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1. Introduction

Elastodynamics problems of prestretched media arise in many areas of applied mathe-
matics, engineering, and natural sciences. Classical linear theory of elastic waves is not
sufficient for solving elastodynamics problems involving initially stressed bodies. That is
why a general nonlinear theory of elastic waves has been developed since the second half
of the 20th century. An analysis of the studies up to 1986 was made in [1, 2]. Later re-
searches are given in [3]. Recent researches involving dynamic stress field in multilayered
media with initial stress are given in [4–7].

In the present paper, a boundary-value problem of elastodynamics involving initially
stressed bodies which has no analytical solution considered and finite element method is
utilized to solve the problem numerically. In a study by Akbarov [7], the layers of the slab
have infinite length in the radial direction. In a recent paper by Akbarov and Guler [8],
the stress field in a half-plane covered by the prestretched layer under the action of ar-
bitrarly linearly located time-harmonic forces is investigated. In [8], the layer considered
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Figure 2.1. The geometry of the strip plate resting on a rigid foundation.

is extending to infinity in the x1-axis direction. In this study, a prestretched strip plate
which has a finite domain both for the x1-axis and x2-axis is considered. So the method
of solution used in [7, 8] is not suitable for the problem at hand.

2. Formulation of the problem

The problem of forced vibration of a prestretched strip plate resting on a rigid foundation
is considered. Strip plate and rigid half-plane occupy the regions

B = {(x1,x2) :−a≤ x1 ≤ a, 0≤ x2 ≤ h
}

(2.1)

and {(x1,x2) : −∞ < x1 <∞,−∞ < x2 ≤ 0}, respectively, in Cartesian coordinate system
Ox1x2 (see Figure 2.1).

We assume that strip plate is made of linearly elastic material, homogeneous and
isotropic. We also assume that, before contact, the plate is stressed from both sides by nor-
mal forces having amplitude q. A time-harmonic point-located normal load, P0δ(x1)eiωt,
is applied to the upper surface of the plate, where δ(x1) stands for the Dirac delta func-
tion. Following on from the above, it can be assumed that the plane deformation state
prevails.

According to Guz [1], for the case considered, the equations of motion are

∂σi j
∂xj

+ q
∂2ui
∂x2

1
= ρ0

∂2ui
∂t2

, i= 1,2, j = 1,2. (2.2)

In (2.2), ρ0 denotes the density of the material in the natural state, u1(x1,x2, t) and
u2(x1,x2, t) denote the displacement in the axis x1 and x2, respectively. For an isotropic
compressible material, we can write the following mechanical relations:

σi j = λθδi j + 2μεi j , θ = ε11 + ε22, (2.3)

where λ and μ are Láme constants and

εi j = 1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
. (2.4)

Here

ε= {ε11,ε22,ε12
}T

(2.5)
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denotes the deformation tensor and

σ = {σ11,σ22,σ12
}T

(2.6)

denotes the stress tensor. In (2.3), δi j denotes the Kronecker delta

δi j =
⎧
⎨

⎩
0, i �= j,

1, i= j.
(2.7)

In the case considered the relations

λ= Eν

(1 + ν)(1− 2ν)
, μ= E

2(1 + ν)
=G (2.8)

are valid, where E denotes the elasticity moduli and ν denotes the Possion ratio. We as-
sume that the following boundary conditions exist:

u1
∣
∣
x2=0 = 0, u2

∣
∣
x2=0 = 0,

(
q
∂u1

∂x1
+ σ11

)∣∣
∣
∣
x1=±a

= 0,
(
q
∂u2

∂x1
+ σ12

)∣∣
∣
∣
x1=±a

= 0,

σ21
∣
∣
x2=h = 0, σ22

∣
∣
x2=h = P0δ

(
x1
)
eiωt.

(2.9)

Since the applied point-located load is time-harmonic, all the dependent variables are
also harmonic and can be represented as

{
ui,σi j ,εi j

}= {ûi, σ̂ i j , ε̂i j
}
eiωt, (2.10)

where the superposed caret denotes the amplitude of the corresponding quantity. Here-
after the carets will be omitted. Using (2.3) and (2.4) in (2.2), we have the linearized
equations of motion in terms of displacement as follows:

(λ+ 2μ+ q)
∂2u1

∂x2
1

+μ
∂2u1

∂x2
2

+ (λ+μ)
∂2u2

∂x1∂x2
=−ρ0 ω

2 u1,

(μ+ q)
∂2u2

∂x2
1

+ (λ+ 2μ)
∂2u2

∂x2
2

+ (λ+μ)
∂2u1

∂x1∂x2
=−ρ0 ω

2 u2.

(2.11)

3. Finite element formulation

We have the dimensionless coordinate system by the following transformation:

x̂1 = x1

h
, x̂2 = x2

h
. (3.1)
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By multiplying both sides of the equations with h2 after substituting (3.1) in (2.2), we
have

h
∂σ11

∂x̂1
+h

∂σ12

∂x̂2
+ q

∂2u1

∂x̂2
1
=−ρ0 ω

2 h2 u1,

h
∂σ21

∂x̂1
+h

∂σ22

∂x̂2
+ q

∂2u2

∂x̂2
1
=−ρ0 ω

2 h2 u2.

(3.2)

Under the coordinate transformations (3.1), boundary conditions (2.9) will be as follows:

u1
∣
∣
x̂2=0 = 0, u2

∣
∣
x̂2=0 = 0,

(
q
∂u1

∂x̂1
+ σ11

)∣∣
∣
∣
x̂1=±a/h

= 0,
(
q
∂u2

∂x̂1
+ σ12

)∣∣
∣
∣
x̂1=±a/h

= 0,

σ21
∣
∣
x̂2=1 = 0, σ22

∣
∣
x̂2=1 = P0δ

(
hx̂1
)
eiωt.

(3.3)

We first multiply (3.2) by the test functions v1 = v1(x̂1, x̂2) and v2 = v2(x̂1, x̂2), respectively,
and then add the resultant equations side by side. After integrating the equation over the
domain

B̂ = {(x̂1, x̂2
)

:−a/h≤ x̂1 ≤ a/h, 0≤ x̂2 ≤ 1
}

, (3.4)

we get

∫ 1

0

∫ a/h

−a/h

[
h
∂σ11

∂x̂1
v1 +h

∂σ21

∂x̂1
v2 +h

∂σ12

∂x̂2
v1 +h

∂σ22

∂x̂2
v2 +q

∂2u1

∂x̂2
1
v1 +q

∂2u2

∂x̂2
1
v2

]
dx̂1dx̂2

=−
∫ 1

0

∫ a/h

−a/h
ρ0ω

2h2(u1v1 +u2v2
)
dx̂1dx̂2.

(3.5)

Applying integration by parts to (3.5) we get
∫

∂B̂

[
hσ11v1 cos

(
�n, x̂1

)
+hσ21v2 cos

(
�n, x̂1

)
+hσ12v1 cos

(
�n, x̂2

)
+hσ22v2 cos

(
�n, x̂2

)

+q
∂u1

∂x̂1
v1 cos

(
�n, x̂1

)
+q

∂u2

∂x̂1
v2 cos

(
�n, x̂1

)
]
ds

−
∫ 1

0

∫ a/h

−a/h

[
hσ11

∂v1

∂x̂1
+hσ21

∂v2

∂x̂1
+hσ12

∂v1

∂x̂2
+hσ22

∂v2

∂x̂2
+q

∂u1

∂x̂1

∂v1

∂x̂1
+q

∂u2

∂x̂1

∂v2

∂x̂1

]
dx̂1dx̂2

=−
∫ 1

0

∫ a/h

−a/h
ρ0ω

2h2(u1v1 +u2v2
)
dx̂1dx̂2,

(3.6)

where ∂B̂ denotes the boundary of the domain B̂. If we collect the domain integrals in
(3.6) together and define

Tij = σi j + σ0
in

∂uj

∂x̂n
, σ0

11 = q , σ0
in = 0 for in �=11, (3.7)
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Figure 3.1. The form of the boundary ∂B̂.

we get

∫ 1

0

∫ a/h

−a/h

[
hTij

∂vj
∂x̂i

− ρ0ω
2h2uivi

]
dx̂1dx̂2

=
∫

∂B̂

[
hσ11v1 cos

(
�n, x̂1

)
+hσ21v2 cos

(
�n, x̂1

)
+hσ12v1 cos

(
�n, x̂2

)

+hσ22v2 cos
(
�n, x̂2

)
+ q

∂u1

∂x̂1
v1 cos

(
�n, x̂1

)
+ q

∂u2

∂x̂1
v2 cos

(
�n, x̂1

)
]
ds.

(3.8)

The integral over the boundary ∂B̂ in (3.8) can be calculated as follows: let the boundary
∂B̂ be in the form given in Figure 3.1.

According to Figure 3.1 boundary ∂B̂ can be written as B1∪B2∪B3 ∪B4. The right-
hand side of (3.8) can be written as follows:

∫

∂B̂

{
cos
(
�n, x̂1

)
[
hσ11v1 +hσ21v2 + q

∂u1

∂x̂1
v1 + q

∂u2

∂x̂1
v2

]
+ cos

(
�n, x̂2

)[
hσ12v1 +hσ22v2

]
}
ds.

(3.9)

We have the integrals

∫ 1

0
1·
[
hσ11v1 +hσ21v2 + q

∂u1

∂x̂1
v1 + q

∂u2

∂x̂1
v2

]
dx̂2,

∫ a/h

−a/h
1·[hσ12v1 +hσ22v2

]
dx̂1,

∫ 1

0
(−1)

[
hσ11v1 +hσ21v2 + q

∂u1

∂x̂1
v1 + q

∂u2

∂x̂1
v2

]
dx̂2,

∫ a/h

−a/h
(−1)

[
hσ12v1 +hσ22v2

]
dx̂1,

(3.10)
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for the boundaries

B1 =
{
(
x̂1, x̂2

)
: x̂1 = a

h
, 0≤ x̂2 ≤ 1

}
, B2 =

{
(
x̂1, x̂2

)
:
−a
h
≤ x̂1 ≤ a

h
, x̂2 = 1

}
,

B3 =
{
(
x̂1, x̂2

)
: x̂1 = −a

h
, 0≤ x̂2 ≤ 1

}
, B4 =

{
(
x̂1, x̂2

)
:
−a
h
≤ x̂2 ≤ a

h
, x̂2 = 0

}
,

(3.11)

respectively. Using the conditions (2.9) in (3.10) we get the integral term

∫ a/h

−a/h
hσ22

∣
∣
x̂2=1ν2

∣
∣
x̂2=1dx̂1. (3.12)

Consequently, (3.8) can be written as

∫ 1

0

∫ a/h

−a/h

[
hTij

∂vj
∂x̂i

− ρ0ω
2h2uivi

]
dx̂1dx̂2 =

∫ a/h

−a/h
hσ22

∣
∣
x̂2=1ν2

∣
∣
x̂2=1dx̂1 (3.13)

or

∫ 1

0

∫ a/h

−a/h

[
hσ11

∂v1

∂x̂1
+hσ21

∂v2

∂x̂1
+hσ12

∂v1

∂x̂2
+hσ22

∂v2

∂x̂2
+ q

∂u1

∂x̂1

∂v1

∂x̂1
+ q

∂u2

∂x̂1

∂v2

∂x̂1

− ρ0ω
2h2(u1v1 +u2v2

)]
dx̂1dx̂2 =

∫ a/h

−a/h
hσ22

∣
∣
∣
x̂2=1

ν2

∣
∣
∣
x̂2=1

dx̂1.

(3.14)

The mechanical relations (2.3) and (2.4) under the transformation (3.1) can be written
explicity as follows:

σ11 = (λ+ 2μ)
1
h

∂u1

∂x̂1
+ λ

1
h

∂u2

∂x̂2
,

σ22 = λ
1
h

∂u1

∂x̂1
+ (λ+ 2μ)

1
h

∂u2

∂x̂2
,

σ12 = μ
1
h

(
∂u1

∂x̂2
+
∂u2

∂x̂1

)
.

(3.15)

After using boundary condition

σ22
∣
∣
x̂2=1 = P0δ

(
hx̂1
)
eiωt (3.16)

and the property

δ
(
a(x)

)= 1
a′(x)

δ(x), (3.17)

the right-hand side of the (3.13) can be written as

∫ a/h

−a/h
P0δ

(
x̂1
)
ν2
∣
∣
x̂2=1dx̂1. (3.18)
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After substituting relations (3.15) in (3.13) and using (3.18) as right-hand side we get

∫ 1

0

∫ a/h

−a/h

[{
(λ+2μ+q)

∂u1

∂x̂1
+λ

∂u2

∂x̂2

}
∂v1

∂x̂1
+
{
μ
∂u1

∂x̂2
+(μ+q)

∂u2

∂x̂1

}
∂v2

∂x̂1
+μ
{
∂u1

∂x̂2
+
∂u2

∂x̂1

}
∂v1

∂x̂2

+
{
λ
∂u1

∂x̂1
+ (λ+ 2μ)

∂u2

∂x̂2

}
∂v2

∂x̂2
− ρ0ω

2h2(u1v1 +u2v2
)
]
dx̂1dx̂2

=
∫ a/h

−a/h
P0δ

(
x̂1
)
ν2
∣
∣
x̂2=1dx̂1.

(3.19)

By dividing both sides of (3.19) to Láme constant μ, we get

∫ 1

0

∫ a/h

−a/h

[{(
q

μ
+
λ

μ
+2
)
∂u1

∂x̂1
+
λ

μ

∂u2

∂x̂2

}
∂v1

∂x̂1
+
{
∂u1

∂x̂2
+
(
q

μ
+1
)
∂u2

∂x̂1

}
∂v2

∂x̂1
+
{
∂u1

∂x̂2
+
∂u2

∂x̂1

}
∂v1

∂x̂2

+
{
λ

μ

∂u1

∂x̂1
+
(
λ

μ
+2
)
∂u2

∂x̂2

}
∂v2

∂x̂2
− ρ0ω

2h2

μ

(
u1v1 +u2v2

)
]
dx̂1dx̂2

=
∫ a/h

−a/h

P0

μ
δ
(
x̂1
)
ν2
∣
∣
x̂2=1dx̂1.

(3.20)

By (3.20), we get bilinear form a(u,v) and linear form l(v). Introducing the distortion
wave velocity

c2 =
√

μ

ρ0

(3.21)

and the dimensionless frequency

Ω= ωh

c2
, (3.22)

we obtain J(u) = (1/2)a(u,u)− l(u), the total energy functional, where u = u(u1,u2) as
follows:

J
(
u1,u2

)

= 1
2

∫ 1

0

∫ a/h

−a/h

[
q

μ

[(
∂u1

∂x̂1

)2

+
(
∂u2

∂x̂1

)2]
+
{
∂u1

∂x̂2
+
∂u2

∂x̂1

}2

+ 2
λ

μ
·∂u1

∂x̂1
·∂u2

∂x̂2

+
(
λ

μ
+2
)[(

∂u1

∂x̂1

)2

+
(
∂u2

∂x̂2

)2]
−Ω2(u2

1 +u2
2

)
]
dx̂1dx̂2−

∫ a/h

−a/h

P0

μ
δ
(
x̂1
)
u2
∣
∣
x̂2=1dx̂1.

(3.23)

As known from calculus of variation [9], by equating the first variational of the total
energy functional, J(u) given in (3.23), to zero one must derive (2.11) and boundary
conditions (3.3). In order to achieve this result we use

δJ
(
u1,u2

)= 0. (3.24)
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In (3.24) we equate the integrands involving δu1 and δu2 to zero. Consequently, we obtain

−u1ρ0ω
2 = q

μ
·∂

2u1

∂x2
1

+
λ

μ

∂2u2

∂x1∂x2
+
(
λ

μ
+ 2
)
∂2u1

∂x2
1

+
∂2u1

∂x2
2

+
∂2u2

∂x1∂x2
,

−u2ρ0ω
2 = q

μ
·∂

2u2

∂x2
1

+
∂2u1

∂x1∂x2
+
∂2u2

∂x2
1

+
λ

μ

∂2u1

∂x1∂x2
+
(
λ

μ
+ 2
)
∂2u2

∂x2
2

,

(3.25)

(
q
∂u1

∂x1
+ σ11

)∣∣
∣
∣
x̂1=±a/h

= 0, σ12|x̂2=1 = 0,

(
q
∂u2

∂x1
+ σ12

)∣∣
∣
∣
x̂1=±a/h

= 0, σ22|x̂2=1 = P0δ(x̂1),

(3.26)

as boundary conditions. It is worthy of noting that we get (3.25) by using functional
(3.23) which is obtained by (3.20). Therefore, if we get the total energy functional using
(3.19), we obtain (2.2) the linearized equations of motion.

The total energy functional, J(u), will be minimized using Rayleigh-Ritz method.
Firstly, we divide the domain B̂ into finitely many Bi subdomains. We utilize displace-
ment-based finite element method, so the functions to be sought in each finite element
will be displacements. Thus, in the eth finite element, we get

u(e)
1 =

M∑

k=1

akNk(r,s),

u(e)
2 =

M∑

k=1

bkNk(r,s).

(3.27)

In (3.27), M denotes the nodes in eth finite element. The shape functions Nk(r,s), defined
on the unit square [−1,1]× [−1,1], are

N1(r,s)= 1
4

(
r2−r)(s2−s) N2(r,s)= 1

4

(
r2 +r

)(
s2−s) N3(r,s)= 1

4

(
r2 +r

)(
s2 +s

)
,

N4(r,s)= 1
4

(
r2−r)(s2 +s

)
N5(r,s)=−1

2

(
r2−1

)(
s2−s) N6(r,s)=−1

2

(
r2 +r

)(
s2−1

)
,

N7(r,s)=−1
2

(
r2−1

)(
s2 +s

)
N8(r,s)=−1

2

(
r2−r)(s2−1

)
N9(r,s)= (r2−1

)(
s2−1

)

(3.28)

(see Figure 3.2). Substituting (3.27) in (3.23) we get the linear algebraic system

Au= f , (3.29)

according to Rayleigh-Ritz method. In (3.29), matrix A denotes the stiffness matrix of the
system and is given by

A(e) =
⎡

⎣

[
A(e)

11

] [
A(e)

12

]

[
A(e)

21

] [
A(e)

22

]

⎤

⎦ (3.30)
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Figure 3.2. The order of the nodes of a finite element defined on [−1,1]× [−1,1].

on the eth finite element. In (3.30) we have

[
A(e)

11

]=
∫ 1

0

∫ a/h

−a/h

[
∂Nij

∂x2
·∂Nkl

∂x2
+
(
λ

μ
+ 2
)
∂Nij

∂x1
·∂Nkl

∂x1
−Ω2NijNkl

]
dx̂1dx̂2,

[
A(e)

12

]=
∫ 1

0

∫ a/h

−a/h

[
∂Nij

∂x1
·∂Nkl

∂x2
+
λ

μ
·∂Nij

∂x2
·∂Nkl

∂x1

]
dx̂1dx̂2,

[
A(e)

21

]=
∫ 1

0

∫ a/h

−a/h

[
∂Nij

∂x2
·∂Nkl

∂x1
+
λ

μ
·∂Nij

∂x1
·∂Nkl

∂x2

]
dx̂1dx̂2,

[
A(e)

22

]=
∫ 1

0

∫ a/h

−a/h

[
∂Nij

∂x1
·∂Nkl

∂x1
+
(
λ

μ
+ 2
)
∂Nij

∂x2
·∂Nkl

∂x2
−Ω2NijNkl

]
dx̂1dx̂2.

(3.31)

In (3.31), the subscripts i, j,k, and l should take the values i, j, k, l = 1, . . . ,M. In (3.29)
the vector u is as follows:

u= {[ak
][
bk
]}T

, (3.32)

and the components of the vector u gives values of the displacements at the nodes in the
directions x1 and x2. The vector f in (3.29) is given by

f =
{
P0

μ
Nij

∣
∣
∣
∣x̂1=0
x̂2=1

}T

. (3.33)

By using the displacements obtained from solving (3.29) in

σ =DBu, (3.34)

we obtain the stresses. In (3.34), matrix D is given by

D = 2
1− 2ν

⎡

⎢
⎣

1− ν ν 0
ν 1− ν 0
0 0 1− 2ν

⎤

⎥
⎦ , (3.35)
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and matrix B is given by

B=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂N1

∂r
··· ∂N9

∂r
0 ··· 0

0 ··· 0
∂N1

∂s
··· ∂N9

∂s

∂N1

∂s
··· ∂N9

∂s

∂N1

∂r
··· ∂N9

∂r

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

3×18

. (3.36)

4. Numerical results

In order to see the validity of the algorithm and programmes, the case where Ω= 0 and
q = 0 is selected and the number of finite elements in the direction of x1-axis is increased.
The results obtained in the case considered approach the corresponding ones in the static
loading case which are given in Uflyand [10]. Let η denote the dimensionless parameter
characterizing the initial stress in the strip plate and is given by η = q/μ. Consider the
distribution of stresses and displacements in the interface plane (where x2/h = 0) when
η = 0. It is seen that the problem is an axisymmetric problem with respect to x1 = 0
plane. The numerical results in Figures 4.1, 4.2, and 4.3 are obtained under the following
assumptions: Ω= 0, q = 0, ν= 0.33, and h/2a= 0.2.

In Figures 4.1 and 4.2, the distribution of the displacements u1 and u2 in the direction
of x1-axis is given. Increasing the number of finite elements in the direction of x1-axis, it
is seen that the displacements are approaching to each other asymptotically.

In Figure 4.3 the stress distribution in the direction of x1-axis is given. The results
obtained here coincide with the ones given in [10]. It is seen that the values of σ22 decrease
towards the sides of the strip plate where x1 =±a.

In Figure 4.4 the stress distribution in the direction of x1-axis for various Ω values is
given. It is seen that increasing the dimensonless frequency Ω increases the stress σ22.
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However, there are such points on the interface plane along the x1-axis at which the di-
mensonless frequency Ω does not affect the values of the stress σ22.

5. Conclusions

In this paper, mathematical formulation of forced vibration of a prestretched strip plate
resting on a rigid foundation is given in the framework of the three-dimensional lin-
earized theory of elastodynamics. A numerical algorithm is developed for both the static
and dynamic loading cases. The numerical results are presented for the distribution of
displacements and stresses. These numerical results indicate the validity of the formula-
tion. It is seen that there are some points on the interface plane at which the dimensionless
frequency does not affect the stress σ22.
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