω∗ is dissipative. Next, using Lax-Milgram theorem [4], one can
prove that R(I −Aω∗) =�. Thus, Lumer-Phillips theorem implies that Aω∗ generates a
C0-semigroup of contractions etA

ω∗ on �=�(Aω∗).
Claims (ii) and (iii) are direct consequences of semigroups theory [4, page 105]. �

Now we are ready to deal with the global system (2.11).

Lemma 3.2. Assume that |ω∗| < (1/l2)
√

12EI/ρ. Then, for any initial data Φ0 ∈ �, the
closed loop system (2.11) has a unique mild global bounded solution Φ(t)∈�. In return, if
Φ0 ∈�(�), there exits a unique classical global solution Φ(t)∈�(�).

Proof of Lemma 3.2. It is clear that the original system (2.11) can be written as follows:

(
φ(t)
ω(t)

)
t

=
[(

Aω∗ 0
0 0

)
+ �

](
φ(t)
ω(t)

)
, (3.7)

where Aω∗ and � are defined by (3.2)–(3.3) and (2.14), respectively. Since the linear
operator Aω∗ generates a C0-semigroup of contractions etA

ω∗ (see Lemma 3.1) and since
� is continuously differentiable [24], it follows that for any Φ0 = (φ0,ω0) ∈ �, there is
a unique local mild solution Φ(·) = (φ(·),ω(·)) ∈ C([0,T];�) of (3.7), for some T > 0,
given by the variation of constant formula [21]. We now show that this solution is global.
To this end, we define the “energy” function

�(Φ)=
i=2∑
i=1

αiw
T
i Piwi +

1
2
Id
(
ω−ω∗

)2− 1
2
ω2
∗

∫ l

0
ρy2dx

+
1
2

(
ω−ω∗

)2
∫ l

0
ρy2dx+

1
2

∫ l

0

(
ρy2

t +EI y2
xx

)
dx.

(3.8)

We claim that this function is a reasonable choice of Lyapunov function. Indeed, one can
check that there exists a positive constant K such that for all Φ ∈ �, we have �(Φ) ≥
K‖Φ‖2

�, provided that |ω∗| < (1/l2)
√

12EI/ρ. On the other hand, the regularity theorem
[21] implies that each local solution of (3.7), with initial data in �(�), is a strong one.
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Moreover, a straightforward computation leads us to claim that for any initial condition
Φ0 ∈�(�), the corresponding strong solution Φ of (3.7) satisfies

d

dt
�(Φ)=−γ(ω−ω∗

)2−EI yxxx(l)u1 +EI yxx(l)u2 + 2
i=2∑
i=1

αi
〈
Pi
(
Aiwi + biui

)
,wi

〉
,

(3.9)

where ui is given in (2.2). This, together with the boundary conditions of system (2.11)
and the properties (2.7), gives

d

dt
�(Φ)=−γ(ω−ω∗

)2−
i=2∑
i=1

αi
(√

di− γiui−wT
i qi

)2−
i=2∑
i=1

αiγiu
2
i −

i=2∑
i=1

αiεiwT
i Qiwi.

(3.10)

Consequently, � is a Lyapunov function. Hence, the solution of (2.11) stemmed from
Φ0 ∈�(�) exists globally in a classical sense and is bounded. Finally, one can show that
each weak solution exists globally and is bounded. �

4. Stability of the subsystem (3.1)

In this section, we will show that the subsystem (3.1) is exponentially stable on �. To do
so, we first establish the strong stability.

4.1. Strong stability of etA
ω∗ . Using LaSalle’s invariance principle for infinite-dimen-

sional systems [10], we will prove the strong stability of etA
ω∗ . Note that this result has

been obtained in [20] by means of the method of separation of variables. An alternative
proof is given in this subsection by using Ingham’s inequality [12]. First, using the com-
pactness of the canonical embedding i : �(Aω∗)→� and the well-known result of Kato
[13], one can readily show the following lemma.

Lemma 4.1. Assume that |ω∗| < (1/l2)
√

12EI/ρ,

(i) the operator (Aω∗)−1 exists and is a compact one on �,
(ii) the resolvent operator (λI −Aω∗)−1 : �→� is compact for any λ≥ 0, and the spec-

trum of Aω∗ consists only of isolated eigenvalues with finite multiplicity.

We have the following proposition.

Proposition 4.2. Assume that |ω∗| < (1/l2)
√

12EI/ρ and di > 0 when αi > 0 for i = 1,2.

The semigroup etA
ω∗ is strongly stable on �, that is, for any initial condition φ0 ∈�, the

corresponding solution φ(t)= etA
ω∗φ0 of (3.1) satisfies ‖φ(t)‖� → 0 as t→ +∞.

Proof of Proposition 4.2. By a standard argument of density of �(Aω∗) in � and the con-
traction of the semigroup etA

ω∗ , it suffices to prove Proposition 4.2 for any initial data
φ0 ∈�(Aω∗). Let φ(t) = etA

ω∗φ0 be the solution of (3.1). It follows from Lemma 3.1(ii)
that the trajectory of solution {φ(t)}t≥0 is a bounded set for the graph norm and thus
precompact by virtue of Lemma 4.1(ii). Applying LaSalle’s principle, we deduce that
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ω(φ0) is nonempty, compact, and invariant under the semigroup etA
ω∗ , and, in addition,

etA
ω∗φ0 → ω(φ0) as t→ +∞ [10]. In order to prove the strong stability, it suffices to show

that ω(φ0) reduces to zero. To this end, let φ̃0 = ( ỹ0, z̃0,w̃10 ,w̃20 ) ∈ ω(φ0) ⊂�(Aω∗) and
let φ̃(t)= ( ỹ(·, t), ỹt(·, t),w̃1(t),w̃2(t))= etA

ω∗ φ̃0 ∈�(Aω∗) be the unique strong solution
of (3.1). We claim that φ̃(t)= 0, and therefore φ̃0 = 0. To see how this goes, recall that it
is well known that ‖φ̃(t)‖� is constant [10], and thus (d/dt)(‖φ̃(t)‖2

�)= 0, that is,

〈
Aω∗ φ̃, φ̃

〉
� = 0. (4.1)

Without loss of generality, we assume that α1 = 0, α2 > 0 (the case α2 = 0, α1 > 0 is sim-
ilar). This implies, on one hand, that u1 and w̃1 are omitted and, on the other hand,
d2,γ2 > 0 by means of the assumption of Proposition 4.2 and hypothesis (H.III). Com-
bining (3.6) and (4.1), we deduce that w̃2 = 0 and ỹ is a solution of the system

ρỹtt +EI ỹxxxx = ρω2
∗ ỹ,

ỹ(0, t)= ỹx(0, t)= 0,

ỹxx(l, t)= ỹxxx(l, t)= 0,(
ỹ(·,0), ỹt(·,0)

)= (
ỹ0, z̃0

)∈H4
0 ×H2

0 ,

(4.2)

with the additional condition

ỹxt(l, t)= 0. (4.3)

Obviously, to deduce the desired result φ̃(t)= 0, it suffices to show that ỹ = 0 is the only
solution of (4.2)–(4.3). To do so, we will use the same techniques as in [8]. For simplicity,
assume that ρ = EI = l = 1. Then consider on the space L2(0,1) the operator B0 defined
by

B0 = ∂4

∂x4
−ω2

∗I , �
(
B0
)= {

f ∈H4(0,1); f (0)= fx(0)= fxx(1)= fxxx(1)= 0
}
.

(4.4)

It is easy to check that the operator B0 is maximal, monotone, and selfadjoint with com-
pact resolvent on L2(0,1). Hence, B0 admits an infinity of real eigenvalues 0 < λ1 ≤
λ2 ≤ ··· , such that (λn) → +∞ as n→ +∞ and the associated eigenfunctions v1,v2, . . .
form an orthonormal basis of L2(0,1).

Now, we introduce a Hilbert space �∗ =H2
0 ×L2(0,1) with the inner product

〈
(y,z),( ỹ, z̃)

〉
�∗ =

∫ l

0

(
yxx ỹxx−ω2

∗y ỹ + zz̃
)
dx. (4.5)

Next, consider the linear operator A0 associated to system (4.2), namely, A0 =
( 0 I
−B0 0

)
with �(A0) =�(B0)×H2

0 . Clearly, the operator A0 is skew-adjoint with compact resol-
vent on �∗. Moreover, µ∈ σ(A0) if there exists a nontrivial V = (y,z)∈�(A0) such that

B0y =−µ2y, y ∈�
(
B0
)
,

z = µy.
(4.6)
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Consequently, the eigenvalues µn and the associated eigenfunctions of A0 can be de-
duced from those of B0 as follows: µn =±i

√
λn and Vn = (vn,±i√λnvn), for n∈N∗. Ob-

serve that ‖Vn‖2
�∗ = 2λn for any n ∈ N∗. Therefore, in order to have an orthonormal

basis of �∗ and for convenience, we set µn = i
√
λn, µ−n = −i

√
λn, for n ∈ N∗, and Vn =

(1/
√

2λn)(vn,−i√λnvn), V−n = (1/
√

2λn)(vn, i
√
λnvn). Obviously, the solution of (4.2) is

given by

(
ỹ, ỹt

)
(t)=

∑
n∈Z

Cne
−µntVn, (4.7)

where Cn = 〈( ỹ0, z̃0),Vn〉�∗ (for the complexified scalar product in (4.5)), for any n∈ Z∗.
One finds that for n∈N∗, Cn = an + ibn and C−n = an− ibn, where

an = 1√
2λn

∫ 1

0

(
ỹ0xx vnxx −ω2

∗ ỹ0vn
)
dx, bn = 1√

2

∫ 1

0
z̃0vndx. (4.8)

After an easy computation, we get from (4.7) and (4.8),

ỹ(t)=
∞∑
n=1

(
an cos

(√
λnt

)
+ bn sin

(√
λnt

)) √2√
λn

vn, (4.9)

ỹt(t)=
∞∑
n=1

(
− an sin

(√
λnt

)
+ bn cos

(√
λnt

))√
2vn, (4.10)

where the series (4.9) and (4.10) converge in H2
0 and L2(0,1), respectively, uniformly in t.

Following the method used in [8], we will prove that an = bn = 0 for any n= 1,2, . . ., and
thus ( ỹ(t), ỹt(t))= (0,0). Indeed, ( ỹ(0), ỹt(0))= ( ỹ0, z̃0) being in H4

0 ×H2
0 (see (4.2)), one

can claim that

ỹ0 = ỹ(0)=√2
∞∑
n=1

an√
λn

vn ∈H2
0 , z̃0 = ỹt(0)=√2

∞∑
n=1

bnvn ∈H2
0 . (4.11)

Since (vn/
√
λn)n≥1 is an orthonormal basis for H2

0 , one can verify that the series defining
ỹt(t) in (4.10) converges in H2

0 uniformly in t. By continuity of the trace operator u �→
ux(1) in H2

0 , (4.3) reads

ỹxt(1, t)=√2
∞∑
n=1

(
− an sin

(√
λnt

)
+ bn cos

(√
λnt

))
vnx(1)=

∑
n∈Z

Cne
µntvnx(1)= 0.

(4.12)

Furthermore, the eigenvalues λn and the eigenfunctions vn of B0 satisfy the following
properties (see the appendix for a proof):

lim
n→+∞

∣∣∣√λn+1−
√
λn
∣∣∣=∞, vn(1)vnx(1) �= 0, n= 1,2, . . . . (4.13)

Now, let SN (t)=∑n=N
n=−N Cneµntvnx(1), t > 0. We know from (4.12) that limN→+∞ SN (t)= 0

uniformly in t ∈ [−T ,T]. Then, using Ingham’s inequality [12], we deduce that there
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exists a constant κ > 0 such that
∑n=N

n=−N |Cnvnx(1)|2 ≤ κ
∫ T
−T |SN (t)|2dt. Therefore

∑
n∈Z

∣∣Cnvnx(1)
∣∣2 ≤ 0 as N −→ +∞. (4.14)

This, together with (4.13), means that Cn = 0 for any n ∈ Z, and thus ( ỹ, ỹt) = 0. The
proof of Proposition 4.2 is complete. �

Remark 4.3. Obviously, the case α1α2 > 0 is a consequence of the case α1 = 0, α2 > 0 or
α2 = 0, α1 > 0.

4.2. Exponential stability of etA
ω∗ . The following technical result is crucial.

Theorem 4.4. Assume that |ω∗| < (1/l2)
√

12EI/ρ and di > 0 when αi > 0 for i= 1,2. Then,

the semigroup etA
ω∗ is uniformly exponentially stable on �.

Proof of Theorem 4.4. We consider two cases, α1 �= 0 and α1 = 0.
First, for α1 �= 0 (the force control is present in (1.1)), the exponential stability of etA

ω∗

has been established in [20] by using the multiplier method. Second, if α1 = 0 (only the
moment control is applied), then w1 is omitted everywhere; for instance, the state space
of the subsystem (3.1) is �0 =H2

0 ×L2(0, l)×Rn2 equipped with the inner product (3.4)

with omission of w1, that is, 〈(y,z,w2),( ỹ, z̃,w̃2)〉�0 =
∫ l

0(EI yxx ỹxx − ρω2∗y ỹ + ρzz̃)dx +
2α2w̃

T
2 P2w2, and the operator Aω∗ (see (3.2)–(3.3)) is denoted by Aω∗

0 , that is,

�
(
Aω∗

0

)= {(
y,z,w2

)∈H4
0 ×H2

0 ×R
n2 ;

yxxx(l)= 0; EI yxx(l) +α2
[
cT2 w2 +d2zx(l)

]= 0
}

,

Aω∗
0

(
y,z,w2

)= (
z,−EI

ρ
yxxxx +ω2

∗y,A2w2 + b2zx(l)
)

∀(y,z,w2
)∈�

(
Aω∗

0

)
.

(4.15)

Note that the coefficients d2, γ2 are positive by means of the assumption of Theorem 4.4
and hypothesis (H.III). Our goal is to show the uniform stability of the semigroup etA

ω∗
0 .

To do so, we have tried to use the multiplier technique without much success. However,
one will use Huang’s result [11] which corresponds to the frequency domain method. For
this, consider the operator A0 = Aω∗

0 −ω2∗K with �(A0)=�(Aω∗
0 ), and K is an operator

on �0 defined as follows:

K
(
y,z,w2

)= (0, y,0) for any
(
y,z,w2

)∈�0. (4.16)

Obviously, the operator K is compact on �0 and the operator A0 satisfies all the proper-
ties of Aω∗

0 , particularly Lemmas 3.1 and 4.1 and Proposition 4.2. Hence, A0 generates a
strongly stable semigroup of contractions denoted by etA0 . This leads us to claim that if the
semigroup etA0 is uniformly stable, then so is the semigroup etA

ω∗
0 [22]. In return, as has

already been mentioned, etA0 is a strongly stable semigroup of contractions, and hence, in
order to obtain its uniform stability, we only have to show (see [11, Theorem 3, page 51])
that

sup
{∥∥(iµ−A0

)−1∥∥
�(�0); µ∈R

}
<∞, (4.17)



118 Dynamic boundary controls of a rotating body-beam

where ‖ · ‖�(�0) is the operator norm. For simplicity and without loss of generality, we
assume that EI = ρ = l = α2 = 1. Consider then the resolvent equation, that is, given µ∈
R and ( f ,g,ξ)∈�0, we seek (y,z,w2)∈�(A0) such that (iµI −A0)(y,z,w2) = ( f ,g,ξ).
Note that the resolvent estimate (4.17) can be derived as a consequence of the existence
of a positive constant M, independent of µ, such that

∫ 1

0

(∣∣yxx∣∣2
+ |z|2)dx+ 2

∣∣w̄T
2 P2w2

∣∣≤M
(∥∥ fxx∥∥2

L2(0,l) +‖g‖2
L2(0,1) + |ξ|), (4.18)

which immediately gives (4.17). Using the known result of continuity of the function
λ �→ ‖(λ−A0)−1‖ for any λ∈ ρ(A0) [21], it suffices to establish the estimate (4.17) for |µ|
large. The proof, inspired by the work of Chen et al. [5] (see also [6]), is divided into 3
steps. Hereafter, ‖ · ‖L2(0,1) is denoted by ‖ · ‖.
Step 1. The aim is to estimate ‖yxx‖, namely, to prove that for η large,

∥∥yxx∥∥≤M1
(∥∥ fxx∥∥+‖g‖+ |ξ|) (4.19)

for some positive constant M1. To accomplish this, let µ= η2, where η ∈R (the estimates
for µ=−η2 are similar). Thus the resolvent equation yields

yxxxx−η4y = iη2 f + g,

yxx(1) + iη2G2
(
iη2)yx(1)−G2

(
iη2) fx(1) + cT2

(
iη2I −A2

)−1
ξ = 0,

y(0)= yx(0)= yxxx(1)= 0,

z = iη2y− f ,

w2 = iη2(iη2I −A2
)−1

b2yx(1)− (
iη2I −A2

)−1
b2 fx(1) +

(
iη2I −A2

)−1
ξ,

(4.20)

where G2(·) is given by (2.3). Consider now the following two systems of linear differen-
tial equations:

ŷxxxx−η4 ŷ = iη2 f + g,

ŷ(0)= ŷx(0)= ŷxx(0)= ŷxxx(0)= 0,
(4.21)

ỹxxxx−η4 ỹ = 0,

ỹ(0)= ỹx(0)= 0,

ỹxx(1) + iη2G2
(
iη2) ỹx(1)= r1,

− ỹxxx(1)= r2,

(4.22)

where

r1 =−iη2G2
(
iη2) ŷx(1)− ŷxx(1) +G2

(
iη2) fx(1)− cT2

(
iη2I −A2

)−1
ξ,

r2 = ŷxxx(1).
(4.23)
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Clearly, if ŷ(x) and ỹ(x) are the solutions of (4.21) and (4.22), respectively, then y(x)=
ŷ(x) + ỹ(x) satisfies (4.20). Furthermore, the unique solution of (4.21) is

ŷ(x)= 1
2

∫ x

0
η−3[sinh

(
η(x− τ)

)− sin
(
η(x− τ)

)](
iη2 f (τ) + g(τ)

)
dτ, (4.24)

whereas the general solution of (4.22) is given by

ỹ(x)=Weηx +Xeiηx +Ye−ηx +Ze−iηx. (4.25)

Here W , X , Y , and Z are to be determined from the boundary conditions of (4.22) which
lead us to a linear system M(W X Y Z )T = ( 0 0 r1 r2 )T , where the superscript T stands for
the transpose and M = (mij)1≤i, j≤4 is a matrix whose elements are

m11=1, m12=1, m13=1, m14=1, m21=1, m22= i, m23=−1, m24=−i,
m31 =

[
η2 + iη3G2(iη2)

]
eη, m32 =−

[
η2 +η3G2(iη2)

]
eiη, m33 =

[
η2− iη3G2(iη2)

]
e−η,

m34=
[
η3G2(iη2)−η2]e−iη, m41=−η3eη, m42= iη3eiη, m43=η3e−η, m44=−iη3e−iη.

(4.26)

Note that for η large, detM �= 0 (see (4.37)), and hence



W
X
Y
Z


= (i+ 1)η2(detM)−1



× × µ13 −µ14

× × −µ23 −µ24

× × −µ33 µ34

× × −µ43 −µ44






0
0
r1

r2


 , (4.27)

where × denote unnecessary elements for subsequent calculations and

µ13 = ηeiη + iηe−iη + (i+ 1)ηe−η, µ23 = iηeη + (i+ 1)ηe−iη +ηe−η,

µ14 = i
[
1 +ηG2

(
iη2)]eiη +

[
1−ηG2

(
iη2)]e−iη +

[
i+ 1 + (1− i)ηG2

(
iη2)]e−η,

µ24 =
[
i−ηG2

(
iη2)]eη + (i− 1)

[
1−ηG2

(
iη2)]e−iη +

[
iηG2

(
iη2)− 1

]
e−η,

µ33 =−iηeiη− (i+ 1)ηeη−ηe−iη, µ43 = (i+ 1)ηeiη +ηeη + iηe−η,

µ34 =
[
1 +ηG2

(
iη2)]eiη +

[
(i+ 1) + (i− 1)ηG2

(
iη2)]eη + i

[
1−ηG2

(
iη2)]e−iη,

µ44 = (1− i)
[
1 +ηG2

(
iη2)]eiη +

[
1 + iηG2

(
iη2)]eη− [

i+ηG2
(
iη2)]e−η.

(4.28)

After differentiating and using integration by parts twice in (4.24), we get

ŷxx(x)= η−1eηx

4

∫ 1

0
e−ητ

[
i fττ(τ) + g(τ)

]
dτ + �

(
η−1[∥∥ fxx∥∥+‖g‖]),

ŷx(x)=− i

η2
fx(x) +

η−2

4

∫ 1

0
eη(x−τ)[i fττ(τ) + g(τ)

]
dτ + �

(
η−2[∥∥ fxx∥∥+‖g‖]),

ŷxxx(x)= 1
4

∫ 1

0
eη(x−τ)[i fττ(τ) + g(τ)

]
dτ + �

(∥∥ fxx∥∥+‖g‖).
(4.29)
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Combining (4.23) and (4.29) and using (2.5)–(2.6) yield

r1 =−eη

4

[
iG2

(
iη2)+η−1]∫ 1

0
e−ητ

(
i fττ(τ) + g(τ)

)
dτ + �

(∥∥ fxx∥∥+‖g‖)+ �
(
η−2|ξ|),

(4.30)

r2 = eη

4

∫ 1

0
e−ητ

(
i fττ(τ) + g(τ)

)
dτ + �

(∥∥ fxx∥∥+‖g‖). (4.31)

We now define ∆ by

∆=−(i+ 1)η2{[iG2
(
iη2)+η−1]µ13 +µ14

}
=(i+ 1)

{− eiη
[
2iη3G2

(
iη2)+ (i+ 1)η2]+ e−iη

[
2η3G2

(
iη2)− (i+ 1)η2]− 2(i+ 1)η2e−η

}
.

(4.32)

From the properties of the transfer function G2(·) cited in (2.5) and (2.6), it follows that
the dominant term of ∆ is η3, that is,

∆= �
(
η3). (4.33)

Moreover, using the known inequality |a+ b| ≥ |a|− |b| for (4.32) yields

|∆| ≥ √2
[∣∣2iη3G2

(
iη2)+ (i+ 1)η2

∣∣−∣∣2η3G2
(
iη2)− (i+ 1)η2

∣∣] (4.34)

for η large. Combine now (2.5), (2.6), and (4.34). As a result, we obtain after a straight-
forward calculation,

|∆| ≥M
(
γ2
)
η2 (4.35)

for η sufficiently large and for a positive constant M depending on γ2. Furthermore, it
follows from the definition of the matrix M that

detM =−η3eη
(
∆+ 2(i+ 1)η2e−η

)− 2η4e(i−1)η[− (i+ 1)η2G2
(
iη2)− iη

]
− 2η4e−(i+1)η[(i− 1)η2G2

(
iη2)− iη

]
+ 8iη5,

(4.36)

where ∆ is defined in (4.32). Except for the first term −η3eη∆ of (4.36), all the others are
bounded by �(η5) for η sufficiently large. Consequently,

detM =−η3eη∆+ �
(
η5), (4.37)

which implies, by (4.35), that

(detM)−1 =−η−3e−η(∆)−1 + �
(
η−5e−2η)= �

(
η−5e−η

)
. (4.38)

We now estimate W (see (4.25) and (4.27)). Clearly, system (4.27) gives W = (i +
1)η2(detM)−1(µ13r1 − µ14r2). Combining (4.30)–(4.32) and the first estimate of (4.38),
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we deduce that

W =− 1
4η3

∫ 1

0
e−ητ

[
i fττ(τ) + g(τ)

]
dτ +

eη∆

4
�
(
η−5e−2η)∫ 1

0
e−ητ

[
i fττ(τ) + g(τ)

]
dτ

+ (i+ 1)η2(detM)−1{µ13
[
�
(∥∥ fxx∥∥+‖g‖)+ �

(
η−2|ξ|)]−µ14�

(∥∥ fxx∥∥+‖g‖)}.
(4.39)

But µ13 and µ14 (see (4.27)) are bounded by �(η). This, together with (4.33) and the
second estimate of (4.38), implies that (4.39) can be written as follows:

W =− 1
4η3

∫ 1

0
e−ητ

[
i fττ(τ) + g(τ)

]
dτ + �

(
η−2e−η

[∥∥ fxx∥∥+‖g‖])+ �
(
η−5e−η|ξ|).

(4.40)

Now, our aim is to derive estimates of X , Y , and Z. Using once again (4.27), we have
X =−(i+ 1)η2(detM)−1(µ23r1 + µ24r2). Then, one can show from (4.30), (4.31), and the
expressions of µ23, µ24 that the coefficient of the dominant term e2η, appearing in µ23r1 +
µ24r2, is zero. Indeed, we have

X = (detM)−1�
(
η3eη

[∥∥ fxx∥∥+‖g‖])+ �
(
ηeη|ξ|)

= �
(
η−2[∥∥ fxx∥∥+‖g‖])+ �

(
η−4|ξ|),

(4.41)

where the second estimate is obtained by means of (4.38). Similarly,

Y = Z = �
(
η−2[∥∥ fxx∥∥+‖g‖])+ �

(
η−4|ξ|). (4.42)

Now, we are ready to estimate ‖yxx‖. Recall first that, by construction, y(x)= ŷ(x) +
ỹ(x), where ŷ(x) and ỹ(x) are given by (4.24) and (4.25), respectively. Then it follows
from (4.29) and (4.40)–(4.42) that

∥∥yxx∥∥= {
�
(
e−η

[∥∥ fxx∥∥+‖g‖])+ �
(
η−3e−η|ξ|)}(

∫ 1

0
e2ηxdx

)1/2

+
{
�
(∥∥ fxx∥∥+‖g‖)+ �

(
η−2|ξ|)}(

∫ 1

0
e−2ηxdx

)1/2

+ �
(∥∥ fxx∥∥+‖g‖)+ �

(
η−2|ξ|)

= �
(∥∥ fxx∥∥+‖g‖)+ �

(
η−2|ξ|).

(4.43)

As a result, we arrived at the desired estimate (4.19) of Step 1.
Step 2. The goal is to derive an estimate of ‖z‖, where z = iη2y− f (see (4.20)), that is,
‖z‖ ≤M2(‖ fxx‖+ ‖g‖+ |ξ|) for a positive constant M2. In return, ‖z‖ ≤ η2‖y‖+ ‖ f ‖.
Thus, it suffices to estimate η2‖y‖. To this end, one can show in a similar way as for the
estimate (4.29) that

ŷ(x)=− i

η2
f (x) +

η−3

4

∫ 1

0
eη(x−τ)(i fττ(τ) + g(τ)

)
dτ + �

(
η−3[∥∥ fxx∥∥+‖g‖]). (4.44)
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Combining (4.25), (4.40)–(4.42), and (4.44), we obtain

‖y‖ = η−2‖ f ‖+ �
(
η−3[∥∥ fxx∥∥+‖g‖])

+
{
�
(
η−2e−η

[∥∥ fxx∥∥+‖g‖])+ �
(
η−5e−η|ξ|)}(

∫ 1

0
e2ηxdx

)1/2

+
{
�
(
η−2[∥∥ fxx∥∥+‖g‖])+ �

(
η−4|ξ|)}(

∫ 1

0
e−2ηxdx

)1/2

+ �
(
η−2[∥∥ fxx∥∥+‖g‖])+ �

(
η−4|ξ|),

(4.45)

which implies that η2‖y‖ = �(‖ fxx‖+‖g‖) + �(η−2|ξ|). Thus

‖z‖ ≤ η2‖y‖+‖ f ‖ = �
(∥∥ fxx∥∥+‖g‖)+ �

(
η−2|ξ|). (4.46)

This achieves Step 2.
Step 3. All we need to do is to establish that |w2| ≤M3(‖ fxx‖+ ‖g‖+ |ξ|) for a positive
constant M3, where w2 is defined in (4.20). This immediately yields

∣∣w2
∣∣= �

(∣∣yx(1)
∣∣∣∣b2

∣∣)+ �
(
η−2

∥∥ fxx∥∥∣∣b2
∣∣)+ �

(
η−2|ξ|)

= �
(∣∣yx(1)

∣∣)+ �
(
η−2

∥∥ fxx∥∥)+ �
(
η−2|ξ|). (4.47)

Using the second estimate of (4.29) and (4.40), (4.41), and (4.42) and arguing in the same
way as for (4.43), we get

∣∣yx(1)
∣∣=

∣∣∣∣− i

η2
fx(1) +

eη

4η2

∫ 1

0
e−ητ

(
i fττ(τ) + g(τ)

)
dτ + �

(
η−2[∥∥ fxx∥∥+‖g‖])

+ηWeη + iηXeiη−ηYe−η− iηZe−iηx
∣∣∣∣

= �
(
η−1[∥∥ fxx∥∥+‖g‖])+ �

(
η−3|ξ|).

(4.48)

This, together with (4.47), gives

∣∣w2
∣∣= �

(
η−1[∥∥ fxx∥∥+‖g‖])+ �

(
η−2|ξ|). (4.49)

After all these three steps, the desired estimate (4.18) follows easily. The proof of
Theorem 4.4 is complete. �

5. Stability of the global system

Proof of Theorem 2.2. Recall first that the solution Φ(t) of the global system (2.11) (see
also (3.7)) stemmed from Φ0 = (φ0,ω0) ∈ �(�) can be written as Φ(t) = (φ(t),ω(t)),
where φ(t) = (y(·, t), yt(·, t),w1(t),w2(t)) is the unique solution of the subsystem (3.1)
perturbed by the operator (ω2−ω2∗)K (see (4.16)), that is,

φt(t)=
[
Aω∗ +

(
ω2(t)−ω2

∗
)
K
]
φ(t) (5.1)
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and ω(t) is solution of the ordinary differential equation

ω̇(t)= −γ
(
ω−ω∗

)− 2ρω(t)
〈
y, yt

〉
L2(0,l)

Id + ρ‖y‖2
L2(0,l)

. (5.2)

Furthermore, the Lyapunov function � (see (3.8)) is nonincreasing. Hence, the integral∫ +∞
0 (ω(t)− ω∗)2dt converges and the solution (φ(t),ω(t)) is bounded in �. This im-

plies, thanks to (5.2), that the function ω(t)−ω∗ and its derivative (d/dt)(ω(t)−ω∗) are
bounded. Consequently, using Barbalat’s lemma [14], the three properties of ω(t)−ω∗
cited above lead us to claim that limt→+∞ω(t) = ω∗. Thus, for all ε > 0, there exists τ
sufficiently large such that for any t ≥ τ,

∣∣ω2(t)−ω2
∗
∣∣ < ε. (5.3)

As mentioned in Theorem 4.4, the subsystem (3.1) is exponentially stable, and therefore
there exist (uniform) constants M̃, µ̃ > 0 such that

∥∥etAω∗∥∥
�(�) ≤ M̃e−µ̃t ∀t ≥ 0, (5.4)

where ‖ · ‖�(�) is the operator norm. Now, we return to the subsystem (5.1). Given a
positive real number τ, the solution of (5.1) is given by

φ(t)= e(t−τ)Aω∗
φ(τ) +

∫ t

τ
e(t−s)Aω∗ (

ω2(s)−ω2
∗
)
Kφ(s)ds (5.5)

for any t ≥ τ. This, together with (5.3) and (5.4), implies that

∥∥φ(t)
∥∥

� ≤ M̃e−µ̃(t−τ)
∥∥φ(τ)

∥∥
� + εM̃

∫ t

τ
e−µ̃(t−τ)

∥∥φ(s)
∥∥

�ds. (5.6)

Therefore,

∥∥eµ̃tφ(t)
∥∥

� ≤ M̃
∥∥eµ̃τφ(τ)

∥∥
� + εM̃

∫ t

τ

∥∥eµ̃sφ(s)
∥∥

�ds. (5.7)

Using the fact that φ(t) is bounded, one can apply Gronwall’s lemma to (5.7) to get

∥∥φ(t)
∥∥

� ≤ M̃
∥∥φ(τ)

∥∥
�e

−(µ̃−εM̃)(t−τ) (5.8)

for any t ≥ τ. Now, we choose ε so that µ− εM̃ > 0, and hence φ(t) is exponentially stable
in �. Finally, returning to the differential equation (5.2), one proves analogously to [24]
that ω−ω∗ → 0 exponentially in R. Indeed, (5.2) implies that

∣∣eγt/Id(ω(t)−ω∗
)∣∣≤ eγτ/Id

∣∣ω(τ)−ω∗
∣∣

+
∫ t

τ
eγs/Id

[
γρ

Id
2

∣∣ω(s)−ω∗
∣∣+

2ρ
Id

∣∣ω(s)
∣∣∥∥y(s)

∥∥
L2

∥∥yt(s)∥∥L2

]
ds.

(5.9)
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Using the definition of the norm of φ(t) and (5.8), we have

∥∥y(s)
∥∥
L2

∥∥yt(s)∥∥L2 ≤
∥∥φ(s)

∥∥2
� ≤

(
M̃
∥∥φ(τ)

∥∥
�

)2
e−2(µ̃−εM̃)(s−τ). (5.10)

It remains to substitute (5.10) into (5.9) and use Gronwall’s lemma to obtain the expo-
nential stability of ω(t)−ω∗. This achieves the proof of Theorem 2.2. �

Remark 5.1. The decay rate obtained in Theorem 2.2, although exponential, is not uni-
form. This is due to the fact that the constants of the decay rate depend on the initial
condition Φ0 = (φ0,ω0).

6. Conclusion

In this paper, we have proposed a feedback law which stabilizes a body-beam system in
the case where the rigid body is rotating with a nonconstant angular velocity. We have

shown that if the angular velocity is smaller than (1/l2)
√

12EI/ρ, the system is exponen-
tially stable as soon as a control torque is applied to the rigid body and either a dynamic
boundary control moment or a dynamic boundary control force or both of them act on
the free end of the beam. This result improves those obtained in [20] for nonconstant
angular velocity and in [16] (static feedback case) for dynamic controls.

An interesting research problem would be the extension of the results presented in
this paper to nonlinear dynamic controls. This question is motivated by the fact that, in
practice, the input amplitudes are constrained by the power of the actuators which go
into nonlinear saturations [1]. Therefore, the stability of such systems should be assured
with nonlinear controls. This will be the subject of a forthcoming paper.

Appendix

Proof of (4.13). It is easy to see that λn is an eigenvalue of the operator B0 if and only if
there is a nontrivial element vn ∈�(B0) satisfying the following system:

vnxxxx − σn
4vn = 0, (A.1)

v(0)= vnx(0)= 0, (A.2)

vnxxx(1)= vnxx(1)= 0, (A.3)

where

σ4
n = λn +ω2

∗. (A.4)

The general solution of (A.1)–(A.2) is

vn = C1
(

coshσnx− cosσnx
)

+C2
(

sinhσnx− sinσnx
)
, (A.5)

where C1 and C2 are to be determined by means of (A.3), that is,

(
sinhσnl− sinσn coshσn + cosσn
coshσnl+ cosσn sinhσn + sinσn

)(
C1

C2

)
=
(

0
0

)
. (A.6)
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Thus, vn is an eigenfunction of B0 if

coshσn cosσn + 1= 0. (A.7)

Using the results of Langer [15], one can check that the asymptotic estimate of solu-
tions of (A.7) is given by σn = (n+ 1/2)π + �(e−n), which, together with (A.4), implies
that limn→+∞ |

√
λn+1−

√
λn| =∞. We prove now that each eigenfunction vn of B0 satisfies

vnx(1) �= 0, n= 1,2, . . . (the proof of vn(1) �= 0 is similar). Suppose the contrary is true, that
is, vnx(1) = 0, and therefore (A.5) yields C1(sinhσn + sinσn) + C2(coshσn − cosσn) = 0.
Combining this last equation with system (A.6), one can show that C1 = C2 = 0, which
contradicts the fact that vn is an eigenfunction. �
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