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1. Introduction

In this paper, we study the behavior of solutions of the nonautonomous 2D g-Navier-Stokes
equations. These equations are a variation of the standard Navier-Stokes equations, and they
assume the form,

∂u

∂t
− νΔu + (u · ∇)u +∇p = f in Ω,

1
g
(∇ · gu) = ∇g

g
·u +∇ ·u = 0 in Ω,

(1.1)

where g = g(x1, x2) is a suitable smooth real-valued function defined on (x1, x2) ∈ Ω and
Ω is a suitable bounded domain in R

2. Notice that if g(x1, x2) = 1, then (1.1) reduce to the
standard Navier-Stokes equations.

In addition, we assume that the function f(·, t) =: f(t) ∈ L2
loc(R;E) is translation

bounded, where E = L2(Ω) orH−1(Ω). This property implies that

‖f‖2
L2
b

= ‖f‖2
L2
b
(R;E) = sup

t∈R

∫ t+1
t

‖f(s)‖2E ds < ∞. (1.2)
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We consider this equation in an appropriate Hilbert space and show that there is an
attractor A which all solutions approach as t → ∞. The basic idea of our construction, which
is motivated by the works of [1, 2].

In [1, 2] the author established the global regularity of solutions of the g-Navier-
Stokes equations. For the boundary conditions, we will consider the periodic boundary
conditions, while same results can be got for the Dirichlet boundary conditions on the smooth
bounded domain. For many years, the Navier-Stokes equations were investigated by many
authors and the existence of the attractors for 2D Navier-Stokes equations was first proved
by Ladyzhenskaya [3, 4] and independently by Foias and Temam [5]. The finite-dimensional
property of the global attractor for general dissipative equations was first proved by Mallet-
Paret [6]. For the analysis on the Navier-Stokes equations, one can refer to [7] and specially
[8] for the periodic boundary conditions.

The book in [9] considers some special classes of such systems and studies sy-
stematically the notion of uniform attractor parallelling to that of global attractor for
autonomous systems. Later on, [10] presents a general approach that is well suited to study
equations arising in mathematical physics. In this approach, to construct the uniform (or
trajectory) attractors, instead of the associated process {Uσ(t, τ), t ≥ τ, τ ∈ R} one should
consider a family of processes {Uσ(t, τ)}, σ ∈ Σ in some Banach space E, where the functional
parameter σ0(s), s ∈ R is called the symbol and Σ is the symbol space including σ0(s). The
approach preserves the leading concept of invariance which implies the structure of uniform
attractor described by the representation as a union of sections of all kernels of the family of
processes. The kernel is the set of all complete trajectories of a process.

In the paper, we study the existence of compact uniform attractor for the non-
autonomous the two dimensional g-Navier-Stokes equations in the periodic boundary
conditions Ω. We apply measure of noncompactness method to nonautonomous g-Navier-
Stokes equations equation with external forces f(x, t) in L2

loc(R;E) which is normal function
(see Definition 4.2). Last, the fractal dimension is estimated for the kernel sections of the
uniform attractors obtained.

2. Functional Setting

Let Ω = (0, 1) × (0, 1) and we assume that the function g(x) = g(x1, x2) satisfies the following
properties:

(1) g(x) ∈ C∞
per(Ω) and

(2) there exist constants m0 = m0(g) and M0 = M0(g) such that, for all x ∈ Ω, 0 <
m0 ≤ g(x) ≤ M0. Note that the constant function g ≡ 1 satisfies these conditions.

We denote by L2(Ω, g) the space with the scalar product and the norm given by

(u, v)g =
∫
Ω
(u ·v)g dx, |u|2g = (u, u)g, (2.1)

as well as H1(Ω, g)with the norm

‖u‖H1(Ω,g) =

[
(u, u)g +

2∑
i=1

(
Diu,Diu

)
g

]1/2
, (2.2)

where ∂u/∂xi = Diu.
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Then for the functional setting of (1.1), we use the following functional spaces

Hg = ClL2
per(Ω,g)

{
u ∈ C∞

per(Ω) : ∇ · gu = 0,
∫
Ω
udx = 0

}
,

Vg =
{
u ∈ H1

per(Ω, g) : ∇ · gu = 0,
∫
Ω
udx = 0

}
,

(2.3)

where Hg is endowed with the scalar product and the norm in L2(Ω, g), and Vg is the spaces
with the scalar product and the norm given by

((u, v))g =
∫
Ω
(∇u · ∇v)g dx, ‖u‖g = ((u, u))g. (2.4)

Also, we define the orthogonal projection Pg as

Pg : L2
per(Ω, g) −→ Hg (2.5)

and we have that Q ⊆ H⊥
g , where

Q = ClL2
per(Ω,g)

{∇φ : φ ∈ C1(Ω,R
)}

. (2.6)

Then, we define the g-Laplacian operator

−Δgu ≡ 1
g
(∇ · g∇)u = −Δu − 1

g
(∇g · ∇)u (2.7)

to have the linear operator

Agu = Pg

[
− 1
g
(∇ · (g∇u))

]
. (2.8)

For the linear operator Ag , the following hold (see [1, 2]):
(1) Ag is a positive, self-adjoint operator with compact inverse, where the domain of

Ag, D(Ag) = Vg ∩H2(Ω, g).
(2) There exist countable eigenvalues of Ag satisfying

0 < λg ≤ λ1 ≤ λ2 ≤ λ3 ≤ · · · , (2.9)

where λg = 4π2m/M and λ1 is the smallest eigenvalue of Ag . In addition, there exists the
corresponding collection of eigenfunctions {e1, e2, e3, . . .} which forms an orthonormal basis
for Hg .
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Next, we denote the bilinear operator Bg(u, v) = Pg(u · ∇)v and the trilinear form

bg(u, v,w) =
n∑

i,j=1

∫
Ω
ui

(
Divj

)
wjg dx =

(
Pg(u · ∇)v,w

)
g, (2.10)

where u, v,w lie in appropriate subspaces of L2(Ω, g). Then, the form bg satisfies

bg(u, v,w) = −bg(u,w, v) for u, v,w ∈ Hg. (2.11)

We denote a linear operator R on Vg by

Ru = Pg

[
1
g
(∇g · ∇)u

]
for u ∈ Vg, (2.12)

and have R as a continuous linear operator from Vg intoHg such that

|(Ru, u)| ≤ |∇g|∞
m0

‖u‖g |u|g ≤ |∇g|∞
m0λ

1/2
g

‖u‖g for u ∈ Vg. (2.13)

We now rewrite (1.1) as abstract evolution equations,

du

dt
+ νAgu + Bgu + νRu = Pgf, u(τ) = uτ . (2.14)

Hereafter c will denote a generic scale invariant positive constant, which is ind-
ependent of the physical parameters in the equation and may be different from line to line
and even in the same line.

3. Abstract Results

Let E be a Banach space, and let a two-parameter family of mappings {U(t, τ)} = {U(t, τ) |
t ≥ τ, τ ∈ R} act on E:

U(t, τ) : E −→ E, t ≥ τ, τ ∈ R. (3.1)

Definition 3.1. A two-parameter family of mappings {U(t, τ)} is said to be a process in E if

U(t, s)U(s, τ) = U(t, τ), ∀t ≥ s ≥ τ, τ ∈ R,

U(τ, τ) = Id, τ ∈ R.
(3.2)

By B(E) we denote the collection of the bounded sets of E. We consider a family of
processes {Uσ(t, τ)} depending on a parameter σ ∈ Σ. The parameter σ is said to be the
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symbol of the process {Uσ(t, τ)} and the set Σ is said to be the symbol space. In the sequel Σ is
assumed to be a complete metric space.

A family of processes {Uσ(t, τ)}, σ ∈ Σ is said to be uniformly (with respect to
(w.r.t.)σ ∈ Σ) bounded if for any B ∈ B(E) the set

⋃
σ∈Σ

⋃
τ∈R

⋃
t≥τ

Uσ(t, τ)B ∈ B(E). (3.3)

A set B0 ⊂ E is said to be uniformly (w.r.t. σ ∈ Σ) absorbing for the family of processes
{Uσ(t, τ)}, σ ∈ Σ if for any τ ∈ R and every B ∈ B(E) there exists t0 = t0(τ, B) ≥ τ such that⋃

σ∈Σ Uσ(t, τ)B ⊆ B0 for all t ≥ t0.
A set P ⊂ E is said to be uniformly (w.r.t. σ ∈ Σ) attracting for the family of processes

{Uσ(t, τ)}, σ ∈ Σ if for an arbitrary fixed τ ∈ R,

lim
t→+∞

(
sup
σ∈Σ

distE
(
Uσ(t, τ)B, P

))
= 0. (3.4)

A family of processes possessing a compact uniformly absorbing set is called uniformly
compact and a family of processes possessing a compact uniformly attracting set is called
uniformly asymptotically compact.

Definition 3.2. A closed set AΣ ⊂ E is said to be the uniform (w.r.t. σ ∈ Σ) attractor of the
family of processes {Uσ(t, τ)}, σ ∈ Σ if it is uniformly (w.r.t. σ ∈ Σ) attracting and it is
contained in any closed uniformly (w.r.t. σ ∈ Σ) attracting set A′ of the family of processes
{Uσ(t, τ)}, σ ∈ Σ : AΣ ⊆ A′.

A family of processes {Uσ(t, τ)}, σ ∈ Σ acting in E is said to be (E × Σ, E)-continuous,
if for all fixed t and τ, t ≥ τ, τ ∈ R the mapping (u, σ) �→ Uσ(t, τ)u is continuous from E × Σ
into E.

A curve u(s), s ∈ R is said to be a complete trajectory of the process {U(t, τ)} if

U(t, τ)u(τ) = u(t), ∀ t ≥ τ, τ ∈ R. (3.5)

The kernel K of the process {U(t, τ)} consists of all bounded complete trajectories of
the process {U(t, τ)}:

K =
{
u(·) | u(·) satisfies (3.6), ‖u(s)‖E ≤ Mu for s ∈ R

}
. (3.6)

The set

K(s) = {u(s) | u(·) ∈ K} ⊆ E (3.7)

is said to be the kernel section at time t = s, s ∈ R.
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For convenience, let Bt =
⋃

σ∈Σ
⋃

s≥t Uσ(s, t)B, the closure B of the set B and Rτ = {t ∈
R | t ≥ τ}. Define the uniform (w.r.t. σ ∈ Σ) ω-limit set ωτ,Σ(B) of B by ωτ,Σ(B) =

⋂
t≥τ Bt

which can be characterized, analogously to that for semigroups, the following:

y ∈ ωτ,Σ(B) ⇐⇒ there are sequences
{
xn

} ⊂ B,
{
σn

} ⊂ Σ,
{
tn
} ⊂ Rτ

such that tn −→ +∞, Uσn(tn, τ)xn −→ y (n −→ ∞).
(3.8)

We recall characterize the existence of the uniform attractor for a family of processes
satisfying (3.8) in term of the concept of measure of noncompactness that was put forward
first by Kuratowski (see [11, 12]).

Let B ∈ B(E). Its Kuratowski measure of noncompactness κ(B) is defined by

κ(B) = inf{δ > 0 | B admits a finite covering by sets of diameter ≤ δ}. (3.9)

Definition 3.3. A family of processes {Uσ(t, τ)}, σ ∈ Σ is said to be uniformly (w.r.t. σ ∈
Σ)ω-limit compact if for any τ ∈ R and B ∈ B(E) the set Bt is bounded for every t and
limt→∞κ(Bt) = 0.

We present now a method to verify the uniform (w.r.t. σ ∈ Σ)ω-limit compactness
(see [13, 14]).

Definition 3.4. A family of processes {Uσ(t, τ)}, σ ∈ Σ is said to satisfy uniformly (w.r.t. σ ∈
Σ) Condition (C) if for any fixed τ ∈ R, B ∈ B(E) and ε > 0, there exist t0 = t(τ, B, ε) ≥ τ and
a finite-dimensional subspace E1 of E such that

(i) P(
⋃

σ∈Σ
⋃

t≥t0 Uσ(t, τ)B) is bounded; and

(ii) ‖(I − P)(
⋃

σ∈Σ
⋃

t≥t0 Uσ(t, τ)x)‖ ≤ ε, ∀x ∈ B,

where P : E → E1 is a bounded projector.

Therefore we have the following results.

Theorem 3.5. Let Σ be a metric space and let {T(t)} be a continuous invariant semigroup T(t)Σ = Σ
on Σ. A family of processes {Uσ(t, τ)}, σ ∈ Σ acting in E is (E × Σ, E)-(weakly) continuous and
possesses the compact uniform (w.r.t. σ ∈ Σ) attractor AΣ satisfying

AΣ = ω0,Σ
(
B0
)
= ωτ,Σ

(
B0
)
=
⋃
σ∈Σ

Kσ(0), ∀τ ∈ R, (3.10)

if it

(i) has a bounded uniformly (w.r.t. σ ∈ Σ) absorbing set B0, and

(ii) satisfies uniformly (w.r.t. σ ∈ Σ) Condition (C)

Moreover, if E is a uniformly convex Banach space then the converse is true.
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4. Uniform Attractor of Nonautonomous
g-Navier-Stokes Equations

This section deals with the existence of the attractor for the two-dimensional nonautonomous
g-Navier-Stokes equations with periodic boundary condition (see [1, 2]).

It is similar to autonomous case that we can establist the existence of solution of (2.14)
by the standard Faedo-Galerkin method.

In [1, 2], the authors have shown that the semigroup S(t) : Hg → Hg (t ≥ 0) associated
with the autonomous systems (2.14) possesses a global attractor. The main objective of this
section is to prove that the nonautonomous system (2.14) has uniform attractors in Hg

and Vg .
To this end, we first state some the following results of existence and uniqueness of

solutions of (2.14).

Proposition 4.1. Let f ∈ V ′ be given. Then for every uτ ∈ Hg there exists a unique solution u = u(t)
on [0,∞) of (2.14), satisfying u(τ) = uτ . Moreover,one has

u(t) ∈ C
[
0, T ;Hg

) ∩ L2(0, T ;Vg

)
, ∀T > 0. (4.1)

Finally, if uτ ∈ Vg , then

u(t) ∈ C
[
0, T ;Vg

) ∩ L2(0, T ;D(Ag

))
, ∀T > 0. (4.2)

Proof. The Proof of Proposition 4.1 is similar to autonomous in [1, 15].

Now we will write (2.14) in the operator form

∂tu = Aσ(t)(u), u|t=τ = uτ , (4.3)

where σ(s) = f(x, s) is the symbol of (4.3). Thus, if uτ ∈ Hg , then problem (4.3) has a unique
solution u(t) ∈ C([0, T];Hg)∩L2([0, T];Vg). This implies that the process {Uσ(t, τ)} given by
the formula Uσ(t, τ)uτ = u(t) is defined inHg .

Now recall the following facts that can be found in [13].

Definition 4.2. A function ϕ ∈ L2
loc(R;E) is said to be normal if for any ε > 0, there exists η > 0

such that

sup
t∈R

∫ t+η
t

‖ϕ(s)‖2Eds ≤ ε. (4.4)

Remark 4.3. Obviously, L2
n(R;E) ⊂ L2

b(R;E). Denote by L2
c(R;E) the class of translation

compact functions f(s), s ∈ R, whose family ofH(f) is precompact in L2
loc(R;E). It is proved

in [13] that L2
n(R;E) and L2

c(R;E) are closed subspaces of L2
b
(R;E), but the latter is a proper

subset of the former (for further details see [13]).

We now define the symbol space H(σ0) for (4.3). Let a fixed symbol σ0(s) = f0(s) =
f0(·, s) be normal functions in L2

loc(R;E); that is, the family of translation {f0(s + h), h ∈ R}
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forms a normal function set in L2
loc([T1, T2];E), where [T1, T2] is an arbitrary interval of the

time axis R. Therefore

H(σ0
)
= H(f0) = [f0(x, s + h) | h ∈ R

]
L2
loc(R;E). (4.5)

Now, for any f(x, t) ∈ H(f0), the problem (4.3) with f instead of f0 possesses a
corresponding process {Uf (t, τ)} acting on Vg . As is proved in [10], the family {Uf(t, τ) |
f ∈ H(f0)} of processes is (Vg ×H(f0);Vg)-continuous.

Let

Kf =
{
uf(x, t) for t ∈ R | uf(x, t) is solution of (4.3) satisfying

∥∥uf(·, t)
∥∥
H ≤ Mf ∀ t ∈ R

}
(4.6)

be the so-called kernel of the process {Uf(t, τ)}.

Proposition 4.4. The process {Uf(t, τ)} : Hg → Hg (Vg) associated with the (4.3) possesses
absorbing sets

B0 =
{
u ∈ Hg | |u|g ≤ ρ0

}
, B1 =

{
u ∈ Vg | ‖u‖g ≤ ρ1

}
(4.7)

which absorb all bounded sets ofHg . Moreover B0 and B1 absorb all bounded sets ofHg and Vg in the
norms of Hg and Vg , respectively.

Proof. The proof of Proposition 4.4 is similar to autonomous g-Navier-Stokes equation. We
can obtain absorbing sets in Hg and Vg the following from [1] and the proof of the main
results as follow.

The main results in this section are as follows.

Theorem 4.5. If f0(x, s) is normal function in L2
loc(R;V ′

g), then the processes {Uf0(t, τ)}
corresponding to problem (2.14) possess compact uniform (w.r.t. τ ∈ R) attractor A0 in Hg

which coincides with the uniform (w.r.t. f ∈ H(f0)) attractor AH(f0) of the family of processes
{Uf(t, τ)}, f ∈ H(f0):

A0 = AH(f0) = ω0,H(f0)
(B0
)
=
⋃

f∈H(f0)

Kf(0), (4.8)

where B0 is the uniformly (w.r.t. f ∈ Hg(f0)) absorbing set inHg andKf is the kernel of the process
{Uf(t, τ)}. Furthermore, the kernelKf is nonempty for all f ∈ H(f0).

Proof. As in the previous section, for fixedN, letH1 be the subspace spanned byw1; . . . ;wN ,
and H2 the orthogonal complement of H1 inHg . We write

u = u1 + u2; u1 ∈ H1, u2 ∈ H2 for any u ∈ Hg. (4.9)

Now, we only have to verify Condition (C). Namely, we need to estimate |u2(t)|2,
where u(t) = u1(t) + u2(t) is a solution of (2.14) given in Proposition 4.1.
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Multiplying (2.14) by u2, we have

(
du

dt
, u2

)
g

+
(
νAgu, u2

)
g
+
(
B(u, u), u2

)
g =
(
f, u2
)
g −
(
Ru, u2

)
g. (4.10)

It follows that

1
2
d

dt

∣∣u2
∣∣2
g + ν
∥∥ug

∥∥2
g ≤ ∣∣(B(u, u), u2

)
g

∣∣ + ∣∣(f, u2
)
g

∣∣ + (Ru, u2
)
g. (4.11)

Since bg satisfies the following inequality (see [15]):

∣∣bg(u, v,w)
∣∣ ≤ c|u|1/2g ‖u‖1/2g ‖v‖g |w|1/2g ‖w‖1/2g , ∀u, v,w ∈ Vg, (4.12)

thus,

∣∣(B(u, u), u2
)
g

∣∣ ≤ c|u|1/2g ‖u‖3/2g

∣∣u2
∣∣1/2
g

∥∥u2
∥∥1/2
g

≤ c

λm+1
|u|1/2g ‖u‖3/2g

∥∥u2
∥∥
g

≤ ν

6
∥∥u2
∥∥2
g + cρ0ρ

3
1.

(4.13)

Next, the Cauchy inequality,

∣∣(Ru, u2
)
g

∣∣ =
∣∣∣∣
(
ν

g
(∇g · ∇)u, u2

)
g

∣∣∣∣
≤ ν

m0
|∇g|∞‖u‖g

∣∣u2
∣∣
g

≤ ν

6
∥∥u2
∥∥2
g +

3νρ21|∇g|2∞
2m2

0λgλm+1
.

(4.14)

Finally, we have

∣∣(f, u2
)
g

∣∣ ≤ |f |V ′
g

∥∥u2
∥∥ ≤ ν

6
∥∥u2
∥∥2
g +

3
2ν

|f |2V ′
g
. (4.15)

Putting (4.13)–(4.15) together, there exist constant M1 = M1(m0, |∇g|∞, ρ0, ρ1) such that

1
2
d

dt

∣∣u2
∣∣2
g +

1
2
ν
∥∥u2
∥∥2
g ≤

3|f |V ′
g

2ν
+M1 . (4.16)
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Therefore, we deduce that

d

dt

∣∣u2
∣∣2
g + νλm+1

∣∣u2
∣∣2
2 ≤ 2M1 +

3
ν
|f |2V ′

g
. (4.17)

Here M1 depends on λm+1, is not increasing as λm+1 increasing.
By the Gronwall inequality, the above inequality implies

∣∣u2(t)
∣∣2
g ≤ ∣∣u2

(
t0 + 1

)∣∣2
2e

−νλm+1(t−(t0+1)) +
2M1

νλm+1
+
3
ν

∫ t
t0+1

e−νλm+1(t−s)|f |2V ′ds. (4.18)

Applying (4.4) for any ε

3
ν

∫ t
t0+1

e−νλm+1(t−s)|f |2V ′
g
ds <

ε

3
. (4.19)

Using (2.9) and let t1 = t0 + 1 + (1/νλm+1) ln(3ρ20/ε), then t ≥ t1 implies

2M
νλm+1

<
ε

3
;

∣∣u2(t0 + 1)
∣∣2
2e

−νλm+1(t−(t0+1)) ≤ ρ20e
−νλm+1(t−(t0+1))/2 <

ε

3
.

(4.20)

Therefore, we deduce from (4.18) that

∣∣u2
∣∣2
2 ≤ ε, ∀ t ≥ t1, f ∈ H(f0), (4.21)

which indicates {Uf(t, τ)}, f ∈ H(f0) satisfying uniform (w.t.r. f ∈ H(f0)) Condition (C)
in Hg . Applying Theorem 3.5 the proof is complete.

Theorem 4.6. If f0(x, s) is normal function in L2
loc(R;Hg), then the processes {Uf0(t, τ)}

corresponding to problem (2.14) possesses compact uniform (w.r.t. τ ∈ R) attractor A1 in Vg

which coincides with the uniform (w.r.t. f ∈ H(f0)) attractor AH(f0) of the family of processes
{Uf(t, τ)}, f ∈ H(f0):

A1 = AH(f0) = ω0,H(f0)
(B1
)
=
⋃

f∈H(f0)

Kf(0), (4.22)

where B1 is the uniformly (w.r.t. f ∈ H(f0)) absorbing set in Vg and Kf is the kernel of the process
{Uf(t, τ)}. Furthermore, the kernelKf is nonempty for all f ∈ H(f0).

Proof. Using Proposition 4.4, we have the family of processes {Uf (t, τ)}, f ∈ H(f0) corresp-
onding to (4.3) possesses the uniformly (w.r.t. f ∈ H(f0)) absorbing set in Vg .

Now we prove the existence of compact uniform (w.r.t. f ∈ H(f0)) attractor in Vg by
applying the method established in Section 3, that is, we testify that the family of processes
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{Uf(t, τ)}, f ∈ H(f0) corresponding to (4.3) satisfies uniform (w.r.t. f ∈ H(f0)) Condition
(C).

Multiplying (2.14) by Agu2(t), we have

(
dv

dt
,Agu2

)
+
(
νAgu,Agu2

)
+
(
Bg(u, u), Agu2

)
g
=
(
f,Agu2

) − (Ru,Agu2
)
g
. (4.23)

It follows that

1
2
d

dt

∥∥u2
∥∥2
g + ν
∣∣Agu2

∣∣2
g ≤ ∣∣(Bg(u, u), Agu2

)
g

∣∣ + ∣∣(f,Agu2
)
g

∣∣ + ∣∣(Ru,Agu2
)
g

∣∣. (4.24)

To estimate (Bg(u, u), Au2)g , we recall some inequalities [16]: for every u, v ∈ D(Ag):

∣∣Bg(u, v)
∣∣ ≤ c

⎧⎨
⎩
|u|1/2g ‖u‖1/2g ‖v‖1/2g

∣∣Agv
∣∣1/2
g ,

|u|1/2g

∣∣Agu
∣∣1/2
g ‖v‖g

(4.25)

(see [16])

|w|L∞(Ω)2 ≤ c‖w‖g
(
1 + log

∣∣Agw
∣∣

λg‖w‖2g

)1/2

(4.26)

from which we deduce that

∣∣Bg(u, v)
∣∣ ≤ c|u|L∞(Ω)|∇v|g |u|g |∇v|L∞(Ω) , (4.27)

and using, (4.26)

∣∣Bg(u, v)
∣∣ ≤ c

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

‖u‖g‖v‖g
(
1 + log

|Agu|2
λg‖w‖2g

)1/2

,

|u|g
∣∣Agv

∣∣
g

(
1 + log

∣∣A3/2
g v
∣∣2

λg‖Agv‖2g

)1/2

.

(4.28)

Expanding and using Young’s inequality, together with the first one of (4.28) and the second
one of (4.25), we have

∣∣(Bg(u, u), Agu2
)∣∣ ≤ ∣∣(Bg

(
u1, u1 + u2

)
, Agu2

)∣∣ + ∣∣(Bg

(
u2, u1 + u2

)
, Agu2

)∣∣
≤ cL1/2∥∥u1

∥∥
g

∣∣Agu2
∣∣
g

(∥∥u1
∥∥
g +
∥∥u2
∥∥
g

)
+ c
∣∣u2
∣∣1/2
g

∣∣Agu2
∣∣3/2
g

≤ ν

6
∣∣Agu2

∣∣2
g +

c

ν
ρ41L +

c

ν3
ρ20ρ

4
1, t ≥ t0 + 1,

(4.29)
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where we use

∣∣Agu1
∣∣2
g ≤ λm

∥∥u1
∥∥2
g (4.30)

and set

L = 1 + log
λm+1

λg
. (4.31)

Next, using the Cauchy inequality,

∣∣(Ru,Agu2
)
g | =
∣∣∣∣
(
ν

g
(∇g · ∇)u,Agu2

)
g

∣∣∣∣

≤ ν

m0
|∇g|∞‖u‖g

∣∣Agu2
∣∣
g

≤ ν

6
∣∣Agu2

∣∣2
g +

3ν
2
|∇g|2∞ρ21.

(4.32)

Finally, we estimate |(f,Agu2)| by

∣∣(f,Agu2
)∣∣ ≤ |f |g

∣∣Agu2
∣∣
2 ≤

ν

6
∣∣Agu2

∣∣2
g +

3
2ν

|f |2g. (4.33)

Putting (4.29)–(4.33) together, there exists a constant M2 such that

d

dt

∥∥u2
∥∥2
g + νλm+1

∥∥u2
∥∥2
g ≤ 3

ν
|f |g +M2. (4.34)

Here M2 = M2(ρ0, ρ1, L, ν, |∇g|) depends on λm+1, is not increasing as λm+1 increasing.
Therefore, by the Gronwall inequality, the above inequality implies

∥∥u2
∥∥2
g ≤ ∥∥u2

(
t0 + 1

)∥∥2
ge

−νλm+1(t−(t0+1)) +
2M2

νλm+1
+
3
ν

∫ t
t0+1

e−νλm+1(t−s)|f |2gds. (4.35)

Applying (4.4) for any ε

3
ν

∫ t
t0+1

e−νλm+1(t−s)|f |2gds <
ε

3
. (4.36)
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Using (2.9) and let t1 = t0 + 1 + (1/νλm+1) ln(3ρ21/ε), then t ≥ t1 implies

2M2

νλm+1
<

ε

3
;

∥∥u2
(
t0 + 1

)∥∥2
ge

−νλm+1(t−(t0+1)) ≤ ρ21e
−νλm+1(t−(t0+1)) <

ε

3
.

(4.37)

Therefore, we deduce from (4.35) that

∥∥u2
∥∥2
g ≤ ε, ∀t ≥ t1, f ∈ H(f0), (4.38)

which indicates {Uf(t, τ)}, f ∈ H(f0) satisfying uniform (w.t.r. f ∈ H(f0)) Condition (C)
in Vg .

5. Dimension of the Uniform Attractor

In this section we estimate the fractal dimension (for definition see, e.g., [2, 10, 15]) of the
kernel sections of the uniform attractors obtained in Section 4 by applying the methods
in [17].

Process {U(t, τ)} is said to be uniformly quasidifferentiable on {K(s)}τ∈R
, if there is a

family of bounded linear operators {L(t, τ ;u) | u ∈ K(s), t ≥ τ, τ ∈ R}, L(t, τ ;u) : E → E
such that

lim sup
ε→ 0 τ∈R

sup
u,v∈K(s)
0<|u−v|≤ε

|U(t, τ)v −U(t, τ)u − L(t, τ ;u)(v − u)|
|v − u| = 0. (5.1)

We want to estimate the fractal dimension of the kernel sections K(s) of the process
{U(t, τ)} generated by the abstract evolutionary (2.14). Assume that {L(t, τ ;u)} is generated
by the variational equation corresponding to (2.14)

∂tw = F ′(u, t)w, w|t=τ = wτ ∈ E, t ≥ τ, τ ∈ R, (5.2)

that is, L(t, τ ;uτ)wτ = w(t) is the solution of (5.2), and u(t) = U(t, τ)uτ is the solution of
(2.14)with initial value uτ ∈ K(τ). For natural number j ∈ N, we set

q̃j = lim
T →+∞

sup
τ∈R

sup
uτ∈K(τ)

(
1
T

∫ τ+T
τ

Tr
(
F ′(u(s), s)

)
ds

)
, (5.3)

where Tr is trace of the operator.
We will need the following Theorem VIII.3.1 in [10] and [2].
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Theorem 5.1. Under the assumptions above, let us suppose that Uτ∈RK(τ) is relatively compact in
E, and there exists qj , j = 1, 2, . . ., such that

q̃j ≤ qj , for any j ≥ 1,

qn0 ≥ 0, qn0+1 < 0, for some n0 ≥ 1,

qj ≤ qn0 +
(
qn0 − qn0+1

)(
n0 − j

)
, ∀j = 1, 2, . . . .

(5.4)

Then,

dF(K(τ)) ≤ d0 := n0 +
qn0

qn0 − qn0+1
, ∀τ ∈ R. (5.5)

We now consider (2.14) with f ∈ L2
n(R;V ′

g). The equations possess a compact uniform
(w.r.t. f ∈ H(f)) attractor AH(f) and

⋃
τ∈R

Kf(τ) ⊂ AH(f). By [2, 10, 15], we know that
the associated process {Uf(t, τ)} is uniformly quasidifferentiable on {Kf(τ)}τ∈R

and the
quasidifferential is Hölder-continuous with respect to uτ ∈ Kf(τ). The corresponding
variational equation is

∂tw = −νAgu − Bgu − νRu + Pgf ≡ F ′(u(t), t)w, w|t=τ = wτ ∈ E, τ ∈ R. (5.6)

We have the main results in this section.

Theorem 5.2. Suppose that f(t) satisfies the assumptions of Theorem 4.5. Then, if γ = 1 −
(2|∇g|∞)/(m0λ

1/2
g ) > 0, the Uniform attractor A0 defined by (4.8) satisfies

dF

(
A0
) ≤
√

β

α
, (5.7)

where

α =
c2νm0λ

′
1γ

2M0
,

β =
c1d1

2ν3m0γ
sup

ϕj∈Hg |ϕj |≤1
j=1,2,...,m

1
T

∫ τ+T
τ

‖f(s)‖2V ′
g
ds,

(5.8)

the constant c1, c2 of (3.29) and (3.32) of Chapter V I in [15] and [2], λ′1 is the first eigenvalue of the
Stokes operator and d1 = |∇g|2∞/4m0 + |∇g|∞ +M0.

Proof. With Theorem 4.5 at our disposal we may apply the abstract framework in [2, 10, 15,
17].

For ξ1, ξ2, . . . , ξm ∈ Hg , let vj(t) = L(t, uτ) · ξj , where uτ ∈ Hg . Let {ϕj(s); j = 1, 2, . . . , m}
be an orthonormal basis for span {vj ; j = 1, 2, . . . , m}. Since vj ∈ Vg almost everywhere s ≥ τ ,
we can also assume that ϕj(s) ∈ Vg almost everywhere s ≥ τ . Then, similar to the Proof
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process of Theorems 4.5 and 4.6, we may obtain

m∑
i=1

(
F ′(U(s, τ)uτ , s)ϕi, ϕi

)
g = −ν

m∑
i=1

‖ϕj‖2g −
m∑
i=1

bg
(
ϕj,U(s, τ)uτ , ϕj

)

−
m∑
i=1

(
ν

g
(∇g · ∇)ϕj, ϕj

)
g

,

(5.9)

almost everywhere s ≥ τ . From this equality, and in particular using the Schwarz and Lieb-
Thirring inequality (see [2, 10, 15, 17]), one obtains

m∑
i=1

‖ϕ‖2g ≥ λ1 + · · · + λm ≥ m0

M0

(
λ′1 + · · · + λ′m

) ≥ m0

M0
c2λ

′
1m

2,

Trj
(
F ′(U(s, τ)uτ , s

)
g ≤ −ν

(
1 − |∇g|∞

m0λ
1/2
1

)
m∑
i=1

∥∥ϕj

∥∥2
g +
∥∥U(s, τ)uτ

∥∥
g

(
c1d1

m0

m∑
i=1

∥∥ϕj

∥∥2
g

)1/2

≤ −ν
2

(
1 − 2|∇g|∞

m0λ
1/2
1

)
m∑
i=1

∥∥ϕj

∥∥2
g +

c1d1

2νm0

∥∥U(s, τ)uτ

∥∥2
g

≤ − νm0

2M0

(
1 − 2|∇g|∞

m0λ
1/2
1

)
c2λ

′
1m

2 +
c1d1

2νm0

∥∥U(s, τ)uτ

∥∥2
g,

(5.10)

on the other hand, we can deduce (2.14) that

d

dt

∣∣U(s, τ)uτ

∣∣2
g + ν
∥∥U(s, τ)uτ

∥∥2
g ≤

‖f‖2
V ′
g

ν
+

2ν

m0λ
1/2
g

|∇g|∞
∥∥U(s, τ)uτ

∥∥2
g

(5.11)

for λg = 4π2m0/M0, and then

∫ t
τ

∥∥U(s, τ)uτ

∥∥2
gds ≤

(
1
ν2

∫ t
τ

‖f(s)‖2V ′
g
ds +

|uτ |2
ν

)(
1 − 2|∇g|∞

m0λ
1/2
g

)−1
, t ≥ τ. (5.12)

Now we define

qm = sup
ϕj∈Hg |ϕj |≤1
j=1,2,...,m

(
1
T

∫ τ+T
τ

Trj
(
F ′(U(s, τ)uτ , s

)
ds
))

g

, (5.13)
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Using Theorem 5.1, we have

q̃m ≤ − νm0

2M0

(
1 − 2|∇g|∞

m0λ
1/2
1

)
c2λ

′
1m

2 +
c1d1

2νm0

⎛
⎜⎜⎝ sup

ϕj∈Hg |ϕj |≤1
j=1,2,...,m

(
1
T

∫ τ+T
τ

∥∥U(s, τ)uτ

∥∥2
gds

)
⎞
⎟⎟⎠

≤ − νm0

2M0

(
1 − 2|∇g|∞

m0λ
1/2
1

)
c2λ

′
1m

2

+
c1d1

2νm0

⎛
⎜⎜⎝ 1

ν2
sup

ϕj∈Hg |ϕj |≤1
j=1,2,...,m

(
1
T

∫ τ+T
τ

‖f(s)‖2V ′
g
ds +

|uτ |2
νT

)(
1 − 2|∇g|∞

m0λ
1/2
g

)−1
⎞
⎟⎟⎠ ,

qm = lim sup
T →∞

q̃m ≤ −αm2 + β,

(5.14)

Hence

dimFA0(τ) ≤
√

β

α
. (5.15)
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