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We discuss and derive the analytical solution for three basic problems of the so-called time-
fractional telegraph equation. The Cauchy and Signaling problems are solved by means of
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temporal Laplace transform, whose solution is given in the form of a series.
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1. Introduction

Fractional differential equations (FDEs) have attracted in the recent years a considerable
interest due to their frequent appearance in various fields and their more accurate
models of systems under consideration provided by fractional derivatives. For example,
fractional derivatives have been used successfully to model frequency dependent damping
behavior of many viscoelastic materials. They are also used in modeling of many chemical
processed, mathematical biology and many other problems in engineering. The history and
a comprehensive treatment of FDEs are provided by Podlubny [1] and a review of some
applications of FDEs are given by Mainardi [2].

The fractional telegraph equation has recently been considered by many authors.
Cascaval et al. [3] discussed the time-fractional telegraph equations, dealing with well-
posedness and presenting a study involving asymptotic by using the Riemann-Liouville
approach. Orsingher and Beghin [4] discussed the time-fractional telegraph equation
and telegraph processes with Brownian time, showing that some processes are governed
by time-fractional telegraph equations. Chen et al. [5] also discussed and derived the
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solution of the time-fractional telegraph equation with three kinds of nonhomogeneous
boundary conditions, by the method of separating variables. Orsingher and Zhao [6]
considered the space-fractional telegraph equations, obtaining the Fourier transform of its
fundamental solution and presenting a symmetric process with discontinuous trajectories,
whose transition function satisfies the space-fractional telegraph equation. Momani [7]
discussed analytic and approximate solutions of the space- and time-fractional telegraph
differential equations by means of the so-called Adomian decomposition method. Camargo
et al. [8] discussed the so-called general space-time fractional telegraph equations by the
methods of differential and integral calculus, discussing the solution by means of the Laplace
and Fourier transforms in variables t and x, respectively.

In this paper, we consider the following time-fractional telegraph equation (TFTE)

D2α
t u(x, t) + 2aDα

t u(x, t) = d
∂2

∂x2
u(x, t) + f(x, t), t ∈ R

+, (1.1)

where a, d are positive constants, 1/2 < α ≤ 1, Dβ
t is the fractional derivative defined in the

Caputo sense:

D
β
t f(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dnf(t)
dtn

, β = n ∈ N,

1
Γ
(
n − β

)

∫ t

0
(t − τ)n−β−1

dnf(τ)
dτn

dτ, n − 1 < β < n,

(1.2)

where f(t) is a continuous function. Properties andmore details about the Caputo’s fractional
derivative also can be found in [1, 2].

For the TFTE (1.1), we will consider three basic problems with the following three
kinds of initial and boundary conditions, respectively.

Problem 1. TFTE in a whole-space domain (Cauchy problem)

u(x, 0) = φ(x),
∂

∂t
u(x, 0) = 0, x ∈ R,

u(∓∞, t) = 0, t > 0.
(1.3)

Problem 2. TFTE in a half-space domain (Signaling problem)

u(x, 0) =
∂

∂t
u(x, 0) = 0, x ∈ R

+, (1.4)

u(0, t) = g(t), u(+∞, t) = 0 t > 0, (1.5)

and we set f(x, t) = 0 in (1.1).
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Problem 3. TFTE in a bounded-space domain

u(x, 0) = φ(x),
∂

∂t
u(x, 0) = ϕ(x), 0 < x ≤ L, (1.6)

u(0, t) = u(L, t) = 0, t > 0, (1.7)

here we also set f(x, t) = 0 in (1.1).

In this paper, we derive the analytical solutions of the previous three problems for the
TFTE. The structure of the paper is as follows. In Section 2, by using the method of Laplace
and Fourier transforms, the fundamental solution of Problem 1 is derived. In Section 3, by
investigating the explicit relationships of the Laplace Transforms to the Green functions
between Problems 1 and 2, the fundamental solution of the Problem 2 is also derived. The
analytical solution of Problem 3 is presented in Section 4. Some conclusions are drawn in
Section 5.

2. The Cauchy Problem for the TFTE

We first focus our attention on (1.1) in a whole-space domain, that is to say, Problem 1 will to
be considered, which we refer to as the so-called Cauchy problem.

Applying temporal Laplace and spatial Fourier transforms to (1.1) and using the initial
boundary conditions (1.3), we obtain the following nonhomogeneous differential equation:

P 2αũ
(
x, p
) − p2α−1φ(x) + 2apαũ

(
x, p
) − 2apα−1φ(x) = d

∂2

∂x2
ũ
(
x, p
)
+ f̃
(
x, p
)
,

P 2α ̂̃u
(
k, p
) − p2α−1φ̂(k) + 2apα ̂̃u

(
k, p
) − 2apα−1φ̂(k) = −dk2 ̂̃u

(
k, p
)
+ ̂̃f
(
k, p
)
.

(2.1)

Then we derive

̂̃u
(
k, p
)
=

p2α−1 + 2apα−1

p2α + 2apα + dk2
φ̂(k) +

1
p2α + 2apα + dk2

̂̃
f
(
k, p
)

:= ̂̃G1
(
k, p
)
φ̂(k) + ̂̃G2

(
k, p
)̂̃
f
(
k, p
)
,

(2.2)

where

̂̃G2
(
k, p
)
=

1
p2α + 2apα + dk2

, (2.3)

̂̃G1
(
k, p
)
=

p2α−1 + 2apα−1

p2α + 2apα + dk2
:= ̂̃G1,1

(
k, p
)
+ ̂̃G1,2

(
k, p
)
,

̂̃G1,1
(
k, p
)
=

p2α−1

p2α + 2apα + dk2
, ̂̃G1,2

(
k, p
)
=

2apα−1

p2α + 2apα + dk2
.

(2.4)
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By the Fourier transform pair

e−c|x|
F↔ 2c

c2 + k2
, (2.5)

we also have

G̃1,1
(
x, p
)
=

p2α−1

2
√

d
(
p2α + 2apα

)e
−
√

((p2α+2apα)/d)|x|, (2.6)

G̃1,2
(
x, p
)
=

2apα−1

2
√

d
(
p2α + 2apα

)e
−
√

((p2α+2apα)/d)|x|. (2.7)

We invert the Fourier transform in (2.2) to obtain

u(x, t) =
∫+∞

−∞
G1
(
x − y, t

)
φ
(
y
)
dy +

∫+∞

−∞
dy

∫ t

0
dτG2

(
x − y, t − τ

)
f
(
y, τ
)
, (2.8)

where G1(x, t), G2(x, t) is the corresponding Green function or fundamental solution
obtained when φ(x) = δ(x), f(x) = 0 and φ(x) = 0, f(x, t) = δ(x)δ(t) respectively, which is
characterized by (2.4) or (2.3).

To express the Green function, we recall two Laplace transform pairs and one Fourier
transform pair,

F
(β)
1 (ct) := t−βMβ

(
ct−β
) L↔ pβ−1e−cp

β

,

F
(β)
2 (ct) := cwβ(ct)

L↔ e−(p/c)
β

,

F3(ct) :=
1

2
√
π
c−1/2e−x

2/4c F↔ e−ck
2
,

(2.9)

whereMβ denotes the so-calledM function (of the Wright type) of order β, which is defined

Mβ(z) =
∞∑

n=0

(−z)n
n!Γ
[−βn +

(
1 − β

)] , 0 < β < 1. (2.10)

Mainardi, see, for example, [9] has showed thatMβ(z) is positive for z > 0, the other general
properties can be found in some references (see [1, 9–11] e.g,).

wβ (0 < β < 1) denotes the one-sided stable (or Lévy) probability density which can
be explicitly expressed by Fox function [12]

wβ(t) = β−1t−2H10
11

(

t−1
∣
∣
∣
∣
(−1,1)
(−1/β,1/β)

)

. (2.11)
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Then the Fourier-Laplace transform of the Green function (2.4) can be rewritten in
integral form

̂̃G1
(
k, p
)
=
(
p2α−1 + 2apα−1

)∫+∞

0
e−u(p

2α+2apα+dk2)du

=
∫+∞

0

(
p2α−1e−up

2α
)
e−2ap

αue−dk
2udu + 2a

∫+∞

0

(
pα−1e−2ap

αu
)
e−p

2αue−dk
2udu

=
∫+∞

0
L
{
F
(2α)
1 (ut)

}
· L
{
F
(α)
2

[
(2au)−1/αt

]}
· F{F3(dut)}du

+ 2a
∫+∞

0
L
{
F
(α)
1 (ut)

}
· L
{
F
(2α)
2

[
u−1/2αt

]}
· F{F3(dut)}du

=
∫+∞

0
L
{
F
(2α)
1 (ut) ∗ F(α)

2

[
(2au)−1/αt

]}
· F{F3(dut)}du

+ 2a
∫+∞

0
L
{
F
(α)
1 (ut) ∗ F(2α)

2

[
u−1/2αt

]}
· F{F3(dut)}du.

(2.12)

Going back to the space-time domain we obtain the relation

G1(x, t) =
∫+∞

0

{
F
(2α)
1 (ut) ∗ F(α)

2

[
(2au)−1/αt

]}
F3(dut)du

+ 2a
∫+∞

0

{
F
(α)
1 (ut) ∗ F(2α)

2

[
u−1/2αt

]}
F3(dut)du

=
∫+∞

0
F3(dut)

(∫ t

0
F
(2α)
1 [u(t − τ)]F(α)

2

[
(2au)−1/ατ

]
dτ

)

du

+ 2a
∫+∞

0
F3(dut)

(∫ t

0
F
(α)
1 [u(t − τ)]F(2α)

2

[
u−1/2ατ

]
dτ

)

du

:= G1,1(x, t) +G1,2(x, t).

(2.13)

By the same technique, we can obtain the expression of G2(x, t):

̂̃G2
(
k, p
)
=
∫+∞

0
e−u(p

2α+2apα+dk2)du

=
∫+∞

0
e−up

2α
e−2ap

αue−dk
2udu

=
∫+∞

0
L
{
F
(2α)
2

(
u−1/2αt

)
∗ F(α)

2

[
(2au)−1/αt

]}
· F{F3(dut)}du.

(2.14)
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Going back to the space-time domain we obtain the relation

G2(x, t) =
∫+∞

0
F3(dut)

(∫ t

0
F
(2α)
2

[
u−1/2α(t − τ)

]
F
(α)
2

[
(2au)−1/ατ

]
dτ

)

du. (2.15)

We can ensure that the green functions are nonnegative by the nonnegative
prosperities of F(β)

1 , F
(β)
2 , F3.

3. The Solution for the TFTE in Half-Space Domain
(Signaling Problems)

In this section, we considered Problem 2, defined in a half-space domain, which we refer to
as the so-called Signaling problem.

By the application of the Laplace transform to (1.1) and (1.5)with f ≡ 0 and the initial
condition (1.4), we get

∂2ũ
(
x, p
)

∂x2
=

p2α + 2apα

d
ũ
(
x, p
)
,

ũ
(
0, p
)
= g̃
(
p
)
, ũ

(
+∞, p

)
= 0

(3.1)

with the solution

ũ
(
x, p
)
= g̃
(
p
)
e−
√

((p2α+2apα)/d)x = L{Gs(x, t) ∗ g(t)
}
, (3.2)

where Gs(x, t) is the Green function or fundamental solution of the Signaling problem
obtained when g(x) = δ(x), which is characterized by

G̃s

(
x, p
)
= e−

√

((p2α+2apα)/d)x. (3.3)

The inverse Laplace transform of (3.2) gives the solution of Problem 2

u(x, t) = Gs(x, t) ∗ g(t) =
∫ t

0
Gs(x, t − τ)g(τ)dτ. (3.4)

From (2.6), (2.7) and (3.3), we recognize the relation

∂

∂p
G̃s

(
x, p
)
= −2αxG̃1,1

(
x, p
) − αxG̃1,2

(
x, p
)
, x > 0. (3.5)

Returning to the space-time domain we obtain the relation

tGs(x, t) = 2αxG1,1(x, t) + αxG1,2(x, t), x, t > 0. (3.6)

Then we can obtain a representation for Gs(x, t) and prove the negative prosperities.
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4. The Solution of the TFTE in a Bounded-Space Domain

In this section we seek the solution of Problem 3, which is defined in a bounded domain.
Taking the finite Sine transform of (1.1) with f = 0, and applying the boundary

conditions (1.7), we obtain

D2α
t u(n, t) + 2aDα

t u(n, t) = −
(
ndπ

L

)2

u(n, t), t > 0, (4.1)

where n is a wave number, and

u(n, t) =
∫L

0
u
(
y, t
)
sin
(nπy

L

)
dy (4.2)

is the finite Sine transform of u(x, t).
Applying the Laplace transform to (4.1) and using the initial conditions (1.6), we

obtain

ũ
(
n, p
)
=

(
p2α−1 + 2apα−1

)
u(n, 0)

p2α + 2apα + (ndπ/L)2
+

p2α−2ut(n, 0)

p2α + 2apα + (ndπ/L)2
,

u(n, 0) =
∫L

0
φ
(
y
)
sin
(nπy

L

)
dy,

ut(n, 0) =
∫L

0
ϕ
(
y
)
sin
(nπy

L

)
dy.

(4.3)

We set λ± = −a ±
√

a2 − (ndπ/L)2, then

p2α + 2apα +
(
ndπ

L

)2

=
(
pα − λ−

)(
pα − λ+

)
. (4.4)

To inverse the Laplace transform for (4.3), we recall the known Laplace transform pair

tα−βEα,β(ctα)
L↔ pα−β

pα − c
, (4.5)

where Eα,β(z) is the so-called two-parameter Mittag-Leffler function, which is defined as
follows:

Eα,β(z) =
∞∑

n=0

zn

Γ
(
nα + β

) , α, β > 0, (4.6)

and we note Eα,1 = Eα.



8 Journal of Applied Mathematics

Then we obtain the pairs

p2α−1 + 2apα−1

p2α + 2apα + (ndπ/L)2
=

c1p
α−1

pα − λ−
− c2p

α−1

pα − λ+

L↔ (c1Eα(λ−tα) − c2Eα(λ+tα)),

p2α−2

p2α + 2apα + (ndπ/L)2
=

c1p
α−2

pα − λ+
− c2p

α−2

pα − λ−
L↔ (c1Eα,2(λ+tα) − c2Eα,2(λ−tα)),

(4.7)

where c1 = λ+/(λ+ − λ−), c2 = λ−/(λ+ − λ−).
So we inverse Laplace and finite Sine transform for (4.3) to obtain

u(x, t) =
2
L

∞∑

n=1

(c1Eα(λ−tα) − c2Eα(λ+tα)) sin
(nπx

L

)∫L

0
φ
(
y
)
sin
(nπy

L

)
dy

+
2
L

∞∑

n=1

(c1Eα,2(λ+tα) − c2Eα,2(λ−tα)) sin
(nπx

L

)∫L

0
ϕ
(
y
)
sin
(nπy

L

)
dy.

(4.8)

5. Conclusions

In this paper we have considered the time-fractional telegraph equation. The fundamental
solution for the Cauchy problem in a whole-space domain and Signaling problem in a half-
space domain is obtained by using Fourier-Laplace transforms and their inverse transforms.
The appropriate structures and negative prosperities for the Green functions are provided. On
the other hand, the solution in the form of a series for the boundary problem in a bounded-
space domain is derived by the Sine-Laplace transforms method.
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