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1. Introduction

1.1. Statement of the Problem

We consider the equation

uıv(x) −
(
α + β

∫L

0

(
u′(ξ)

)2
dξ

)
u′′(x) = f(x), 0 < x < L, (1.1)

with the conditions

u(0) = u(L) = 0, u′′(0) = u′′(L) = 0. (1.2)

Here α, β, and L are some positive constants, f(x) is a given function, and u(x) is the function
we want to define.
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1.2. Background of the Problem

Equation (1.1) is the stationary problem associated with

utt +
EI

ρA
uxxxx −

(
H

ρ
+

E

2ρL

∫L

0
u2
xdx

)
uxx = 0 (1.3)

which was proposed byWoinowsky-Krieger [1] as a model for the deflection of an extensible
beam with hinged ends. Here H, E, ρ, I, A, and L denote, respectively, the tension at rest,
Young’s elasticity modulus, density, cross-sectional moment of inertia, cross-section area and
length of the beam. The nonlinear term in brackets is the correction to the classical Euler-
Bernoulli equation

utt +
EI

ρA
uxxxx = 0, (1.4)

where tension changes induced by the vibration of the beam during deflection are not taken
into account. This nonlinear term was for the first time proposed by Kirchhoff [2] who
generalized D’Alembert’s classical model. Therefore (1.3) is often called a Kirchhoff-type
equation for a dynamic beam. Note that Arosio [3] calls the function of the integral

∫L
0u

2
xdx

the Kirchhoff correction (briefly, theK-correction) and makes a reasonable statement that the
K-correction is inherent in a lot of physical phenomena.

The works dealing with the mathematical aspects of (1.3) and its generalization

utt + uxxxx −M

(∫L

0
u2
xdx

)
uxx = f(x, t, u),

M(λ) ≥ const > 0,

(1.5)

as well as some modifications of (1.3) and (1.5) belong to Ball [4, 5], Biler [6], Henriques
de Brito [7], Dickey [8], B.-Z. Guo and W. Guo [9], Kouémou-Patcheu [10], Medeiros [11],
Menezes et al. [12], Panizzi [13], Pereira [14], and to others. The subject of investigation
concerned the questions of the existence and uniqueness of a solution [4, 5, 9–14], its
asymptotic behavior [6–8, 10], stabilization and control problems [9], and so on.

As to the static Kirchhoff-type equation for a beam, its more general form than (1.1),
namely,

uıv −m

(∫L

0
u′2dx

)
u′′ = f(x, u),

m(λ) ≥ const > 0,

(1.6)

was considered in Ma [15, 16], where the solvability under nonlinear boundary conditions is
studied.

The topic of approximate solution of Kirchhoff equations, which the present paper
is concerned with, was treated by Choo and Chung [17], Choo et al. [18], Clark et al. [19],
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and Geveci and Christie [20] for a dynamic beam, while Ma [16] and Tsai [21] studied the
problem for the static case. Speaking more exactly, the finite difference and finite element
Galerkin approximate solutions are investigated and the corresponding error estimates are
derived in [17, 18]. Numerical analysis of solutions for a beam with moving boundary is
carried out in [19]. The question of the stability and convergence of a semidiscrete and fully
discrete Galerkin approximation is dealt with in [20]. To solve the problem with nonlinear
boundary conditions, Ma [16] applies the difference method and the Gauss-Seidel iteration
process. Finally, in [21] for the discretization of the problem, in particular the finite difference,
finite element and spectral methods are used, while nonlinear systems of equations are solved
by the Newton iteration and other methods.

In the present paper, a numerical algorithm is constructed and its total error estimated
for (1.1). Formulas are given allowing us to calculate the upper bound of the error by using
the initial data of the problem. The algorithm includes the Galerkin approximation reducing
the problem to a system of cubic algebraic equations which are solved by means of the
nonlinear Jacobi iteration process. We also use the Cardano formula due to which the current
iteration approximation is expressed through the already found approximation in explicit
form.

1.3. Assumptions

Let for each i = 1, 2, . . . there exists an integral

fi =
2
L

∫L

0
f(x) sin

iπx

L
dx, (1.7)

and let the inequality

∣∣fi∣∣ ≤ ω

im
, i = 1, 2, . . . (1.8)

be fulfilled with ω and m being some known positive constants.
Assume that there exists a solution of problem (1.1)-(1.2) representable as a series

u(x) =
∞∑
i=1

ui sin
iπx

L
, (1.9)

whose coefficients satisfy the system of equations

(
iπ

L

)4

ui +
(
iπ

L

)2
⎛
⎝α +

βL

2

∞∑
j=1

(
jπ

L

)2

u2
j

⎞
⎠ui = fi, i = 1, 2, . . . . (1.10)
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2. The Algorithm

2.1. Galerkin Method

An approximate solution of problem (1.1)-(1.2)will be sought for in the form of a finite series

un(x) =
n∑
i=1

uni sin
iπx

L
, (2.1)

where the coefficient uni is defined by the Galerkin method from the system

(
iπ

L

)4

uni +
(
iπ

L

)2
⎛
⎝α +

βL

2

n∑
j=1

(
jπ

L

)2

u2
nj

⎞
⎠uni = fi, i = 1, 2, . . . , n. (2.2)

Here, incidentally, note that vast literature is available (e.g., see [22–25]) on the
application of the Galerkin method to differential equations of second and fourth order.

2.2. Jacobi Iteration Process

To solve the nonlinear system (2.2) we use the Jacobi iteration process [26]

(
iπ

L

)4

uni,k+1 +
(
iπ

L

)2

⎡
⎢⎢⎣α +

βL

2

⎛
⎜⎜⎝
(
iπ

L

)2

u2
ni,k+1 +

n∑
j=1
j /= i

(
jπ

L

)2

u2
nj,k

⎞
⎟⎟⎠
⎤
⎥⎥⎦uni,k+1

= fi, k = 0, 1, . . . , i = 1, 2, . . . , n,

(2.3)

where uni,k+l denotes the (k + l)th iteration approximation of uni, l = 0, 1.
For fixed i, (2.3) is a cubic equation with respect to (iπ/L)uni,k+1 (here uni,k+1 is

taken with weight iπ/L just for convenience). Using the Cardano formula [27], we express
(iπ/L)uni,k+1 through the kth iteration approximation

iπ

L
uni,k+1 = σi1,k − σi2,k, (2.4)

where

σip,k =
[
(−1)psi +

(
s2i + r3i,k

)1/2]1/3
,

ri,k =
1
3

⎡
⎢⎢⎣ 2
βL

(
α +

(
iπ

L

)2
)

+
n∑
j=1
j /= i

(
jπ

L

)2

u2
nj,k

⎤
⎥⎥⎦, si = − 1

βiπ
fi,

k = 0, 1, . . . , i = 1, 2, . . . , n.

(2.5)
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The algorithm we have considered should be understood as the counting carried out
by formula (2.4). Having uni,k, i = 1, 2, . . . , n, we construct the approximate solution of the
problem

un,k(x) =
n∑
i=1

uni,k sin
iπx

L
. (2.6)

2.3. Algorithm Error Definition

Let us compare the approximate solution (2.6) with the nth truncation of the exact solution
(1.9)

pnu(x) =
n∑
i=1

ui sin
iπx

L
. (2.7)

This means that the algorithm error is defined as a difference

pnu(x) − un,k(x) (2.8)

which we write as a sum

pnu(x) − un,k(x) = Δun(x) + Δun,k(x), (2.9)

where Δun(x) is the Galerkin method error and Δun,k(x) the Jacobi process error which are
equal, respectively, to

Δun(x) = pnu(x) − un(x), Δun,k(x) = un(x) − un,k(x). (2.10)

3. The Algorithm Error

We set ourselves the task of estimating the L2(0, L)-norm of the algorithm error. For this we
have to estimate the errors of the Galerkin method and the Jacobi process.

3.1. Galerkin Method Error

Let us expand Δun(x) into a series. Taking (2.10), (2.7), and (2.1) into account we write

Δun(x) =
n∑
i=1

Δuni sin
iπx

L
, (3.1)

where

Δuni = ui − uni, i = 1, 2, . . . , n. (3.2)
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By virtue of (3.1)we have

‖Δun(x)‖L2(0,L) =

(
L

2

n∑
i=1

(Δuni)2
)1/2

. (3.3)

We will come back to (3.3) later, while now we denote

γln = (2 − l)
(
iπ

L

)4

+
1
2

(
iπ

L

)2
⎡
⎣α +

βL

2

n∑
j=1

(
jπ

L

)2

u2
j + (−1)l+1

⎛
⎝α +

βL

2

n∑
j=1

(
jπ

L

)2

u2
nj

⎞
⎠
⎤
⎦,
(3.4)

εn =
1
2
βL

(
iπ

L

)2 ∞∑
j=n+1

(
jπ

L

)2

u2
j , (3.5)

∇n =
1
4
βL

(
iπ

L

)2 n∑
j=1

(
jπ

L

)2(
uj + unj

)
Δunj , (3.6)

and rewrite (1.10) and (2.2) in the form (γ1n + γ2n + εn)ui = fi and (γ1n − γ2n)uni = fi. Since
by virtue of (3.4), (3.2), and (3.6) we have γ2n = ∇n and therefore (γ1n + ∇n + εn)ui = fi and
(γ1n − ∇n)uni = fi. Subtracting the last two equalities from each other and taking (3.2) into
account, we obtain γ1nΔuni +∇n(ui +uni) + εnui = 0 which we multiply by Δuni and sum over
i = 1, 2, . . . , n. Using (3.4), (3.5), and the inequality

∑n
i=1 ∇n(ui + uni)Δuni ≥ 0 following from

(3.6), we see that

n∑
i=1

(
α +

(
iπ

L

)2
)(

iπ

L

)2

(Δuni)2 ≤ 1
2
βL

n∑
i=1

(
iπ

L

)2

|uiΔuni|
∞∑

i=n+1

(
iπ

L

)2

u2
i . (3.7)

By the Cauchy-Bunyakowsky-Schwarz inequality, we therefore have

(
n∑
i=1

(
α +

(
iπ

L

)2
)(

iπ

L

)2

(Δuni)2
)1/2

≤ 1
2
βL

(
n∑
i=1

u2
i

)1/2 ∞∑
i=n+1

(
iπ

L

)2

u2
i . (3.8)

Let us estimate the right-hand side of inequality (3.8). After multiplying (1.10) by
(iπ/L)tui and summing the resulting relation over i = 1, 2, . . . , n in one case and over i =
n + 1, n + 2, . . . in the other, we come to the formula common for both cases

w∑
i=v

(
iπ

L

)4+t

u2
i +

⎛
⎝α +

βL

2

∞∑
j=1

(
jπ

L

)2

u2
j

⎞
⎠ w∑

i=v

(
iπ

L

)2+t

u2
i =

w∑
i=v

(
iπ

L

)t

fiui, (3.9)
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where v = 1, w = n or v = n + 1, w = ∞. Thus

⎛
⎝α +

βL

2

∞∑
j=1

(
jπ

L

)2

u2
j

⎞
⎠ w∑

i=v

(
iπ

L

)2+t

u2
i ≤

1
4

w∑
i=v

(
iπ

L

)t−4
f2
i . (3.10)

Let us put v = 1, w = n, t = −2 in (3.10) and use the fact that
∑∞

j=1 (jπ/L)
2u2

j ≥
(π2/L2)

∑n
j=1 u

2
j . We obtain

n∑
i=1

u2
i ≤ an, (3.11)

where

an =
L

π2β

⎡
⎣
(
α2 +

1
2L

π2β
n∑
i=1

(
L

iπ

)6

f2
i

)1/2

− α

⎤
⎦. (3.12)

Now assuming v = n + 1, w = ∞, t = 0 in (3.10) and using in addition to this the
inequality

∑∞
j=1 (jπ/L)

2u2
j ≥

∑∞
j=n+1(jπ/L)u

2
j , we get

∞∑
i=n+1

(
iπ

L

)
u2
i ≤ bn, (3.13)

where

bn =
1
βL

⎡
⎣
(
α2 +

1
2
βL

∞∑
i=n+1

(
L

iπ

)4

f2
i

)1/2

− α

⎤
⎦. (3.14)

The use of (3.11) and (3.13) in (3.8) brings us to the inequality

(
n∑
i=1

(
α +

(
iπ

L

)2
)(

iπ

L

)2

(Δuni)2
)1/2

≤ 1
2
βL(an)1/2bn (3.15)

which together with (3.3) gives

‖Δun(x)‖L2(0,L) ≤
1
2π

βL2

(
L

2
an

α + (π/L)2

)1/2

bn. (3.16)
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Let us substitute (3.12) and (3.14) into (3.16) and apply condition (1.8) and also the
integral test for series convergence. As a result, if n > 1, for the Galerkin method error we
obtain the estimate

‖Δun(x)‖L2(0,L)

≤ c0

[(
1 + c1

1
n2m+3

)1/2

− 1

]{[
1 + c2

(
1 + c3

(
1 − 1

n2m+5

))]1/2
− 1

}1/2

,
(3.17)

where the coefficients c0, c1, c2, and c3 do not depend on n and are defined by

c0 =
α

2

(
L

π

)2

⎛
⎜⎝ 1

2β
(
1 + (1/α)(π/L)2

)
⎞
⎟⎠

1/2

,

cl =
βLω2

2α2(1 − 2(l − 2)(m + 1))

(
L

π

)4

, l = 1, 2, c3 =
1

2m + 5
.

(3.18)

3.2. Jacobi Process Error

Taking (2.10), (2.1), and (2.6) into account, we represent Δun,k(x) as a series

Δun,k(x) =
n∑
i=1

Δuni,k sin
iπx

L
, (3.19)

where

Δuni,k = uni − uni,k, i = 1, 2, . . . , n. (3.20)

Series (3.19) implies the formula

‖Δun,k(x)‖L2(0,L) =

(
L

2

n∑
i=1

(Δuni,k)2
)1/2

(3.21)

to be used later.
Let us rewrite (2.4) in the form

iπ

L
uni,k+1 = ϕi

(
π

L
un1,k,

2π
L

un2,k, . . . ,
nπ

L
unn,k

)
, (3.22)
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and introduce into consideration the Jacobian

J =

(
∂ϕi

∂(
(
jπ/L

)
unj,k)

)n

i,j=1

(3.23)

(in this paper this is the second notion associated with the name of C. Jacobi, 1804–1851).
To establish the convergence condition for process (3.22)we have to estimate the norm

of the matrix J . By virtue of (2.4), (2.9), and (3.22) there are zeros on the principal diagonal
of this matrix,

∂ϕi

∂((iπ/L)uni,k)
= 0. (3.24)

As to the nondiagonal elements, i /= j, they are defined by the formula

∂ϕi

∂
((
jπ/L

)
unj,k

) =
1
3
r2i,k

(
s2i + r3i,k

)−1/2(
σ−2
i1,k − σ−2

i2,k

) jπ
L

unj,k. (3.25)

Using the relations

σi1,kσi2,k = ri,k,
(
s2i + r3i,k

)1/2
=

1
2

(
σ3
i1,k + σ3

i2,k

)
, σ3

i2,k − σ3
i1,k = 2si, (3.26)

which follow from (2.5), we rewrite (3.25) as the equality

∂ϕi

∂
((
jπ/L

)
unj,k

) = −4
3
si
(
σ4
i1,k + r2i,k + σ4

i2,k

)−1 jπ
L

unj,k. (3.27)

Apply to the latter equality the estimate σ4
i1,k + σ4

i2,k ≥ 2r2
i,k
, which is obtained from the first

relation in (3.26) and (2.5). Also use the fact that the maximal value of the function z(x) =
x(a2 + x2)−2, x ≥ 0, is equal to (1/16)(3/a2)3/2. Thus we obtain the inequalities

∣∣∣∣∣ ∂ϕi

∂
((
jπ/L

)
unj,k

)
∣∣∣∣∣ ≤ 4

9
|si|
r2
i,k

jπ

L

∣∣unj,k

∣∣

≤ 4
∣∣fi∣∣
βiπ

(
2
βL

(
α +

(
iπ

L

)2
)

+
(
jπ

L
unj,k

)2
)−2

jπ

L

∣∣unj,k

∣∣

≤ 3
8

(
3
2
βL

)1/2
∣∣fi∣∣

(iπ/L)
(
α + (iπ/L)2

)3/2 , i /= j,

(3.28)

which are fulfilled for the nondiagonal elements of the matrix J .
Let us use the vector and matrix norms equal, respectively, to

∑n
i=1 |vi| and

max1≤j≤n
∑n

i=1 |mij | for the vector v = (vi)
n
i=1 and the matrixM = (mij)

n
i,j=1. Assume that for an
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arbitrary set of values unj,k, j = 1, 2, . . . , n, k = 0, 1, . . ., the elements of the matrix J satisfy the
condition max1≤j≤n

∑n
i=1 |∂ϕi/∂((jπ/L)unj,k)| ≤ q < 1. For this, by virtue of (3.28), (3.24), and

(1.8) it is sufficient that

3
8π

Lω

(
3
2
βL

)1/2 n∑
i=1
i /= j

1

im+1
(
α + (iπ/L)2

)3/2 ≤ q < 1, j = 1, 2, . . . , n. (3.29)

Then, according to the map compression principle, the system of (2.2) has a unique solution
uni, i = 1, 2, . . . , n, the iteration process (2.4) converges, limk→∞uni,k = uni, i = 1, 2, . . . , n,
with the rate which in view of notation (3.20) is defined by the inequality

∑n
i=1 i|Δuni,k| ≤

(qk/(1 − q))
∑n

i=1 i|uni,1 − uni,0|. From this and (3.21) we obtain the estimate for the Jacobi
process error

‖Δun,k(x)‖L2(0,L) ≤
qk

1 − q

(
L

2

)1/2 n∑
i=1

i|uni,1 − uni,0|, k = 0, 1, . . . . (3.30)

To conclude this section, we would like to touch upon one auxiliary question. Let us
see how condition (3.29) will change if we apply to it the integral test for the convergence
of series and ignore i /= j under the summation sign. Besides, we restrict ourselves to the case

where m is an integer number and apply the inequality α1/2 + iπ/L ≤ [2(α + (iπ/L)2)]
1/2

.
Then using the formula for the integral

∫
dx/xm+1(a+ bx)3, a, b > 0, [28] instead of (3.29), we

obtain

3
4
ω
(
3βL

)1/2
⎧⎨
⎩ L

2π
√
2(α + (π/L)2)

3/2
+

1
α2

(
π

L
√
α

)m−1
(m + 2)!

×
m+2∑
l=0

(−1)l 1
l!(m − l + 2)!(m − l)

[(
1 +

L
√
α

π

)m−l
−
(
1 +

L
√
α

πn

)m−l]⎫⎪⎬
⎪⎭ ≤ q < 1.

(3.31)

3.3. Algorithm Error

Let us estimate error (2.8). By (2.9)we have

∥∥pnu(x) − un,k(x)
∥∥
L2(0,L)

≤ ‖Δun(x)‖L2(0,L) + ‖Δun,k(x)‖L2(0,L), (3.32)
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and therefore the application of (3.17) and (3.30) gives the inequality

∥∥pnu(x) − un,k(x)
∥∥
L2(0,L)

≤ c0

[(
1 + c1

1
n2m+3

)1/2

− 1

]{[
1 + c2

(
1 + c3

(
1 − 1

n2m+5

))]1/2
− 1

}1/2

+
qk

1 − q

(
L

2

)1/2 n∑
i=1

i|uni,1 − uni,0|.

(3.33)

The obtained result can be summarized as follows.

Theorem 3.1. Let n > 1 and q be some number from the interval (0, 1). Assume that the conditions of
Section 1.3 and restriction (3.29) (or (3.31) in the case of integer m) are fulfilled. Then the algorithm
error is estimated by inequality (3.33), where the coefficients c0, c1, c2, and c3 are calculated by
formulas (3.18).
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