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1. Introduction

In the framework of the so-called geometric approach, many control problems with state
feedback and/or incomplete-state feedback (e.g., controllability and observability problems,
decoupling problems, and disturbance-rejection problems, etc.) have been studied for finite-
dimensional systems (see, e.g., [1, 2]). Further, the concept of (C,A, B)-pairs was first
introduced by Schumacher [3], and this concept has been used successfully to design
dynamic compensators. After that Curtain extended the geometric concepts to infinite-
dimensional systems and various control problems have been studied (see, e.g., [4–11]).
On the other hand, from the practical viewpoint, Ghosh [12] and Otsuka [13] studied the
concepts of simultaneous (C,A, B)-pairs and of generalized (C,A, B)-pairs, respectively, for
finite-dimensional systems, and the parameter-insensitive disturbance-rejection problems
for uncertain linear systems were studied. Then, Otsuka and Inaba [14–16] extended the
concepts of simultaneous invariant subspaces and simultaneous (C,A, B)-pairs to infinite-
dimensional systems. Further, Otsuka and Hinata [17] studied the concept of generalized
invariant subspaces for infinite-dimensional systems.
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The objective of this paper is to investigate the concept of generalized S(C,A, B)-pairs
for infinite-dimensional systems and to study the parameter-insensitive disturbance-rejection
problem with dynamic compensator.

The paper is organized as follows. Section 2 gives the concept of generalized
S(C,A, B)-pairs and its properties. In Section 3, the parameter-insensitive disturbance-
rejection problem with dynamic compensator is formulated and its solvability conditions
are presented. Section 4 gives an example to illustrate our results. Finally, some concluding
remarks are given in Section 5.

2. Generalized S(C,A, B)-pairs

First, we give some notations used throughout this investigation. Let B(X;Y) denote the set
of all bounded linear operators from a Hilbert space X into another Hilbert space Y; for
notational simplicity, we write B(X) for B(X;X). For a linear operator A the domain, the
image, the kernel, and the C0-semigroup generated by A are denoted by D(A), ImA, KerA,
and {SA(t); t ≥ 0}, respectively. Further, the dimension and the orthogonal complement of a
closed subspace V are denoted by dim(V) and (V)⊥, respectively.

Next, consider the following linear systems defined in a Hilbert space X:

S
(
α, β, γ

)
:

⎧
⎪⎨

⎪⎩

d

dt
x(t) = A(α)x(t) + B

(
β
)
u(t),

y(t) = C
(
γ
)
x(t),

(2.1)

where x(t) ∈ X, u(t) ∈ U := Rm, y(t) ∈ Y := R� are the state, the input, and the measurement
output, respectively. Operators A(α), B(β), and C(γ) are unknown in the sense that they are
represented as the forms:

A(α) = A0 + α1A1 + · · · + αpAp := A0 + ΔA(α),

B
(
β
)
= B0 + β1B1 + · · · + βqBq := B0 + ΔB

(
β
)
,

C
(
γ
)
= C0 + γ1C1 + · · · + γrCr := C0 + ΔC

(
γ
)
,

(2.2)

where α:=(α1, . . . , αp) ∈ Rp, β:=(β1, . . . , βq) ∈ Rq, γ :=(γ1, . . . , γr) ∈ Rr , A0 is the infinitesimal
generator of a C0-semigroup {SA0(t); t ≥ 0} on X, Ai ∈ B(X) (i = 1, . . . , p), Bi ∈ B(Rm;X) (i =
0, . . . , q), and Ci ∈ B(X;R�) (i = 0, . . . , r). Here, in the system S(α, β, γ) (A0, B0, C0)
and (ΔA(α),ΔB(β),ΔC(γ)) mean the nominal system model and a specific uncertain
perturbation, respectively.

Since Ai (i = 1, . . . , p) are bounded linear operators, we remark that A(α) always
generates a C0-semigroup and has the domain D(A(α)) = D(A0) for all α ∈ Rp. Further,
from the practical viewpoint it is assumed that the dimensions of input and output are finite.

Now, introduce a compensator (K,L,M,N) defined in a Hilbert spaceW of the form :

Σ :

⎧
⎪⎨

⎪⎩

d

dt
w(t) =Nw(t) +My(t),

u(t) = Lw(t) +Ky(t),
(2.3)
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whereN is the infinitesimal generator of a C0-semigroup {SN(t); t ≥ 0} on a Hilbert space W
with the domain D(N) = W,M ∈ B(R� ;W), L ∈ B(W;Rm), and K ∈ B(R� ;Rm).

If a compensator of the form Σ is applied to the system S(α, β, γ), the resulting closed-
loop system Scl(α, β, γ) with the extended state space Xe := X ⊕W is easily seen to be

d

dt

[
x(t)

w(t)

]

=

[
A(α) + B

(
β
)
KC
(
γ
)
B
(
β
)
L

MC
(
γ
)

N

][
x(t)

w(t)

]

, (2.4)

whereX⊕Wmeans the direct sum ofX andW. For the closed-loop system Scl(α, β, γ), define

xe(t) :=

[
x(t)

w(t)

]

, Ae
αβγ :=

[
A(α) + B

(
β
)
KC
(
γ
)
B
(
β
)
L

MC
(
γ
)

N

]

(2.5)

with domain D(Ae
αβγ

)(= D(A0) ⊕W).
For the system S(α, β, γ), we give the following invariant subspaces.

Definition 2.1. Let V be a closed subspace of X.
(i) V is said to be a generalized (A,B)-invariant if there exists an F ∈ B(X;Rm) such

that

(
A(α) + B

(
β
)
F
)
(V ∩D(A0)) ⊂ V, ∀α, β. (2.6)

Also F(V) := {F ∈ B(X;Rm) | (A(α) + B(β)F)(V ∩D(A0)) ⊂ V for all α, β}.
(ii) V is said to be a generalized S(A,B)-invariant if there exists an F ∈ B(X;Rm) such

that

SA(α)+B(β)F(t)V ⊂ V, ∀t ≥ 0 and all α, β. (2.7)

AlsoV(A,B;Λ) := {V | V is a generalized S(A,B)-invariant and is contained in a given closed
subspace Λ.}. Fs(V) := {F ∈ B(X;Rm) | SA(α)+B(β)F(t)V ⊂ V forall t ≥ 0 and all α, β}.

(iii) V is said to be a generalized (C,A)-invariant if there exists a G ∈ B(R� ;X) such
that

(
A(α) +GC

(
γ
))
(V ∩D(A0)) ⊂ V, ∀α, γ. (2.8)

Also G(V) := {G ∈ B(R� ;X) | (A(α) +GC(γ))(V ∩D(A0)) ⊂ V for all α, γ}.
(iv) V is said to be a generalized S(C,A)-invariant if there exists a G ∈ B(R� ;X) such

that

SA(α)+GC(γ)(t)V ⊂ V, ∀t ≥ 0 and all α, γ. (2.9)

Also V(ε;C,A) := {V | V is a generalized S(C,A)-invariant and contains a given closed
subspace ε}. Gs(V) := {G ∈ B(R� ;X) | SA(α)+GC(γ)(t)V ⊂ V for all t ≥ 0 and all α, γ}.
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Remark 2.2. (i) For the system S(α, β, γ) a generalized S(A,B)-invariant subspace V has the
property that if an arbitrary initial state x(0) ∈ V, then there exists a state feedback u(t) =
Fx(t)which is independent of α and β such that the state trajectory x(t) ∈ V for all t ≥ 0.

(ii) If A0 is a bounded linear operator on X (i.e., A0 ∈ B(X)), then the statements (i),
(ii) and (iii), (iv) in Definition 2.1 are equivalent, respectively. Further, in this case Fs(V) =
F(V) and Gs(V) = G(V).

Theorem 2.3 (see [17, 18]). Suppose that pi, qi (i = 1, . . . , p), ri, si (i = 1, . . . , q) are arbitrary fixed
real numbers such that pi < qi (i = 1, . . . , p) and ri < si (i = 1, . . . , q). Then, the following three
statements are equivalent.

(i) V is a generalized S(A,B)-invariant.

(ii) There exists an F ∈ B(X;Rm) such that SA0+B0F(t)V ⊂ V (t ≥ 0) and BiFV ⊂ V(i =
1, . . . , q), and AiV ⊂ V (i = 1, . . . , p).

(iii) There exists an F ∈ B(X;Rm) such that

SA(α)+B(β)F(t)V ⊂ V, (t ≥ 0) (2.10)

for all αi ∈ [pi, qi] (i = 1, . . . , p) and βi ∈ [ri, si] (i = 1, . . . , q).

(iv) There exists an F ∈ B(X;Rm) such that

SA(α)+B(β)F(t)V ⊂ V, (t ≥ 0) (2.11)

for all αi ∈ {pi, qi} (i = 1, . . . , p) and βi ∈ {ri, si} (i = 1, . . . , q).

The following theorem is the dual version of Theorem 2.3.

Theorem 2.4 (see [17, 18]). Suppose that pi, qi (i = 1, . . . , p), ti, ui (i = 1, . . . , r) are arbitrary fixed
real numbers such that pi < qi (i = 1, . . . , p) and ti < ui (i = 1, . . . , r). Then, the following three
statements are equivalent.

(i) V is a generalized S(C,A)-invariant.

(ii) There exists a G ∈ B(R� ;X) such that SA0+GC0(t)V ⊂ V (t ≥ 0) and GCiV ⊂ V (i =
1, . . . , r), and AiV ⊂ V (i = 1, . . . , p).

(iii) There exists a G ∈ B(R� ;X) such that

SA(α)+GC(γ)(t)V ⊂ V, (t ≥ 0) (2.12)

for all αi ∈ [pi, qi] (i = 1, . . . , p) and γi ∈ [ti, ui] (i = 1, . . . , r).

(iv) There exists a G ∈ B(R� ;X) such that

SA(α)+GC(γ)(t)V ⊂ V, (t ≥ 0) (2.13)

for all αi ∈ {pi, qi}(i = 1, . . . , p) and γi ∈ {ti, ui}(i = 1, . . . , r).
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For finite-dimensional systems, Schumacher [3] first introduced the concept of
(C,A, B)-pair. The following definition is a generalized and infinite-dimensional version of
(C,A, B)-pair.

Definition 2.5. Let V1 and V2 be closed subspaces of X. A pair (V1,V2) of subspaces is said to
be a generalized S(C,A, B)-pair if the following three conditions hold.

(i) V1 is a generalized S(C,A)-invariant.

(ii) V2 is a generalized S(A,B)-invariant.

(iii) V1 ⊂ V2.

For closed-loop system Scl(α, β, γ), we give the following definition.

Definition 2.6. Let Ve be a closed subspace of Xe.

(i) Ve is said to be a generalizedAe-invariant ifAe
α,β,γ

(Ve∩D(Ae
α,β,γ

)) ⊂ Ve for all α, β, γ.

(ii) Ve is said to be a generalized SAe(t)-invariant if SAe
α,β,γ

(t)Ve ⊂ Ve for all t ≥ 0 and all
α, β, γ.

The following lemma was shown by Zwart.

Lemma 2.7 (see [11]). Let Ve be a closed subspace of Xe and the following three subspaces are
introduced:

Sorth :=

{

x ∈ X
∣∣∣∣∣

[
x

w

]

∈ [Ve]⊥ for some w ∈ W
}

= PX
(
[Ve]⊥

)
,

S1 := [Sorth]⊥,

S2 :=

{

x ∈ X
∣∣∣∣∣

[
x

w

]

∈ [Ve] for some w ∈ W
}

= PX([Ve]),

(2.14)

where PX is the projection operator fromXe onto X along W. Then, the following statements hold.

(i) S1 = {x ∈ X|
[
x

0

]
∈ Ve}.

(ii) S1 ⊂ S2.

(iii) If dim(W) <∞, then S2 is a closed subspace of X and dim(S2 ∩ S⊥
1 ) <∞.

Lemma 2.8 (see [4, 6, 11]). Suppose that A is the infinitesimal generator of a C0-semigroup
{SA(t); t ≥ 0} onX, and V is a closed subspace ofX and Q1 ∈ B(X). Then, the following statements
hold.

(i) If SA(t)V ⊂ V for all t ≥ 0, then A(V ∩D(A)) ⊂ V.
(ii) If V ⊂ D(A) and AV ⊂ V, then SA(t)V ⊂ V for all t ≥ 0.
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(iii) If SA+Q1(t)V ⊂ V for all t ≥ 0, then V ∩D(A) = V.
(iv) If there exists a Q2 ∈ B(X) such that SA+Q2(t)V ⊂ V for all t ≥ 0 and (Q1 − Q2)(V ∩

D(A)) ⊂ V, then SA+Q1(t)V ⊂ V for all t ≥ 0.

(v) If there exists a Q2 ∈ B(X) such that SA+Q2(t)V ⊂ V for all t ≥ 0 and (Q1 − Q2)(V ∩
D(A)) = {0}, then SA+Q1(t)x = SA+Q2(t)x for all t ≥ 0 and all x ∈ V.

The following two lemmas are extensions of the results of Otsuka [13] to infinite-
dimensional systems.

Lemma 2.9. If a pair (V1,V2) of subspaces of X is a generalized S(C,A, B)-pair such that

q∑

i=1

ImBi ⊂ V1 ⊂ V2 ⊂
r⋂

i=1

KerCi, AiV2 ⊂ V1,
(
i = 1, . . . , p

)
, (2.15)

then there exist G ∈ Gs(V1), G(β) ∈ B(R� ;X), F(γ) ∈ Fs(V2), F0 ∈ B(X;Rm) and K ∈ B(R� ;Rm)
such that

G = B
(
β
)
K +G

(
β
)
, ImG

(
β
) ⊂ V2, F

(
γ
)
= KC

(
γ
)
+ F0, KerF0 ⊃ V1 (2.16)

for all (β, γ) ∈ Rq × Rr .

Proof. Suppose that a pair (V1,V2) is a generalized S(C,A, B)-pair satisfying the stated above
conditions. Since

∑q

i=1 ImBi ⊂ V2,we remark that V2 + ImB(β) = V2 + ImB0.

Claim 1. ĜC(γ)V1 ⊂ V2 + ImB0 for all Ĝ ∈ Gs(V1) and γ ∈ Rr .
To prove Claim 1, choose an arbitrary element x ∈ V1. Then, by Lemma 2.8(iii) there

exists an xn ∈ V1 ∩D(Ao) such that

lim
n→∞

xn = x. (2.17)

Now, noticing that (A(α) + ĜC(γ))(V1 ∩D(A0)) ⊂ V1 and V1 ⊂ V2 we have

ĜC
(
γ
)
xn =

(
A(α) + ĜC

(
γ
))
xn −A(α)xn

∈ V1 + V2 + ImB
(
β
)

= V2 + ImB
(
β
)
,

= V2 + ImB0.

(2.18)

Since dimB(β) < ∞, that V2 + ImB0 is a closed subspace. Further, noticing that ĜC(γ) are
bounded operators,

ĜC
(
γ
)
x = lim

n→∞
ĜC
(
γ
)
xn ∈ V2 + ImB0, (2.19)
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which proves Claim 1.

Next, Claims 2 and 3 hold as follows.

Claim 2. There exists a G ∈ Gs(V1) such that ImG ⊂ V2 + ImB0.
To prove Claim 2, choose a Ĝ ∈ Gs(V1) and x (= y + z) ∈ R� such that y ∈ ∑r

i=0 CiV1

and z ∈ φwith
∑r

i=0 CiV1 ⊕φ = R�.Define a linear map G ∈ Rn×� byGx := Ĝy. Then, for some
xi ∈ V1

Gx = Ĝy =
r∑

i=0

ĜCixi

∈ V2 + ImB0,
(
by Claim 1

)
,

(2.20)

which proves Claim 2.

Claim 3. There exists a K ∈ B(R� ;Rm) and G(β) ∈ B(R� ;X) such that G = B(β)K +
G(β), ImG(β) ⊂ V2 for all β ∈ Rq.

To prove Claim 3, let {y1, . . . , y�} be a basis of R�. Then, it follows from Claim 2 that
there exists an xi ∈ V2 and ui ∈ Rm such that

Gyi = xi + B0ui

= xi −
q∑

i=1

βiBiui + B0ui +
q∑

i=1

βiBiui

=

(

xi −
q∑

i=1

βiBiui

)

+ B
(
β
)
ui.

(2.21)

Define linear maps K ∈ B(R� ;Rm) and G(β) ∈ B(R� ;X) by

Kyi := ui, G
(
β
)
yi := xi −

q∑

i=1

βiBiui, respectively. (2.22)

Then,

Gyi = G
(
β
)
yi + B

(
β
)
Kyi, G

(
β
)
yi ∈ V2, (2.23)

which proves Claim 3.

Claim 4. There exists an F† ∈ B(X;Rm) such that Im(GC(γ) + B(β)F†)|V2 ⊂ V2.
In fact, it follows from Claim 2 and hypotheses of this lemma that there exists a G ∈

Gs(V1) such that

ImGC0|V2 ⊂ ImG ⊂ V2 + ImB0. (2.24)
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Let y ∈ V2 be an arbitrary element. Then, there exist x ∈ V2 and u ∈ Rm such that GC0y =
x + B0u. Define F† ∈ B(X;Rm) such that

F†y = −u, (2.25)

Hence, GC0y = x + B0(−F†y) which implies (GC0 + B0F
†)y = x ∈ V2. Then, we can easily

obtain

Im
(
GC
(
γ
)
+ B
(
β
)
F†
)
|V2 ⊂ V2, (2.26)

which proves Claim 4.

Now, choose F∗ ∈ Fs(V2) and define F0 ∈ B(X;Rm) such that

F0 = F∗ + F†, on V⊥
1 ,

F0 = 0, on V1.
(2.27)

Then, the following claim holds.

Claim 5. One has (A(α) + GC(γ) + B(β)F0)(V2 ∩ D(A0)) ⊂ V2 for all (α, β, γ) ∈ Rp × Rq × Rr

and V1 ⊂ KerF0.
In fact, at first, V1 ⊂ KerF0 is obvious. Therefore, we prove the first one. Since F∗ ∈

Fs(V2) implies SA(α)+B(β)F∗(t)V2 ⊂ V2, it follows from Lemma 2.8(v) that it suffices to show
(B(β)F0 +GC(γ) − B(β)F∗)V2 ⊂ V2 in order to prove SA(α)+B(β)F0+GC(γ)(t)V2 ⊂ V2.

Now, let x ∈ V2 be an arbitrary element. Then, there exists y ∈ V1 and z ∈ V⊥
1 ∩V2 such

that x = y + z. Then, we have

(
B
(
β
)
F0 +GC

(
γ
) − B(β)F∗)x =

(
B
(
β
)
F0 +GC

(
γ
) − B(β)F∗)y

+
(
B
(
β
)
F0 +GC

(
γ
) − B(β)F∗)z

=
(
GC
(
γ
) − B(β)F∗)y +

(
B
(
β
)
F† +GC

(
γ
))
z.

(2.28)

Now, it follows from Lemma 2.8(iii) that there exists a yn such that yn → y.
Hence,

(
GC
(
γ
) − B(β)F∗)yn =

(
A(α) +GC

(
γ
))
yn −

(
A(α) + B

(
β
)
F∗)yn ∈ V2. (2.29)

Noticing that (GC(γ)−B(β)F∗) is bounded linear operator, it follows from (2.28) and Claim 4
that

(
B
(
β
)
F0 +GC

(
γ
) − B(β)F∗)x ∈ V2, (2.30)

which proves Claim 5.
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Finally, define a bounded linear operator F(γ) ∈ B(X;Rm) such that F(γ) := KC(γ)+F0.
Then, the following claim holds.

Claim 6 (F(γ) ∈ F(V2)). In fact,

(
A(α) + B

(
β
)
F
(
γ
))
(V2 ∩D(A0))

=
(
A(α) + B

(
β
)
KC
(
γ
)
+ B
(
β
)
F0
)
(V2 ∩D(A0))

=
{
A(α) +

(
B
(
β
)
K +G

(
β
))
C
(
γ
) −G(β)C(γ) + B(β)F0

}
(V2 ∩D(A0))

=
{
A(α) +GC

(
γ
)
+ B
(
β
)
F0 −G

(
β
)
C
(
γ
)}

(V2 ∩D(A0)),
(
by Claim 3

)

⊂ (A(α) +GC
(
γ
)
+ B
(
β
)
F0
)
(V2 ∩D(A0)) + ImG

(
β
)

⊂ V2,
(
by Claim 3 and Claim 5

)
,

(2.31)

which proves Claim 6. This completes the proof of Lemma 2.9.

Lemma 2.10. If a pair (V1,V2) of subspaces of X is a generalized S(C,A, B)-pair such that

q∑

i=1

ImBi ⊂ V1 ⊂ V2 ⊂
r⋂

i=1

KerCi, AiV2 ⊂ V1,
(
i = 1, . . . , p

)
, V2 ⊂ D(A0), (2.32)

then there exist a compensator (K,L,M,N) on W := (V2 ∩ V⊥
1 ) and a subspace Ve of Xe such that

V1 = S1, V2 = S2, and Ve is generalized SAe(t)-invariant, where S1 and S2 are given in Lemma 2.7.

Proof. Suppose that there exists a pair (V1,V2) of subspaces satisfying the stated above
conditions. Since V1 and V2 are closed subspaces and V1 ⊂ V2, we have V2 = V1 ⊕ (V2 ∩ V⊥

1 ).
Define W := (V2 ∩ V⊥

1 ) and Xe := X ⊕W. Let R : V2 → W be a bounded linear operator such
that KerR = V1 and ImR = W. Then, there exists a R† ∈ B(W;V2) such that RR† = I, which
implies R†Rx = 0 ⇔ x ∈ V1 (see [2, p.95]). Further, define

Ve :=

{[
x

Rx

]

| x ∈ V2

}

. (2.33)

Then, it follows from Lemma 2.7 that V1 = S1 and V2 = S2. Further, it follows from Lemma 2.9
that there exist G ∈ Gs(V1), G(β) ∈ B(R� ;X), F(γ) ∈ Fs(V2), F0 ∈ B(X;Rm), and K ∈
B(R� ;Rm) such that

G = B
(
β
)
K +G

(
β
)
, ImG

(
β
) ⊂ V2, F

(
γ
)
= KC

(
γ
)
+ F0, KerF0 ⊃ V1 (2.34)

for all (β, γ) ∈ Rq × Rr .
Define L ∈ B(W;Rm) andM ∈ B(Rp;W) such that L := F0R

†,M := −RG(0).
Noticing that V1 ⊂ V2 ⊂ D(A0), it is easily shown that

(
A(α) + B

(
β
)
F0 +GC

(
γ
))Vi ⊂ Vi, (i = 1, 2), ∀α, β, γ. (2.35)
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Hence, since (A0 + B0F0 + GC0)V2 ⊂ V2 and V1 = KerR, we have KerR ⊂ KerR(A0 + B0F0 +
GC0)|V2 which is equivalent to that there exists anN ∈ B(W) such that

NR = R(A0 + B0F0 +GC0)|V2
= R(A0 + B0F(0) +G(0)C0)|V2 . (2.36)

Then, the following two Claims hold.

Claim 1. R(A(α) + B(β)F(γ))V2 = R(A0 + B0F(0))V2 for all α, β, γ.
In fact, let x be an arbitrary element of V2:

R
(
A(α) + B

(
β
)
F
(
γ
))
x − R(A0 + B0F(0))x

= R
(
α1A1 + · · · + αpAp

)
x + RB

(
β
)(
KC
(
γ
)
+ F0

)
x − RB0(KC0 + F0)x

= RB
(
β
)
KC
(
γ
)
x − RB0KC0x + R

(
B
(
β
) − B0

)
F0x

= R
{
B
(
β
)
KC0 − B0KC0

}
x

= 0

(2.37)

Claim 2. (MC(γ) +NR)V2 = R(A(α) + B(β)F(γ))V2 for all α, β, γ .
In fact,

(
MC

(
γ
)
+NR

)V2 = (MC0 +NR)V2

= (−RG(0)C0 + R(A0 + B0F(0) +G(0)C0))V2

= R(A0 + B0F(0))V2

= R
(
A(α) + B

(
β
)
F
(
γ
))V2,

(
by Claim 1

)
.

(2.38)

Finally, we have the following claim.

Claim 3. Ae(α, β, γ)Ve ⊂ Ve for all α, β, γ .
Choose an arbitrary element

[
x

Rx

]
of Ve (x ∈ V2).

Since R†Rx − x ∈ KerR = V1,we have LRx = F0x. Then,

[
A(α) + B

(
β
)
KC
(
γ
)
B
(
β
)
L

MC
(
γ
)

N

][
x

Rx

]

=

[(
A(α) + B

(
β
)
KC
(
γ
))
x + B

(
β
)
LRx

(
MC

(
γ
)
+NR

)
x

]

=

[(
A(α) + B

(
β
)(
KC
(
γ
)
+ F0

))
x

R
(
A(α) + B

(
β
)
F
(
γ
))
x

]

,
(
by Claim 2

)

=

[ (
A(α) + B

(
β
)
F
(
γ
))
x

R
(
A(α) + B

(
β
)
F
(
γ
))
x

]

∈ Ve, ∀(α, β, γ),
(2.39)

which proves that Ve is generalized Ae-invariant.
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Since Ve ⊂ D(Ae
α,β,γ), it follows from Lemma 2.8(ii) that Ve is generalized SAe(t)-

invariant. This completes the proof of this lemma.

3. Parameter-Insensitive Disturbance-Rejection by
Dynamic Compensator

In this section, the infinite-dimensional version of parameter insensitive disturbance-rejection
problem for uncertain linear systems which was investigated by Otsuka [13] is studied.

Consider the following uncertain linear system S(α, β, γ, δ, σ) defined in a Hilbert
space X:

d

dt
x(t) = A(α)x(t) + B

(
β
)
u(t) + E(σ)ξ(t),

y(t) = C
(
γ
)
x(t),

z(t) = D(δ)x(t),

(3.1)

where x(t) ∈ X, u(t) ∈ U := Rm, y(t) ∈ Y := R�, z(t) ∈ Z := Rμ, and ξ(t) ∈ Lloc1 ((0,∞);Q)
are the state, the input, the measurement output, the controlled output, and the disturbance
which is a Hilbert space Q valued locally integrable function, respectively. It is assumed that
coefficient operators have the following unknown parameters:

A(α) = A0 + α1A1 + · · · + αpAp := A0 + ΔA(α),

B
(
β
)
= B0 + β1B1 + · · · + βqBq := B0 + ΔB

(
β
)
,

C
(
γ
)
= C0 + γ1C1 + · · · + γrCr := C0 + ΔC

(
γ
)
,

D(δ) = D0 + δ1D1 + · · · + δsDs := D0 + ΔD(δ),

E(σ) = E0 + σ1E1 + · · · + σtEt := E0 + ΔE(σ),

(3.2)

where Ai, Bi, Ci are the same as system S(α, β, γ) in Section 2, Di ∈ B(X;Rμ), Ei ∈ B(Q;X),
and α := (α1, . . . , αp), β := (β1, . . . , βq), γ := (γ1, . . . , γr), δ := (δ1, . . . , δs), σ := (σ1, . . . , σt).
Further, from the practical viewpoint, we assume that uncertain parameters satisfy

αi ∈
[
pi, qi

] (
i = 1, . . . , p

)
, βi ∈ [ri, si]

(
i = 1, . . . , q

)
, γi ∈ [ti, ui] (i = 1, . . . , r),

δi ∈
[
hi, ji

]
(i = 1, . . . , s), σi ∈ [ki, li] (i = 1, . . . , t)

(3.3)

where pi, qi (i = 1, . . . , p), ri, si (i = 1, . . . , q)ti, ui (i = 1, . . . , r)hi, ji (i = 1, . . . , s), and ki, li (i =
1, . . . , t) are given real numbers.

In system S(α, β, γ, δ, σ), (A0, B0, C0, D0, E0) and (ΔA(α),ΔB(β),ΔC(γ),ΔD(δ),ΔE(σ))
represent the nominal system model and a specific uncertain perturbation, respectively.
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If a compensator of the form Σ is applied to system S(α, β, γ, δ, σ), the resulting closed-
loop system with the extended state space Xe := X ⊕W is easily obtained as

d

dt

[
x(t)

w(t)

]

=

[
A(α) + B

(
β
)
KC
(
γ
)
B
(
β
)
L

MC
(
γ
)

N

]

·
[
x(t)

w(t)

]

+

[
E(σ)

0

]

ξ(t),

z(t) =
[
D(δ) 0

]
[
x(t)

w(t)

]

.

(3.4)

For convenience, we set

xe(t) :=

[
x(t)

w(t)

]

, Ae
α,β,γ :=

[
A(α) + B

(
β
)
KC
(
γ
)
B
(
β
)
L

MC
(
γ
)

N

]

, Ee(σ) :=

[
E(σ)

0

]

,

De(δ) :=
[
D(δ) 0

]
.

(3.5)

Then, our disturbance-rejection problem with dynamic compensator is to find a compensator
(K,L,M,N) of Σ such that

De(δ)
∫ t

0
SAe

α,β,γ
(t − τ)Ee(σ)ξ(τ)dτ = 0 (3.6)

for all ξ(·) ∈ Lloc1 (0,∞;Q) which is a set of all locally square integrable functions on (0, 1), all
t ≥ 0, and all parameters α, β, γ, δ, σ.

This problem can be formulated as follows.

Parameter Insensitive Disturbance-Rejection Problem with
Dynamic Compensator (PIDRPDC)

Given Ai, Bi, Ci,Di, Ei, find (if possible) a compensator (K,L,M,N) of (2.3) such that

< SAe
α,β,γ

(·) | ImEe(σ) >:= L
(
⋃

t≥0
SAe

α,β,γ
(t)(ImEe(σ))

)

⊂ KerDe(δ) (3.7)

for all parameters α, β, γ ,δ, σ, where L(Ω) and the over bar indicate the linear subspace
generated by the set Ω and the closure inXe, respectively.

The following results are extensions of the results of Otsuka [13] to infinite-
dimensional systems.

Theorem 3.1. If there exists a generalized S(C,A, B)-pair (V1,V2) such that

{
q∑

i=1

ImBi +
t∑

i=0

ImEi

}

⊂ V1 ⊂ V2 ⊂
{

r⋂

i=1

KerCi ∩
s⋂

i=0

KerDi

}

,

AiV2 ⊂ V1
(
i = 1, . . . , p

)
, V2 ⊂ D(A0),

(3.8)

then the PIDRPDC is solvable.
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Proof. Suppose that the stated above conditions are satisfied. Then, it follows from
Lemma 2.10 that there exist a compensator (K,L,M,N) on W := (V2 ∩ V⊥

1 ) and a subspace
Ve of Xe such that V1 = S1,V2 = S2 and Ve is generalized SAe(t)-invariant. Further, it can be
easily shown that ImEe(σ) ⊂ Ve ⊂ KerDe(δ). Then,

< SAe
α,β,γ

(·) | ImEe(σ) >⊂< SAe
α,β,γ

(·) | Ve >= Ve ⊂ KerDe(δ) (3.9)

for all parameters α, β, γ, δ, σ which implies the PIDRPDC is solvable.

Corollary 3.2. Assume that V(
∑t

i=0 ImEi;C,A) and V(A,B;
⋂r
i=0 KerDi) have the minimal

element V1∗ and the maximal element V∗
2, respectively. If

∑q

i=1 ImBi ⊂ V1∗ ⊂ V∗
2 ⊂ ⋂r

i=1 KerCi,
AiV∗

2 ⊂ V1∗ (i = 1, . . . , p), and V∗
2 ⊂ D(A0), then the PIDRPDC is solvable.

4. An Illustrative Example

Consider the following system with uncertain parameters α, β, γ ∈ R:

∂x
(
t, η
)

∂t
=
∂2x
(
t, η
)

∂η2
+

{

α

∫1

0
x
(
t, μ
)(
φ1
(
μ
)
+ φ2

(
μ
)
+ φ3

(
μ
))
dμ

}
(
φ1
(
η
)
+ φ2

(
η
)
+ φ3

(
η
))

+
(
φ1
(
η
) − 2φ2

(
η
))
u(t) + β

{
φ1
(
η
)
+ φ2

(
η
)
+ φ3

(
η
)}
u(t)

+
{
φ1
(
η
)
+ φ2

(
η
)
+ φ3

(
η
)}
ξ(t),

y(t) =
∫1

0
x
(
t, μ
)(
2φ1
(
μ
) − φ2

(
μ
))
dμ + γ

∫1

0
x
(
t, μ
)(
φ1
(
μ
)
+ φ2

(
μ
) − 2φ3

(
μ
))
dμ,

z(t) =
∫1

0
x
(
t, μ
)(
φ1
(
μ
)
+ φ2

(
μ
) − 2φ3

(
μ
))
dμ,

(4.1)

where x(t, η) is the temperature distribution of a bar of unit length at position η ∈ (0, 1) and
time t ≥ 0. Moreover, u(t) ∈ R, ξ(t) ∈ R, and z(t) ∈ R are the input, the disturbance, and the
controlled output, respectively, and φk(η) =

√
2 sin(kπη), for η ∈ (0, 1), k ≥ 1.

Now, let a Hilbert space X := L2(0, 1) which is a set of all square integrable functions
on (0, 1). Then, we remark that {φk; k ≥ 1} is an orthonormal basis of X = L2(0, 1). Further,
define the following operators as

A(α) := A0 +A1, α ∈ R,

(A0x)
(
η
)
:=

d2x
(
η
)

dη2
, x ∈ D(A0) :=

{

x =
∞∑

k=1

xkφk ∈ X |
∞∑

k=1

|λkxk|2 <∞
}

,

(A1x) :=
〈
x, φ1 + φ2 + φ3

〉(
φ1 + φ2 + φ3

)
, x ∈ D(A1) := X,
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B
(
β
)
:= B0 + βB1, β ∈ R,

B0u :=
(
φ1 − 2φ2

)
u, u ∈ D(B0) := R,

B1u :=
(
φ1 + φ2 + φ3

)
u, u ∈ D(B1) := R,

C
(
γ
)
:= C0 + γC1, γ ∈ R,

C0 :=
〈
x, 2φ1 − φ2

〉
, x ∈ D(C0) := X,

C1 :=
〈
x, φ1 + φ2 − 2φ3

〉
, x ∈ D(C1) := X,

Dx :=
〈
x, φ1 + φ2 − 2φ3

〉
, x ∈ D(D) := X,

Eξ :=
(
φ1 + φ2 + φ3

)
ξ, ξ ∈ D(E) := R,

(4.2)

where 〈·, ·〉means the inner product in X.
Then, it is easily seen that A0 is the infinitesimal generator of a C0-semigroup

{SA0(t); t ≥ 0} on X and that for each k ≥ 1 φk is an eigenvector of A0 belonging to
an eigenvalue λk = −k2π2. Moreover, the operators A1, B0, B1, C0, C1, D, and E are all
bounded. Then, by using these operators we can rewrite the above system as

d

dt
x(t) = A(α)x(t) + B

(
β
)
u(t) + Eξ(t),

y(t) = C
(
γ
)
x(t),

z(t) = Dx(t).

(4.3)

Since SA(α)(t)ImE/⊂KerD for all t > 0, one can see that the controlled output z(·) of the
original system (4.3) is influenced by disturbunces ξ(·).

Let us define two closed subspaces V1 and V2 of X as

V1 :=
{
a
(
φ1 + φ2 + φ3

) | a ∈ R
}
, V2 :=

{
a
(
φ1 + φ2 + φ3

)
+ b
(
φ1 − φ2

) | a, b ∈ R
}
. (4.4)

If we introduce an operator G ∈ B(R;X) as

Gs :=
{
(λ2 + λ3)φ1 + (λ1 + λ3)φ2 + (λ1 + λ2)φ3

}
s, s ∈ R, (4.5)

then the condition (ii) of Theorem 2.4 for the system (4.3) is satisfied, and hence it follows
from Theorem 2.4 that V1 is a generalized S(C,A)-invariant. Moreover, if we introduce an
operator F ∈ B(X;R) as

Fx :=
〈
x, λ1φ1 + λ2φ2 − 2λ3φ3

〉
, x ∈ X, (4.6)
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then it follows from Theorem 2.3 that V2 is a generalized S(A,B)-invariant. Thus, we can see
that the (V1,V2) is a generalized S(C,A, B)-pair and it is easily shown that the pair (V1,V2)
satisfies the conditions of Theorem 3.1 for the system (4.3), that is,

{ImB1 + ImE} ⊂ V1 ⊂ V2 ⊂ {KerC1 ∩ KerD}, A1V2 ⊂ V1, V2 ⊂ D(A0). (4.7)

Therefore, it follows from Theorem 3.1 that the PIDRPDC is solvable by using a
dynamic compensator which is constructed in terms of the proof of Lemma 2.10. In fact, we
can obtain the dynamic compensator Σ in a Hilbert space W described by

Σ :

⎧
⎪⎨

⎪⎩

d

dt
w(t) =Nw(t) +My(t),

u(t) = Lw(t) +Ky(t),
(4.8)

where W := V2 ∩ V⊥
1 = {aψ;ψ = φ1 − φ2, a ∈ R} and

Nw := −(4λ1 + 4λ2 − 9λ3)w, Lw :=
〈
w,−(λ1 + 2λ2 − 3λ3)ψ

〉
, for w ∈ W,

My := (2λ1 + λ2 − 3λ3)yψ, Ky := (λ1 + λ2 − 2λ3)y, for y ∈ R,
(4.9)

which solves the PIDRPDC.

5. Concluding Remarks

In this paper we studied the concept of generalized S(C,A, B)-pairs and its properties
for infinite-dimensional systems. This concept is an extension of generalized (C,A, B)-
pairs investigated by Otsuka [13] to infinite-dimensional systems. After that a parameter
insensitive disturbance-rejection problem with dynamic compensator was formulated and
its solvability conditions were given. Further, an illustrative example was also examined.

In the present investigation, it should be pointed out that the sufficient conditions of
Theorem 3.1 is not easy to check. As future studies it is useful to investigate the existence
conditions and computational algorithms of the minimal element V1∗ and the maximal
elementV∗

2 of Corollary 3.2 in order to check easily the solvability conditions of the PIDRPDC.
Further, we need to study stabilizability problems for the parameter insensitive disturbance-
rejected systems.
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