
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2007, Article ID 24238, 15 pages
doi:10.1155/2007/24238

Research Article
Approximation Technics for an Unsteady Dynamic Koiter Shell

Saloua Mani Aouadi

Received 8 November 2006; Revised 3 March 2007; Accepted 11 June 2007

Recommended by Michela Redivo Zaglia

We propose a mixed formulation in dynamical elasticity of shells which allows a locking-
free finite element approximation in particular cases of Koiter shells.

Copyright © 2007 Saloua Mani Aouadi. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Finite element solutions of shell models suffer from lack of stability when the shell thick-
ness goes to zero. Indeed, most often, a large error discretization appears and compro-
mises the method [1, 2]. This lack of robustness, known as locking, is considered as an
actual challenge to approximate thin shells.

Numerous approaches for overcoming locking [1–6] make an essential use of a stable
element for a mixed formulation of the initial problem in which the new unknowns play
a crucial role in the stability analysis. In the pioneering paper [3], Arnold and Brezzi treat
the Naghdi shell model as an abstract saddle point problem and consider a mixed finite
element method to approximate it. Their method is robust in particular cases since they
provide a uniform error estimate under some geometrical restrictions, namely, the geo-
metric coefficients are constant locally on each element. Bramble and Sun [5] have used
the Arnold and Brezzi approach to provide a weaker stability condition when geometric
coefficients are smooth enough. They establish an optimal error estimation as long as
h2ε−1 is bounded.

In the present paper, we introduce a mixed formulation for a bending-dominated dy-
namic Koiter shell. The approach of Arnold and Brezzi [3] is used with significant mod-
ifications but with the same geometric restrictions. Our formulation is valid for Koiter
shells. It includes dynamic effects and is valid for shells whose midsurface can have charts
with discontinuous second derivatives.
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The paper is organized as follows. The shell Koiter dynamic model is introduced in
Section 2. In Section 3, we present our mixed formulation and prove an existence and
uniqueness solution. In Section 4, we focus on the space discretization. A uniform con-
vergence with respect to the thickness is obtained under the Arnold and Brezzi assump-
tion [3]. This restrictive constraint satisfied in [3] for cylindrical shell is satisfied in our
approach for C1 junction of cylindrical shells. In Sections 5 and 6, we study the fully
discrete problem and prove time and uniform space convergence.

2. The shell model

Greek indices take their values in the set {1,2} and the Latin indices take their values in
{1,2,3}. Products containing repeated indices are summed.

Let ω be a domain of R2. We consider a shell whose midsurface is given by S=−→ϕ (ω),
where −→ϕ ∈W2,∞(ω,R3) is an injective mapping. Let −→a α =−→ϕ α, α= 1,2; −→a 3 =−→a 1∧−→a 2/
‖−→a 1 ∧−→a 2‖ be the covariant basis vectors and let −→a α defined by −→a α · −→a β = δαβ ; −→a 3 =−→a 3 be the contravariant basis vectors. Let ε be the shell thickness. The first and second
fundamental forms of the midsurface are defined componentwise by

aαβ =−→a α ·−→a β, bαβ =−→a 3 ·−→a α,β =−−→a α ·−→a 3,β. (2.1)

Let a= ‖−→a 1∧−→a 2‖2 be the determinant of (aαβ)αβ. We note aαβ :=−→a α ·−→a β the first fun-
damental form contravariant components and bαγ := aαβbβγ the mixed components of the
second fundamental form. For a displacement field −→u , we define the linearized change
of curvature tensor Υ= (Υαβ)α,β and the linearized membrane strain tensor Λ= (Λαβ)α,β

[7–9] by

Υαβ(−→u )= (−→u αβ−Γ
ρ
αβ
−→u ρ
) · a3,

Λαβ(−→u )=
−→u α ·−→a β +−→u β ·−→a α

2
.

(2.2)

Set E = (Eαβλμ)αβλμ the elasticity tensor, assumed to be elliptic, given by Eαβλμ = (ε/2(1−
ν2))(aαλaβμ + aαμaβλ + 2νaαβaλμ), where ε > 0 and ν∈ (0,1/2) denote the Young’s module
and Poisson ratio of the material.

We suppose the shell clamped on a nonempty part Γ of its boundary and set

H1
Γ(ω)= {u∈H1(ω), u= 0 on Γ

}
,

H2
Γ(ω)=

{
u∈H2(ω), u= ∂u

∂n
= 0 on Γ

}
,

V = {−→v = via
i, vα ∈H1

Γ(ω), v3 ∈H2
Γ(ω)

}
.

(2.3)

Note that V is a Hilbert space when endowed with the norm

‖v‖V =
(
∑

α

∥
∥vα

∥
∥2
H1 +

∥
∥v3

∥
∥2
H2

)1/2

. (2.4)
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Consider the dynamic bending-dominated Koiter shell problem

find −→u ∈ L2(0,T ;V)

m̃(
−→̈
u ;−→v ) + Ã

(−→u ;−→v )= L̃(−→v ) ∀−→v ∈V a.e. in time,
(2.5)

where the double superscript v̈ indicates double differentiation in time of the field v, m̃
is the inertia term, L̃ is a linear form corresponding to external forces, and Ã is a bilinear
form corresponding to internal energy given by

Ã
(−→u ;

−→̂
v
)= ε3

∫

ω

1
12

EασλμΥασ(−→u )Υλμ(
−→̂
v )
√
adx

= ε
∫

ω
EασλμΛασ(−→u )Λλμ(

−→̂
v )
√
adx.

(2.6)

Note that Ã is continuous and coercive on V [8]. The following assumptions, to check
that the shell is in a bending-dominated state [1, 3, 5, 10, 11], are made about the scaling
of external forces and inertia term:

L̃(
−→̂
v )= ε3

∫

ω

−→
f ·−→̂v √adx,

m̃(
−→̈
u ;
−→̂
v )= ε3

∫

ω
ρ
−→̈
u ·−→̂v √adx,

(2.7)

where ρ denotes the surface mass density of the shell.

Remark 2.1. As its thickness goes to zero, the asymptotic behavior of a shell is governed
either by membrane or flexural two-dimensional equation [10]. This distinction rests on
whether the space V1 = {v ∈ VΛαβ(v) = 0, α,β = 1,2} of linearized inextensional dis-
placement skipping invariant at first-order midsurface metric is reduced or not to {0}.
The scaling of external forces plays an important role in this classification. By supposing

V1 	= {0} and the resultant of the applied forces of the form ε3
−→
f ,
−→
f /∈V 0

1 the polar set of
V1, we suppose that the shell is in the bending-dominated state.

Remark 2.2. It has been proved [12] by asymptotic analysis that the dynamic equations of
shells lead to the dynamic equations of flexural shells when the external forces and inertia
term are multiplied by thickness on power 3.

3. Mixed formulation

We introduce a new unknown λ which represents the membrane stress aside a multipli-
cator factor. We set, for a real c0 such that 0 < c0 < ε−2,

λ= (λαγ
)
αγ, λαγ =

(
1
ε2
− c0

)
EαγσμΛσμ(−→u ), (3.1)
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and seek (−→u ,λ)∈ L2(0,T ;V)×L∞(0,T ;W) such that we have a.e. in time

m
(−→̈
u (t);

−→̂
v
)

+A
(−→u (t);

−→̂
v
)

+B
(−→̂
v ;λ(t)

)= L(
−→̂
v ) ∀−→̂v ∈V ,

B
(−→u (t); λ̂

)− ε2

1− coε2
C
(
λ(t); λ̂

)= 0 ∀λ̂∈W := {ϕ/ϕαβ ∈ L2(ω)
}

,
(3.2)

where

A(−→u ;
−→̂
v ) :=

∫

ω

1
12

EασλμΥασ(−→u )Υλμ(
−→̂
v )
√
adx

+ c0

∫

ω
EασλμΛασ(−→u )Λλμ(

−→̂
v )
√
adx,

B(−→v ;ξ) :=
∫

ω
Λασ(−→v )ξασ

√
adx,

C(λ;ξ) :=
∫

ω

(
E−1)

ασδμλ
δμξασ

√
adx,

m(
−→̈
u ;
−→̂
v ) =

∫

ω
ρ
−→̈
u ·−→̂v √adx, ε3L(

−→̂
v )= L̃(

−→̂
v ).

(3.3)

We endow W by the standard L2 product norm and by the seminorm

∥
∥
∣
∣λ
∣
∣
∥
∥= sup

−→v ∈V

B(−→v ;λ)

‖−→v ‖ . (3.4)

Note that the bilinear forms A, B, and C are continuous, respectively, on V ×V , V ×W ,

and W ×W , such that A is V-elliptic and C is W-elliptic. The form ˜̃A defined on V ×
W ×V ×W by

˜̃A
(−→u ,λ;

−→̂
v , λ̂

)= A
(−→u ;

−→̂
v
)

+B
(−→̂
v ,λ

)−B
(−→u , λ̂

)
+

ε2

1− coε2
C
(
λ, λ̂

)
(3.5)

is then elliptic which allows, using Galerkin approximation [13], to establish the existence
result proved in Theorem 3.2.

We introduce the Hilbert basis (ξ j
b
) j=1,∞ of W and (−→v j

b) j=1,∞ of V made of the normed

eigenvectors solution of the elliptic eigenproblem

(−→v j
b;
−→̂
v
)
V =m

(−→v j
b;
−→̂
v
) ∀−→̂v ∈V. (3.6)

We introduce the subspaces VN of V and WN of W by

VN =
{
−→v ∈V , −→v =

N∑

j=1

g j−→v j
b

}

,

WN =
{

ξ ∈W , ξ =
N∑

j=1

k jξ j
b

}

.

(3.7)

We then define the well-posed finite-dimensional problem.



Saloua Mani Aouadi 5

Find −→u N (t)=∑N
j=1 g

j(t)−→v j
b ∈ VN ; λN (t)=∑N

j=1 k
j(t)ξ j

b
∈WN such that we have a.e.

in time

m
(−→̈
u N ;−→v j

b

)
+A

(−→u N ;−→v j
b

)
+B

(−→v j
b;λN

)= L
(−→v j

b

) ∀ j = 1,N , (3.8)

B
(−→u N ;ξ j

b

)
= ε2

1− coε2
C
(
λN ;ξ j

b

)
∀ j = 1,N ,

lim
N→∞

−→u N (0)=−→u (0) in V , lim
N→∞

−→̇
u N (0)=−→v (0) in L2(ω,R3).

(3.9)

In this framework, we can prove the following lemma. Co will denote a positive constant
independent of solution and of space and time discretization steps. It can vary from one
equality to another.

Lemma 3.1. The sequence of solutions (−→u N ;λN ) satisfies

−→u N is bounded in L∞(0,T ,V), (3.10)

−→̇
u N is bounded in L∞

(
0,T ,L2(ω;R3)), (3.11)

−→̈
u N is bounded in L2(0,T ,V ′), (3.12)

λN is bounded in L∞(0,T ,W). (3.13)

Proof. By multiplying (3.8) by ġ j(t), summing in j, integrating in time from 0 to t, and
using (3.9) after multiplying by k̇ j(t) and summing in j, we observe that the solution
satisfies the fundamental energy estimation

1
2
m
(−→̇
u N (t);

−→̇
u N (t)

)
+

1
2
A
(−→u N (t);−→u N (t)

)
+

ε2

2
(
1− coε2

)C
(
λN (t);λN (t)

)

=
∫ t

0
L
(−→u N

)
(τ)dτ+

1
2
m
(−→v (0);−→v (0)

)
+

1
2
A
(−→u (0);−→u (0)

)
+

ε2

2
(
1− coε2

)C
(
λ(0);λ(0)

)
.

(3.14)

Using the positivity of m and the coercivity of A on V and C on W , we get

Co

{∥
∥−→u N (t)

∥
∥2
V +

ε2

2
(
1− coε2

)
∥
∥λN (t)

∥
∥2
W

}
≤
∫ t

0
‖L‖V ′

∥
∥−→u N (τ)

∥
∥
Vdτ +Co. (3.15)

Applying the Gronwall’s lemma and using the positivity of ‖λN (t)‖2
W , we first deduce

that ‖−→u N (t)‖2
V is uniformly bounded in time, which implies in turn that ‖λN (t)‖W is
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uniformly bounded in time and proves (3.10) and (3.13). Using the positivity of A and
C, we get

1
2
m
(−→̇
u N (t);

−→̇
u N (t)

)≤
∫ t

0
‖L‖V ′

∥
∥−→u N (τ)

∥
∥
Vdτ +C0 (3.16)

which proves (3.11). PN and QN assign the projection operators defined, respectively,
from V in VN and W in WN by

PN
(−→v ) :=

N∑

j=0

(−→v ;−→v j
b

)

V

−→v j
b ∀−→v ∈V ,

QN
(
λ
)=

N∑

j=0

(
λ;
−→
ξ

j
b

)

W

−→
ξ

j
b ∀λ∈W.

(3.17)

By construction, we have ‖PN‖L(V ,V) ≤ 1, ‖QN‖L(W ,W) ≤ 1, and

m
(−→v l

b;−→v −PN
(−→v )

)=
∞∑

j=N+1

(−→v ;−→v j
b

)
H1m

(−→v l
b;−→v j

b

)= 0 ∀l = 1,N. (3.18)

We can then write, from (3.8), for each
−→̂
v ∈ L2(0,T ;V),

∫ T

0
m
(−→̈
u N ;

−→̂
v
)

=
∫ T

0
m
(−→̈
u N ;PN

(−→̂
v
))=−

∫ T

0
A
(−→u N ;PN

(−→̂
v
))−

∫ T

0
B
(
PN
(−→̂
v
)
;λN

)
+L
(
PN
(−→̂
v
))
.

(3.19)

Using (3.10) and (3.13), we obtain for each
−→̂
v ∈ L2(0,T ;V),

∣
∣
∣
∣

∫ T

0
m
(−→̈
u N ;

−→̂
v
)
∣
∣
∣
∣≤ Co‖

−→̂
v ‖L2(0,T ,V) (3.20)

which is (3.12), and the lemma is proved. �

The above bounds can now be used to construct a solution for the problem (3.2) by
compactness arguments and we get the following theorem.

Theorem 3.2. The mixed problem (3.2) has a unique solution (−→u ;λ). The primal variable
−→u is the solution of the Koiter shell problem (2.5). The auxiliary variable λ verifies λαγ(t)=
(1/ε2− co)EαγσμΛσμ(−→u (t)) a.e in time.

Proof. For any solution (−→u ;λ) of (3.2), it is clear that −→u is a solution of (2.5) and λ(t)
is given by (3.1) a.e. in time. To construct a solution, we deduce from (3.10)–(3.13) that

there exist subsequences (−→u N )N , (
−→̇
u N )N , (

−→̈
u N )N , and (λN )N weakly converging towards
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−→̃
u ,
−→̃
v ,
−→̃
γ , and λ̃ in L2(0,T ,V), L2(0,T ,L2(ω;R3×R3)), L2(0,T ,V ′), and L2(0,T ,W), re-

spectively. Consequently, we have

−→̃
u (t)=−→u (0) +

∫ t

0

−→̃
v (τ)dτ, a.e. in time,

−→̃
v (t)=−→v (0) +

∫ t

0

−→̃
γ (τ)dτ, a.e. in time

(3.21)

and then (∂/∂t)
−→̃
u (t)=−→̃v (t) and (∂/∂t)

−→̃
v (t)=−→̃γ (t), a.e. in time.

On the other, hand we have for each
−→̂
v ∈ L2(0,T ,V),

m
(−→̃
γ ;
−→̂
v
)

+A
(−→̃
u ;
−→̂
v
)

+B
(−→̂
v ; λ̃

)−L
(−→̂
v
)

= lim
M→∞

{
lim
N→∞

{
m
(−→̈
u N ;PM

(−→̂
v
))

+A
(−→u N ;PM

(−→̂
v
))

+B
(
PM
(−→̂
v
)
;λN

)−L
(
PM
(−→̂
v
))

+m
(−→̃
γ −−→̈u N ;PM

(−→̂
v
))

+A
(−→̃
u −−→u N ;PM

(−→̂
v
))

+B
(
PM
(−→̂
v
)
; λ̃− λN

)}

−m
(−→̃
γ ;PM

(−→̂
v
)−−→̂v )−A(ũ;PM

(−→̂
v
)−−→̂v )−B(PM

(−→̂
v
)−−→̂v ; λ̃

)
+
(
PM(

−→̂
v
)−−→̂v )

}
.

(3.22)

Using at first, with M fixed, the weak convergence of−→u N ,
−→̈
u N , and λN towards

−→̃
u ,
−→̃
γ , and

λ̃ afterwards the strong convergence of PM(
−→̂
v ) to

−→̂
v in L2(0,T ,V), we get

m
(−→̃
γ ;
−→̂
v
)

+A
(−→̃
u ;
−→̂
v
)

+B
(−→̂
v ; λ̃

)−L
(−→̂
v
)= 0 ∀−→̂v ∈ L2(0,T ,V). (3.23)

In the same way, we have for every λ̂∈ L2(0,T ,W),

B
(−→̃
u ; λ̂

)
− ε2

1− coε2
C
(
λ̃; λ̂

)

= lim
M→∞

{
lim
N→∞

{
B
(−→u N ;QM

(
λ̂
))
− ε2

1− coε2
C
(
λN ;QM

(
λ̂
))

+B
(−→̃
u −−→u N ;QM

(
λ̂
))
− ε2

1− coε2
C
(
λ̃− λN ;QM

(
λ̂
))}

−B
(−→̃
u ;QM

(
λ̂
)
− λ̂

)
+

ε2

1− coε2
C
(
λ̃;QM

(
λ̂
)
− λ̂

)}
.

(3.24)

Using the weak convergence of−→u N , λN towards
−→̃
u , λ̃ and the strong convergence ofQM(λ̂)

to λ̂ in L2(0,T ,W), we get

B
(−→̃
u ; λ̂

)
− ε2

1− coε2
C
(
λ̃; λ̂

)
= 0 ∀λ̂∈ L2(0,T ,W). (3.25)

Combining (3.23) and (3.25), we deduce that (
−→̃
u ; λ̃) is the solution of (3.2). �
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4. Space discretization

Henceforth we assume that the domain ω is a polygon which is triangulated by a regu-
lar triangulation τh, ω =⋃T∈τh T . The set Γ where Dirichlet conditions are imposed is
assumed to be a union of edges of triangles in τh. The set Pk(T) denotes the space of
functions on T which are the restrictions of polynomial of degree ≤ k. We approximate
H1

Γ using P3 Lagrange finite elements augmented by bubble functions and introduce the
spaces

L1
h =

{
v ∈H1

Γ(ω), v/T ∈ P3(T)∀T ∈ τh
}

,

B1
h =

{
v ∈H1(ω), v/T = λ1λ2λ3p, p ∈ P1(T)∀T ∈ τh

}
,

H1
h =

{
v = v1 + v2 such that v1 ∈ L1

h, v2 ∈ B1
h

}= L1
h⊕B1

h,

L2
h =

{
v ∈H2

Γ(ω), v/T ∈ P5(T)∀T ∈ τh
}

,

B2
h =

{
v ∈H2∩H1

0 (ω), v/T = λ2
1λ

2
2λ

3
3p, p ∈ P1(T)∀T ∈ τh

}
,

H2
h =

{
v = v1 + v2 such that v1 ∈ L2

h, v2 ∈ B2
h

}= L2
h⊕B2

h.

(4.1)

Above, λ1, λ2, and λ3 denote the barycentric coordinates for each triangle T . We note that
the space L2

h consists of the Argyris element and Bα
h are bubble function spaces that will

be used for the local adjustment to achieve discrete stability. We introduce the discrete
displacement and stress spaces by

Vh =
{−→v h ∈V ,−→v h · aα ∈H1

h ,−→v h ·−→a 3 ∈H2
h

}
,

Wh =
{
λ,λαβ/T ∈ P1(T)∀T

} (4.2)

and consider the discrete static problem

Find −→u h ∈Vh and λ
h
∈Wh such that

A
(−→u h;

−→̂
v
)

+B
(−→̂
v ;λ

h

)
= L

(−→̂
v
)

∀−→̂v ∈Vh,

B
(−→u h; λ̂

)
− ε2

1− c0ε2
C
(
λ
h
; λ̂
)
= 0 ∀λ̂∈Wh.

(4.3)

To prove uniform convergence with respect to the shell thickness, we need the inf-sup
stability hypothesis where we assume that there exists a constant C̃ > 0 for which we have

inf
0	=λ∈Wh

sup
0	=v∈Vh

B
(−→v ;λ

)

‖−→v ‖V
∥
∥
∣
∣λ
∣
∣
∥
∥ ≥ C̃. (4.4)

In this framework, we use the following theorem proved in [3] in an abstract framework
which proves a uniform convergence with respect to the thickness.

Theorem 4.1. Let (−→u h;λ
h
) ∈ Vh ×Wh be the solution of the static discrete problem (4.3)

and let (−→u ;λ) ∈ V ×W be the static solution associated to (3.2). If (4.4) is satisfied, there
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exists a constant C > 0 such that

∥
∥−→u −−→u h

∥
∥
V +

∥
∥
∣
∣λ− λ

h

∣
∣
∥
∥+

ε2

1− coε2

∥
∥λ− λ

h

∥
∥
W

≤ C inf
v̂∈Vh, λ̂∈Wh

{∥
∥−→u s−

−→̂
v
∥
∥
V +

∥
∥
∣
∣λ− λ̂

∣
∣
∥
∥+

ε2

1− coε2

∥
∥λ− λ̂

∥
∥
W

}
.

(4.5)

It remains to prove that our discrete spaces verify (4.4) which is the purpose of the
following lemma.

Lemma 4.2. If the chart ϕ defining the shell midsurface is in W2,∞(ω)3 and the associated
first and second fundamental forms are piecewise constant, then (4.4) is verified.

Proof. The proof is based on the construction of an adequate projection operator π : V →
Vh satisfying

(i) B(π−→v ;λ)= B(v;λ) for all −→v ∈V , for all λ∈Wh,
(ii) ‖π−→v ‖V ≤ Co‖v‖V for all −→v ∈V .

In fact, we have supv∈V (B(−→v ;λ)/‖−→v ‖V‖|λ|‖)= 1, so given λ∈Wh, we can choose−→v ∈V

for which B(−→v ;λ)/‖−→v ‖ ≥ 1/2‖|λ|‖. The condition (4.4) is then verified since we have

B
(
π−→v ;λ

)

‖π−→v ‖V =
B
(−→v ;λ

)

‖π−→v ‖ V
≥

B
(−→v ;λ

)

Co‖−→v ‖V ≥
1

2Co

∥
∥
∣
∣λ
∣
∣
∥
∥. (4.6)

Let π1 : H1 →H1
h be the projection constructed in [3] which satisfies

∥
∥π1v

∥
∥
H1(T) ≤ C‖v‖H1(T̃) ∀T ∈ τh,

∫

e

(
v−π1v

)
p = 0 ∀p ∈ P1(T)∀e ∈ ∂T , T ∈ τh,

∫

T

(
v−π1v

)
p = 0 ∀p ∈ P1(T)∀T ∈ τh,

(4.7)

where T̃ is the union of triangles in τh which meet T .
We also have to construct a projection π2 : H2 →H2

h satisfying

∥
∥π2v

∥
∥
H2(T) ≤ C‖v‖H2(T̃),

∫

T

(
v−π1v

)
p = 0 ∀p ∈ P1(T) ∀T ∈ τh. (4.8)

A constructive way to define a map π2
0 : H2 → L2

h satisfying for any T ∈ τh,

∥
∥v−π2

0v
∥
∥

0,T +h
∥
∥v−π2

0v
∥
∥

1,T +h2
∥
∥v−π2

0v
∥
∥

2,T ≤ Ch2‖v‖2,T̃ ∀v ∈H2 (4.9)

can be found in [14]. We define π2
1 : H2

∂ω → B2
h by the conditions

∫

T

(
v−π2

1v
)
p = 0 ∀p ∈ P1(T), ∀T ∈ τh (4.10)

and obtain by scaling argument

∥
∥v−π2

1v
∥
∥

0,T +h
∥
∥v−π2

1v
∥
∥

1,T +h2
∥
∥v−π2

1v
∥
∥

2,T ≤ C‖v‖0,T . (4.11)
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Finally, we set π2v = π2
0v+π2

1 (v−π2
0v) and obtain an operator π2 which verifies (4.8) and

an operator π = (π1,π1,π2) which verifies (i)-(ii). �

We hence obtain a finite element which is locking-free in particular cases, cylindrical
shells for example. But let us note that the combination of the elements is highly unbal-
anced from the point of view of approximation.

5. Fully discretization

Because of its superior accuracy and lack of dissipation, the acceleration is usually ap-
proximated by a mid point rule

(
∂−→u
∂t

)

n
=
−→u n+1−−→u n

Δt
=
−→v n+1 +−→v n

2
. (5.1)

This leads to the fully discrete mixed formulation

(
Pn
h

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For each n, find −→u n+1
h ∈Vh, λn+1

h
∈Wh such that

m
(−→v n+1

h −−→v n
h

Δt
;
−→̂
v h

)
+A

(−→u n+1
h +−→u n

h

2
,
−→̂
v h

)

+B
(−→̂
v h;

λn+1
h

+ λn
h

2

)
= Ln+1/2

(−→̂
v h
) ∀−→̂v h ∈Vh,

B
(−→u n+1

h ;μ
h

)− ε2

1− coε2
C
(
λn+1
h

;ξ
h

)= 0 ∀ξ
h
∈Wh,

with
−→u n+1

h −−→u n
h

Δt
=
−→v n+1

h +−→v n
h

2
, Ln+1/2 = Ln+1 +Ln

2
.

(5.2)

The convergence analysis will be based on the study of an error equation between the
discrete solution and an appropriate projection of the continuous one. Let (−→u ,λ) be the
solution of (3.2); we construct displacement and multiplicator projections by solving at
time tn,

(
π−→u n,πmλ

n
)
∈Vh×Wh,

A
(
π−→u n;

−→̂
v h

)
+B

(−→̂
v h;πmλ

n
)
= A

(−→u (tn
)
;
−→̂
v h

)
+B

(−→̂
v h;λ

(
tn
)) ∀−→̂v h ∈Vh

B
(
π−→u n; λ̂

h

)
− ε2

1− coε2
C
(
πmλ

n; λ̂
h

)
= 0 ∀λ̂

h
∈Wh.

(5.3)

We define a discrete approximation of velocity fields and errors fields by

π−→v n+1 +π−→v n

2
= π−→u n+1−π−→u n

Δt
, π−→v 0 = π−→u 0,

e−→u n =−→u n
h−π−→u n, e−→v n =−→v n

h−π−→v n, eλn = λn
h
−πmλ

n
(5.4)

and have the following theorem.



Saloua Mani Aouadi 11

Theorem 5.1. The errors defined below are solutions of the problem:

m
(
e−→v n+1− e−→v n

Δt
;
−→̂
v h

)
+A

(
e−→u n+1 + e−→u n

2
,
−→̂
v h

)
+B

(−→̂
v h;

eλn+1 + eλn

2

)

=m
(−→̇
v
(
tn+1

)
+
−→̇
v
(
tn
)

2
− π−→v n+1−π−→v n

Δt
;
−→̂
v h

)
∀−→̂v h ∈Vh,

(5.5)

B
(
e−→u n+1;ξ

h

)− ε2

1− coε2
C
(
eλn+1;ξ

h

)= 0 ∀ξ
h
∈Wh. (5.6)

Proof. Since (−→u n
h;λn

h
) is solution of (Ph

n) and (−→u ;λ) is solution of (3.2), we have

m
(
e−→v n+1− e−→v n

Δt
;
−→̂
v h

)
+A

(
e−→u n+1 + e−→u n

2
,
−→̂
v h

)
+B

(−→̂
v h;

eλn+1 + eλn

2

)

= Ln+1/2(−→̂v h
)−m

(
π−→v n+1−π−→v n

Δt
;
−→̂
v h

)
−A

(
π−→u n+1 +π−→u n

2
,
−→̂
v h

)

−B

(−→̂
v h;

πmλ
n+1 +πmλ

n

2

)

=m
(−→̇
v
(
tn+1

)
+
−→̇
v
(
tn
)

2
;
−→̂
v h

)
−m

(
π−→v n+1−π−→v n

Δt
;
−→̂
v h

)

−A
(−→u (tn+1

)
+−→u (tn

)

2
,
−→̂
v h

)
−B

(−→̂
v h;

λ
(
tn+1

)
+ λ
(
tn
)

2

)

∀−→̂v h ∈Vh,

(5.7)

which proves (5.5). Equation (5.6) is a direct consequence of the πm definition. �

6. Convergence

We set for
−→̂
v h ∈ Vh, Ln+1/2

1 (
−→̂
v h)=m((

−→̇
v (tn+1) +

−→̇
v (tn))/2− (π−→v n+1−π−→v n)/Δt,

−→̂
v h) and

write (5.5) at time tn, with the test function
−→̂
v h = Δt((e−→v n

h + e−→v n−1
h )/2)∈ Vh. By adding

the resulting equations from one to n and using (5.6), we obtain

1
2
m
(
e−→v n;e−→v n

)
+

1
2
A
(
e−→u n;e−→u n

)
+

ε2

2
(
1− coε2

)C
(
eλn;eλn

)

=
n∑

i=1

Li−1/2
1

(
e−→u i−e−→u i−1)+

1
2
m
(
e−→v 0,e−→v 0)+

1
2
A
(
e−→u 0;e−→u 0)+

ε2

2
(
1−coε2

)C
(
eλ0;eλ0

)
.

(6.1)

Hence, the energy estimate on the error leads to an error bound if we control the trunca-
tion errors Li−1/2

1 . This is the purpose of the following lemma.
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Lemma 6.1. The inertia truncation error satisfies

n∑

i=1

Li−1/2
1

(
e−→u i− e−→u i−1)≤ Δt

4

n−1∑

i=1

m
(
e−→v i,e−→v i

)
+

1
4
m
(
e−→v 0,e−→v 0)

+
1
4
m
(
e−→v n,e−→v n

)
+Co

{
Δt2‖−→u ‖W4,∞(0,T ;L2) +

∥
∥(π− Id)(−→u )

∥
∥
W2,∞(0,T ;L2)

}2
.

(6.2)

Proof. We note for n≥ 1, t−→v n = (
−→̇
v (tn) +

−→̇
v (tn−1))/2− (π−→v n−π−→v n−1)/Δt. By definition

of the error field, we have

n∑

i=1

Li−1/2
1

(
e−→u i− e−→u i−1)= Δt

n∑

i=1

m
(
tvi,

e−→v i + e−→v i−1

2

)

= Δt

2

n−1∑

i=1

m
(
t−→v i + t−→v i+1,e−→v i

)
+
Δt

2
m
(
t−→v n,e−→v n

)
+
Δt

2
m
(
t−→v 1,e−→v 0).

(6.3)

By Cauchy Schwarz, we deduce the estimate

∣
∣
∣
∣
∣

n∑

i=1

Li−1/2
1

(
e−→u i− e−→u i−1)

∣
∣
∣
∣
∣≤

Δt

4

n−1∑

i=1

m
(
e−→v i,e−→v i

)

≤Co

{
1
4
m
(
e−→v 0,e−→v 0)+

Δt2

4

∥
∥t−→v 1

∥
∥2
L2

+
Δt

4

n−1∑

i=1

∥
∥t−→v i+t

−→v i+1
∥
∥2
L2 +

1
4
m
(
e−→v n,e−→v n

)
+
Δt2

4

∥
∥t−→v n

∥
∥2
L2

}

.

(6.4)

By definition of projection operators, we have for each i≥ 1,

t−→v i + t−→v i+1 =
−→̇
v
(
ti+1

)
+ 2
−→̇
v
(
ti
)

+
−→̇
v
(
ti−1

)

2
− π

−→̇
v i+1−π

−→̇
v i−1

Δt

=
{−→̇
v
(
ti+1

)
+ 2
−→̇
v
(
ti
)

+
−→̇
v
(
ti−1

)

2
− 2

−→u i+1− 2−→u i +−→u i−1

Δt2

}

− 2(π− Id)

(−→u (ti+1
)− 2−→u (ti

)
+−→u (ti−1

)

Δt2

)

.

(6.5)

By Taylor expansion, we get for i= 1, n− 1,

∥
∥t−→v i + t−→v i+1

∥
∥
L2 ≤ Δt2

2
‖−→u ‖W4,∞(0,T ;L2) +Co

∥
∥(π− Id)−→u ∥∥W2,∞(0,T ;L2). (6.6)

For i= n− 1, we obtain

∥
∥t−→v n

∥
∥
L2 ≤

∥
∥tvn−1

∥
∥
L2 +

Δt2

2
‖−→u ‖W4,∞(0,T ;L2) +Co

∥
∥(π− Id)

(−→u )∥∥W2,∞(0,T ;L2). (6.7)
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By adding, from i= 2 until n, it remains

∥
∥t−→v n

∥
∥
L2 ≤

∥
∥t−→v 1

∥
∥
L2 +

Co

Δt

{
Δt2‖−→u ‖W4,∞(0,T) +

∥
∥(π− Id)−→u ∥∥W2,∞(0,T)

}
. (6.8)

To estimate tv1, we use its definition

t−→v 1 =
−→̇
v
(
t1
)

+
−→̇
v
(
t0
)

2
+ 2
−→v (t0

)

Δt
− 2

−→u (t1
)−−→u (t0

)

Δt2

− 2(π− Id)
(−→u (t1

)−−→u (t0
)

Δt2
−
−→v (t0

)

Δt

)
.

(6.9)

We deduce that

Δt
∥
∥t−→v 1

∥
∥
L2 ≤ Co

Δt2

2
‖−→u ‖W4,∞(0,T ;L2) +Co

∥
∥(π− Id)−→u ∥∥W2,∞(0,T ;L2). (6.10)

The lemma is deduced by combining (6.4), (6.6), (6.8), and (6.10). �

We are thus able to prove the main convergence result.

Theorem 6.2. Under the hypothesis of Theorem 3.2, the errors on displacement field −→u n
h −−→u (tn), on velocity field −→v n

h−−→v (tn) and on membrane stress λn
h
− λ(tn) satisfy

Δt
∥
∥−→v (tn

)−−→v n
h

∥
∥
L2 +

∥
∥−→u (tn

)−−→u n
h

∥
∥
V + ε

∥
∥λ
(
tn
)− λn

h

∥
∥
L2 +

∥
∥
∣
∣λ
(
tn
)− λn

h

∣
∣
∥
∥

≤ Co

{
Δt
∥
∥e−→v 0

∥
∥
L2 +

∥
∥e−→u 0

∥
∥
H1 + ε

∥
∥eλ0∥∥

L2 +Δt2‖−→u ‖W4,∞(0,T ;L2)

+h2
{
‖−→u ‖L∞(0,T ;H3) +

∥
∥λ
∥
∥
L∞(0,T ;H2) +

∥
∥−→u ·−→a3

∥
∥
W2,∞(0,T ;H4 )

}}
.

(6.11)

Proof. From (6.1) and (6.2), we have

1
4
m
(
e−→v n;e−→v n

)
+

1
2
A
(
e−→u n;e−→u n

)
+

ε2

2
(
1− c0ε2

)C
(
eλn;eλn

)

≤ 3
4
m
(
e−→v 0,e−→v 0)+

1
2
A
(
e−→u 0;e−→u 0)+

ε2

2
(
1− c0ε2

)C
(
eλ0;eλ0)

+
Δt

4

n−1∑

i=1

m
(
e−→v i,e−→v i

)
+Co

{
Δt2‖−→u ‖W4,∞(0,T ;L2) +

∥
∥(π− Id)(−→u )

∥
∥
W2,∞(0,T ;L2)

}2
.

(6.12)

Using the discrete Gronwall’s lemma with θ = (1/4)
∑n−1

i=1 m(e−→v i,e−→v i) and

E = 3
4
m
(
e−→v 0,e−→v 0)+

1
2
A
(
e−→u 0;e−→u 0)+

ε2

2
(
1− c0ε2

)C
(
eλ0;eλ0

)

+Co
{
Δt2‖−→u ‖W4,∞(0,T ;L2) +

∥
∥(π− Id)(−→u )

∥
∥2
W2,∞(0,T ;L2)

}2
,

(6.13)
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we obtain

1
4
m
(
e−→v n;e−→v n

)
+

1
2
A
(
e−→u n;e−→u n

)
+

ε2

2
(
1− c0ε2

)C
(
eλn;eλn

)

≤ Co

{
m
(
e−→v 0,e−→v 0)+A

(
e−→u 0;e−→u 0)+

ε2

2
(
1− c0ε2

)C
(
eλ0;eλ0

)

+
{
Δt2‖−→u ‖W4,∞(0,T ;L2) +

∥
∥(π− Id)(−→u )

∥
∥2
W2,∞(0,T ;L2)

}2
}
.

(6.14)

To prove the required error estimation, we observe that we have

−→u n
h−−→u

(
tn
)= e−→u n−−→u (tn

)−π−→u n,
−→v n

h−−→v
(
tn
)= e−→v n−−→v (tn

)−π−→v n,

λn
h
− λ

(
tn
)= eλn− λ

(
tn
)−πn

mλ.

(6.15)

The terms −→u (tn)− π−→u n, λ(tn)− πn
mλ can be bounded using Theorem 3.2 and we obtain

for each n,

∥
∥−→u (tn

)−π−→u n
∥
∥
V +

∥
∥
∣
∣λ
(
tn
)−πmλ

n∣∣
∥
∥+ ε

∥
∥λ
(
tn
)−πmλ

n∥∥
W

≤ Coh
2
{∥
∥−→u (tn

)∥∥
H3 +

∥
∥−→u (tn

) ·−→a 3
∥
∥
H4 +

∥
∥λ
(
tn
)∥∥

H2

}
.

(6.16)

Moreover, for the additional term associated to velocities, we write using projection ve-
locities operators,

π−→v n−−→v (tn
)= 2

n∑

i=1

(π− id)

(−→u (ti
)−−→u (ti−1

)

Δt

)

−
n∑

i=1

{
−→v (ti

)−−→v (ti−1
)− 2

−→u (ti
)−−→u (ti−1

)

Δt

}

+ (π− id)(−→u )
(
t0
)
.

(6.17)

We deduce, by Taylor expansion, that

∥
∥π−→v n−−→v (tn

)∥∥
L2 ≤ Co

{
Δt‖−→u ‖W3,∞(0,T ;L2) +

∥
∥(π− id)−→u ∥∥L∞(0,T ;L2)

}
. (6.18)

The theorem follows by combining (6.14), (6.16), and (6.18). �

7. Conclusion

We have presented a well-posed dynamic mixed formulation for a shell problem and its
approximation by finite elements. We also proved the time and uniform space conver-
gence of our method. Our approach, which is valid for bending-dominated Koiter shells,
avoids locking under a strong restriction assumption on the geometrical midsurface and
a highly unbalanced combination of finite elements.
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