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This paper investigates the synchronization of complex dynamical networks with coupling delays and external disturbances by
applying local feedback injections to a small fraction of nodes in the whole network. Based on 𝐻

∞
control theory, some delay-

independent and -dependent synchronization criteria with a prescribed 𝐻
∞

disturbances attenuation index are derived for such
controlled networks in terms of linear matrix inequalities (LMIs), which guarantee that by placing a small number of feedback
controllers on some nodes, the whole network can be pinned to reach network synchronization. A simulation example is included
to validate the theoretical results.

1. Introduction

Large real communication networked systems have become
a hot research topic for a rather long time [1, 2]. Typical
examples include the Internet, which is an enormous network
of many routers connected by physical or wireless links
with information packets flowing on them, and traffic and
transportation network [3–5]. Recently, dynamical processes
of the complex dynamical networks such as synchronization
have been extensively investigated [6–21]. The synchroniza-
tion discussed here is a kind of typical collective behaviors
and basic motions in nature [22]. However, in the case
where the whole network cannot synchronize by itself, some
controllers may be designed and applied to force the network
to synchronize the configuration and states.What ismore, the
real-world traffic networks normally have a large number of
nodes; therefore, it is usually difficult to control a network by
adding the controllers to all nodes.

In manipulating various networks, pinning control is a
simple and cost-effective technique for control, stabilization,
and synchronization [7–12]. Wang and Chen [7] introduced
a uniform model of complex dynamical networks by con-
sidering dynamical elements of a network as nodes and
exploited a pinning control technique for scale-free chaotic
dynamical networks, where local feedback injections were

applied to a small portion of nodes so as to control the
entire network. Reference [8] provided a clear explanation
on why significantly less local controllers were needed by
the specifically selective pinning scheme, which pinned the
most highly connected nodes in a scale-free network, than
that required by the randomly pinning scheme, and why
there was no significant difference between the two schemes
for controlling random-graph networks. In [9, 10], the idea
of pinning control was again used to stabilize complex
dynamical networks with nonlinear couplings onto some
homogenous states. Several adaptive synchronization criteria
were given in [11] by using Lyapunov stability theory and
pinning control method. Reference [12] further solved some
fundamental problems on how the local controllers on the
pinned nodes affect the global network synchronization. The
common feature of the work in [7–12] is that there are no
coupling delays in the network. Networks with coupling
delays have also received a great deal of attention. The time
delays are usually caused by finite speed of information
processing and communication, and their existence make
dynamical behaviors of the networksmuchmore complicated
[13]. Pinning control of general complex dynamical networks
with time-delay was given in [14, 15].

Moreover, in real physical systems, some noises or exter-
nal disturbances always exist that may cause instability and



2 Journal of Applied Mathematics

poor performance and thereby destroying the synchroniza-
tion performance. The 𝐻

∞
control theory has been seen

as an effective tool to reduce the effect of the noises or
disturbances in chaos synchronization [23–25]. Reference
[23] proposed the𝐻

∞
control concept to reduce the effect of

the disturbance on the available output to within a prescribed
level. References [24, 25] proposed two dynamic feedback
approaches for 𝐻

∞
synchronization of chaotic systems with

and without time-delay. Therefore, how to reduce the effect
of the noises or disturbances in synchronization of complex
dynamical networks should also be paid attention to. New
𝐻
∞
synchronization and state estimation problemswere pro-

posed for an array of coupled discrete time-varying stochastic
complex networks over a finite horizon [17]. However, to
the best of our knowledge, the pinning synchronization
of complex networks with coupling delays and external
disturbances has not yet been established, which motivates
the present study.

In this paper, we aim to deal with the pinning syn-
chronization for complex dynamical networks with coupling
delays and external disturbances by 𝐻

∞
control theory.

By linearizing the controlled network on the synchroniza-
tion state, the synchronization problem can be viewed as
a normal 𝐻

∞
control problem. Then by some necessary

model transforms, both delay-independent and -dependent
synchronization conditions with a given 𝐻

∞
disturbances

attenuation index 𝛾 are derived in terms of linear matrix
inequalities (LMIs), which guarantee that by placing a small
number of feedback controllers on some nodes, the whole
network can be pinned to reach network synchronization.
Finally, simulation results show that the network reaches
the desired synchronization performance under the pinning
control when there exist coupling delays and external distur-
bances.

Throughout this paper, 𝐼
𝑛
denotes the 𝑛 × 𝑛 identity

matrix;R𝑛 andR𝑛×𝑚 denote the 𝑛-dimensional and the 𝑛×𝑚-
dimensional Euclidean spaces, respectively;𝑋 < 0 represents
that 𝑋 is the symmetric negative matrix; given a matrix 𝑌,
𝜎(𝑌) represents its largest singular value; the superscripts 𝑇
and −1 stand for matrix transposition and matrix inverse;
in symmetric block matrices, ∗ is used as an ellipsis for
terms induced by symmetry; the notation ⊗ denotes the
Kronecker product; the space of square-integrable vector
functions over [0,∞) is denoted by 𝐿

2
[0,∞), and for 𝑤(𝑡) ∈

𝐿
2
[0,∞), its normalized energy is defined by ‖𝑤(𝑡)‖

2
=

(∫

∞

0

𝑤
𝑇

(𝑡)𝑤(𝑡)𝑑𝑡)
1/2.

2. Model Description and Preliminaries

Consider the following complex dynamical network model
with a coupling delay

𝑥̇
𝑖
(𝑡) = 𝑓 (𝑥

𝑖
(𝑡)) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑥

𝑗
(𝑡 − 𝑑)

+ 𝐵𝑤
𝑖
(𝑡) + 𝑢

𝑖
(𝑡) ,

𝑧
𝑖
(𝑡) = 𝐶𝑥

𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝑓 : R𝑛

→ R𝑛 is a continuously differentiable func-
tion, 𝑥

𝑖
(𝑡) = (𝑥

𝑖1
(𝑡), 𝑥

𝑖2
(𝑡), . . . , 𝑥

𝑖𝑛
(𝑡))

𝑇

∈ R𝑛 are the state
variables of node 𝑖, and 𝑢

𝑖
(𝑡) ∈ R𝑛 is the control input.

𝑤
𝑖
(𝑡) ∈ R𝑝 is the external disturbance input that belongs

to 𝐿
2
[0,∞), and 𝑧

𝑖
(𝑡) ∈ R𝑞 is the output vector. 𝑑 ≥ 0 is

the time delay (we assume that all delays are the same in
the network), the constant 𝑐 > 0 is coupling strength, Γ =

(𝛾
𝑖𝑗
) ∈ R𝑛×𝑛 is a inner-coupling matrix, if some pairs (𝑖, 𝑗),

1 ≤ 𝑖, 𝑗 ≤ 𝑛 with 𝛾
𝑖𝑗

̸= 0, then it means that the two coupled
nodes are linked through their 𝑖th and 𝑗th state variables,
respectively. 𝐴 = (𝑎

𝑖𝑗
) ∈ R𝑁×𝑁 is the outer-coupling matrix

of the network, in which 𝑎
𝑖𝑗
is defined as follows: if there is a

connection between node 𝑖 and node 𝑗(𝑗 ̸= 𝑖), then 𝑎
𝑖𝑗
= 𝑎

𝑗𝑖
=

1; otherwise, 𝑎
𝑖𝑗
= 𝑎

𝑗𝑖
= 0 (𝑗 ̸= 𝑖), and the diagonal elements

of matrix 𝐴 are defined by

𝑎
𝑖𝑖
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑗𝑖
,

𝑖 = 1, 2, . . . , 𝑁.

(2)

Suppose that network (1) is connected in the sense that there
are no isolated clusters, that is, 𝐴 is an irreducible matrix. 𝐵
and 𝐶 are known real matrices with appropriate dimensions.

Before stating the main results of this paper, some
preliminaries need to be given for convenient analysis.

Lemma 1. Suppose 𝐴 is a real symmetric and irreducible
matrix, in which 𝑎

𝑖𝑗
≥ 0 (𝑗 ̸= 𝑖) and 𝑎

𝑖𝑖
= −∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
𝑎
𝑖𝑗
, nonz-

ero matrix 𝐷 = diag(𝑑
1
, 𝑑

2
, . . . , 𝑑

𝑁
) satisfies 𝑑

𝑖
≥ 0 (1 ≤ 𝑖 ≤

𝑁). Let 𝐵
1
= 𝐴 − 𝐷, then

(i) all the eigenvalues of 𝐵
1
are less than 0;

(ii) there exists an orthogonal matrix 𝑈 ∈ R𝑁×𝑁 such that
𝑈
𝑇

𝐵𝑈 = diag(𝜆
1
, 𝜆

2
, . . . , 𝜆

𝑁
), where 𝜆

1
, 𝜆

2
, . . . , 𝜆

𝑁

are the eigenvalues of 𝐵
1
.

The proof of Lemma 1 is omitted here since it can be
deduced using linear algebra theory such as in [26].

Lemma 2 (see [19]). Assume that 𝑎 and 𝑏 are vectors, then for
any positive-definite matrix 𝑋, the following inequality holds:

−2𝑎
𝑇

𝑏 ≤ inf
𝑋>0

{𝑎
𝑇

𝑋𝑎 + 𝑏
𝑇

𝑋
−1

𝑏} . (3)

Lemma 3 (see [27]). The LMI

[

𝑄 (𝑥) 𝑆 (𝑥)

𝑆
𝑇

(𝑥) 𝑅 (𝑥)

] > 0, (4)

where 𝑄(𝑥) = 𝑄
𝑇

(𝑥), 𝑅(𝑥) = 𝑅
𝑇

(𝑥), and 𝑆(𝑥) depend affinely
on 𝑥, is equivalent to 𝑅(𝑥) > 0, 𝑄(𝑥) − 𝑆(𝑥)𝑅

−1

(𝑥)𝑆
𝑇

(𝑥) > 0.
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3. 𝐻
∞

-Based Pinning Synchronization of
Complex Dynamical Networks with
a Coupling Time Delay

In this section, we present the synchronization of a network
(1) to an isolate node, which is assumed as

̇𝑠 (𝑡) = 𝑓 (𝑠 (𝑡)) ,

𝑧 (𝑡) = 𝐶𝑠 (𝑡) ,

(5)

in which 𝑠(𝑡) can be an equilibrium point, a periodic orbit,
and even a chaotic orbit in the phase space. To achieve the
above goal, we apply the pinning control strategy on a small
fraction 𝛿 (0 < 𝛿 ≤ 1) of the nodes in network (1). Suppose
that nodes 𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑘
are selected to be under pinning

control, and 𝑖
𝑘+1

, 𝑖
𝑙+2

, . . . , 𝑖
𝑁
are the unselected nodes, where

𝑘 = [𝛿𝑁] stands for the smaller but nearest integer to the real
number 𝛿𝑁. Certainly, 𝑘 is not less than 0 for pinning control.
Then, the controlled network can be described as

𝑥̇
𝑖𝑙
(𝑡) = 𝑓 (𝑥

𝑖𝑙
(𝑡)) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑙𝑗
Γ𝑥

𝑗
(𝑡 − 𝑑)

+ 𝐵𝑤
𝑖𝑙
(𝑡) + 𝑢

𝑖𝑙
, 𝑙 = 1, 2, . . . , 𝑘,

𝑥̇
𝑖𝑙
(𝑡) = 𝑓 (𝑥

𝑖𝑙
(𝑡)) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑙𝑗
Γ𝑥

𝑗
(𝑡 − 𝑑)

+ 𝐵𝑤
𝑖𝑙
(𝑡) , 𝑙 = 𝑘 + 1, 𝑘 + 2, . . . , 𝑁.

(6)

For simplicity, we use the local linear negative feedback
control law as follows:

𝑢
𝑖𝑙
= −𝑐𝑑

𝑖𝑙
Γ (𝑥

𝑖𝑙
(𝑡 − 𝑑) − 𝑠 (𝑡 − 𝑑)) ,

𝑙 = 1, 2, . . . , 𝑘,

(7)

where the feedback gain 𝑑
𝑖𝑙
> 0.

Combining (6)-(7) and letting 𝑑
𝑖𝑙
= 0, 𝑙 = 𝑘 + 1, 𝑘 +

2, . . . , 𝑁, we have

𝑥̇
𝑖
(𝑡) = 𝑓 (𝑥

𝑖
(𝑡)) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑥

𝑗
(𝑡 − 𝑑)

− 𝑐𝑑
𝑖
Γ (𝑥

𝑖
(𝑡 − 𝑑) − 𝑠 (𝑡 − 𝑑)) + 𝐵𝑤

𝑖
(𝑡) ,

𝑧
𝑖
(𝑡) = 𝐶𝑥

𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑁.

(8)

Denote

𝑒
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑠 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁. (9)

The error dynamical system is then described by

̇𝑒
𝑖
(𝑡) = 𝑓 (𝑒

𝑖
(𝑡) + 𝑠 (𝑡)) − 𝑓 (𝑠 (𝑡))

+ 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑒

𝑗
(𝑡 − 𝑑) − 𝑐𝑑

𝑖
Γ𝑒

𝑖
(𝑡 − 𝑑) + 𝐵𝑤

𝑖
(𝑡) ,

𝑧
𝑖
(𝑡) = 𝐶𝑒

𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑁.

(10)

Linearizing the system (10) on the state 𝑠(𝑡) yields the
following error dynamical system:

̇𝑒
𝑖
(𝑡) = 𝐽 (𝑡) 𝑒

𝑖
(𝑡) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑒

𝑗
(𝑡 − 𝑑)

− 𝑐𝑑
𝑖
Γ𝑒

𝑖
(𝑡 − 𝑑) + 𝐵𝑤

𝑖
(𝑡) ,

𝑧
𝑖
(𝑡) = 𝐶𝑒

𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑁,

(11)

where 𝐽(𝑡) ∈ R𝑛×𝑛 is the Jacobian of 𝑓 on 𝑠(𝑡). Obviously, if
all the errors 𝑒

𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑁) uniformly asymptotically

tend to zero, then the network (1) realizes synchronization.
Define the following matrices:

𝐷 = diag (𝑑
1
, 𝑑

2
, . . . , 𝑑

𝑁
) ∈ R

𝑁×𝑁

,

𝑒 (𝑡) = (𝑒
𝑇

1
(𝑡) , . . . , 𝑒

𝑇

𝑁
(𝑡))

𝑇

∈ R
𝑛𝑁

,

𝑤 (𝑡) = (𝑤
𝑇

1
(𝑡) , . . . , 𝑤

𝑇

𝑁
(𝑡))

𝑇

∈ R
𝑝𝑁

,

𝑧 (𝑡) = (𝑧
𝑇

1
(𝑡) , . . . , 𝑧

𝑇

𝑁
(𝑡))

𝑇

∈ R
𝑞𝑁

.

(12)

By using the Kronecker product, the error dynamical system
(13) can be rewritten in the following matrix form:

̇𝑒 (𝑡) = (𝐼
𝑁
⊗ 𝐽 (𝑡)) 𝑒 (𝑡) + (𝑐𝐵

1
⊗ Γ)

× 𝑒 (𝑡 − 𝑑) + (𝐼
𝑁
⊗ 𝐵)𝑤 (𝑡) ,

𝑧 (𝑡) = (𝐼
𝑁
⊗ 𝐶) 𝑒 (𝑡) ,

(13)

where 𝐵
1
= 𝐴−𝐷. For the system (13), the attenuating ability

of its stability performance against external disturbances can
be quantitatively measured by the 𝐻

∞
norm of the transfer

function matrix 𝑇
𝑧𝑤
(𝑠) from the external disturbance 𝑤(𝑡) to

the controlled output 𝑧(𝑡), which is defined by [28]:
󵄩
󵄩
󵄩
󵄩
𝑇
𝑧𝑤

(𝑠)
󵄩
󵄩
󵄩
󵄩∞

= sup
V∈𝑅

𝜎 (𝑇
𝑧𝑤

(𝑗V))

= sup
0 ̸=𝑤(𝑡)∈𝐿2[0,∞)

‖𝑧 (𝑡)‖
2

‖𝑤 (𝑡)‖
2

.

(14)

To the reach desired synchronization performance
against external disturbances, we need to design the local
linear negative feedback control law 𝑢

𝑖𝑙
, 𝑙 = 1, 2, . . . , 𝑘 in (7)

such that the following are achieved:

(i) the error dynamical system (13) is asymptotically
stable with 𝑤(𝑡) = 0;

(ii) ‖𝑇
𝑧𝑤
(𝑠)‖

∞
< 𝛾 holds for a prescribed 𝐻

∞
index 𝛾 >

0, or equivalently the system (13), satisfying the
following dissipation inequality:

∫

∞

0

‖𝑧 (𝑡)‖
2d𝑡

< 𝛾
2

∫

∞

0

‖𝑤 (𝑡)‖
2d𝑡, ∀𝑤 ∈ 𝐿

2
[0,∞) .

(15)
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In summary, the pinning synchronization control problem
of complex dynamical networks with external disturbances
is transformed into the above𝐻

∞
control problem.

It is easy to see that the matrix 𝐵
1
satisfies Lemma 1; let

𝜆
𝑁
≤ ⋅ ⋅ ⋅ ≤ 𝜆

2
≤ 𝜆

1
< 0 be the eigenvalues of matrix 𝐵

1
; thus

there exists an orthogonal matrix 𝑈 ∈ R𝑁×𝑁 such that

𝑈
𝑇

𝐵
1
𝑈 = Λ = diag {𝜆

1
, 𝜆

2
, . . . , 𝜆

𝑁
} . (16)

Perform the orthogonal transform

𝑒 (𝑡) = (𝑈
𝑇

⊗ 𝐼
𝑛
) 𝑒 (𝑡) ,

𝑤 (𝑡) = (𝑈
𝑇

⊗ 𝐼
𝑝
)𝑤 (𝑡) ,

𝑧̂ (𝑡) = (𝑈
𝑇

⊗ 𝐼
𝑞
) 𝑧 (𝑡) .

(17)

Then from (13), we have

̇
𝑒̂ (𝑡) = (𝐼

𝑁
⊗ 𝐽 (𝑡)) 𝑒 (𝑡) + (𝑐Λ ⊗ Γ) 𝑒 (𝑡 − 𝑑)

+ (𝐼
𝑁
⊗ 𝐵)𝑤 (𝑡)

𝑧̂ (𝑡) = (𝐼
𝑁
⊗ 𝐶) 𝑒 (𝑡) .

(18)

Further, it can be easily proved that 𝑇
𝑧̂𝑤
(𝑠) = (𝑈

𝑇

⊗

𝐼
𝑛
)𝑇

𝑧𝑤
(𝑠)(𝑈 ⊗ 𝐼

𝑛
), which leads to ‖𝑇

𝑧𝑤
(𝑠)‖

∞
= ‖𝑇

𝑧̂𝑤
(𝑠)‖

∞
ac-

cording to the definition of𝐻
∞

norm defined in (14).
We can rewrite (17) into the following equations:

̇
𝑒̂
𝑖
(𝑡) = 𝐽 (𝑡) 𝑒

𝑖
(𝑡) + 𝑐𝜆

𝑖
Γ𝑒

𝑖
(𝑡 − 𝑑) + 𝐵𝑤

𝑖
(𝑡) ,

𝑧̂
𝑖
(𝑡) = 𝐶𝑒

𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑁.

(19)

By the definition of𝐻
∞
normgiven in (14), if ‖ 𝑇

𝑧̂𝑖𝑤𝑖
(𝑠)‖

∞
< 𝛾

holds for all 𝑖 = 1, 2, . . . , 𝑁, then ‖𝑇
𝑧̂𝑤
(𝑠)‖

∞
< 𝛾 follows. To

summarize, the error dynamical system (13) is asymptotically
stable and ‖ 𝑇

𝑧𝑤
(𝑠)‖

∞
< 𝛾, if the 𝑁 equations (18) are all

asymptotically stable and satisfy the𝐻
∞

index 𝛾.

3.1. Delay-Independent Condition

Theorem 4. For a given index 𝛾 > 0, if there exist two sym-
metric positive-definite matrices 𝑃,𝑄 ∈ R𝑛×𝑛, such that

[

[

[

[

𝐽(𝑡)
𝑇

𝑃 + 𝑃𝐽 (𝑡) 𝑐𝜆
𝑁
𝑃Γ 𝑃𝐵 𝐶

𝑇

∗ −𝑄 0 0

∗ ∗ −𝛾𝐼 0

∗ ∗ ∗ −𝛾𝐼

]

]

]

]

> 0 (20)

is satisfied.Then, the error dynamical system (13) is asymptoti-
cally stable and ‖ 𝑇

𝑧𝑤
(𝑠)‖

∞
< 𝛾 holds for all 𝑑 ∈ [0,∞), which

implies that network synchronization is reached asymptotically
with𝐻

∞
disturbance attenuation index 𝛾.

Proof. First, we study the stability of the system (18) without
external disturbances, that is, 𝑤

𝑖
(𝑡) = 0. Define a Lyapunov-

Krasovskii function

𝑉 (𝑒
𝑖
(𝑡)) = 𝑒

𝑖
(𝑡)

𝑇

𝑃𝑒
𝑖
(𝑡) + ∫

𝑡

𝑡−𝑑

𝑒
𝑖
(𝜃)

𝑇

𝑄𝑒
𝑖
(𝜃) 𝑑𝜃 (21)

with positive definite matrices 𝑃,𝑄 ∈ R𝑛×𝑛. The time deriva-
tive of 𝑉(𝑒

𝑖
(𝑡)) is

𝑉̇ (𝑒
𝑖
(𝑡)) = 𝑒

𝑖
(𝑡)

𝑇

[𝐽
𝑇

(𝑡) 𝑃 + 𝑃𝐽 (𝑡) + 𝑄] 𝑒
𝑖
(𝑡)

+ 2𝑒
𝑖
(𝑡 − 𝑑)

𝑇

𝑐𝜆
𝑖
Γ
𝑇

𝑃𝑒
𝑖
(𝑡)

− 𝑒
𝑖
(𝑡 − 𝑑)

𝑇

𝑄𝑒
𝑖
(𝑡 − 𝑑) .

(22)

From Lemma 2, we have

2𝑒
𝑖
(𝑡 − 𝑑)

𝑇

𝑐𝜆
𝑖
Γ
𝑇

𝑃𝑒
𝑖
(𝑡) ≤ 𝑒

𝑖
(𝑡 − 𝑑)

𝑇

𝑄𝑒
𝑖
(𝑡 − 𝑑)

+ 𝑐
2

𝜆
2

𝑖
𝑒
𝑖
(𝑡)

𝑇

𝑃Γ𝑄
−1

Γ
𝑇

𝑃𝑒
𝑖
(𝑡) .

(23)

So, we can obtain

𝑉̇ (𝑒
𝑖
(𝑡)) = 𝑒

𝑖
(𝑡)

𝑇

[𝐽
𝑇

(𝑡) 𝑃 + 𝑃𝐽 (𝑡) + 𝑄

+ 𝑐
2

𝜆
2

𝑖
𝑃Γ𝑄

−1

Γ
𝑇

𝑃] 𝑒
𝑖
(𝑡)

≤ 𝑒
𝑖
(𝑡)

𝑇

[𝐽
𝑇

(𝑡) 𝑃 + 𝑃𝐽 (𝑡) + 𝑄

+ 𝑐
2

𝜆
2

𝑁
𝑃Γ𝑄

−1

Γ
𝑇

𝑃] 𝑒
𝑖
(𝑡) .

(24)

By Lemma 3, inequality (19) implies

𝐽
𝑇

(𝑡) 𝑃 + 𝑃𝐽 (𝑡) + 𝑄 + 𝑐
2

𝜆
2

𝑁
𝑃Γ𝑄

−1

Γ
𝑇

𝑃 < 0. (25)

Thus, the system (18) is asymptotically stable when 𝑤
𝑖
(𝑡) = 0.

Subsequently, we discuss the performance of system (18)
with nonzero disturbance 𝑤

𝑖
(𝑡). Consider the cost function

𝐽 (𝑤
𝑖
) = ∫

∞

0

(𝛾
−1

𝑧̂
𝑖
(𝑡)

𝑇

𝑧̂
𝑖
(𝑡) − 𝛾𝑤

𝑖
(𝑡)

𝑇

𝑤
𝑖
(𝑡)) 𝑑𝑡. (26)

Under the assumption that the initial state is zero-valued, we
have

𝐽 (𝑤
𝑖
) = ∫

∞

0

(𝛾
−1

𝑧̂
𝑖
(𝑡)

𝑇

𝑧̂
𝑖
(𝑡) − 𝛾𝑤

𝑖
(𝑡)

𝑇

𝑤
𝑖
(𝑡))

+ 𝑉̇ (𝑒
𝑖
(𝑡)) 𝑑𝑡 − 𝑉 (𝑒

𝑖
(∞))

≤ ∫

∞

0

(𝛾
−1

𝑧̂
𝑖
(𝑡)

𝑇

𝑧̂
𝑖
(𝑡) − 𝛾𝑤

𝑖
(𝑡)

𝑇

𝑤
𝑖
(𝑡))

+ 𝑉̇ (𝑒
𝑖
(𝑡)) 𝑑𝑡

≤ ∫

∞

0

𝜉
𝑇

(𝑡) Θ𝜉 (𝑡) 𝑑𝑡,

(27)

where

Θ = [
𝐽
𝑇

(𝑡) 𝑃 + 𝑃𝐽 (𝑡) + 𝑄+ 𝑐
2

𝜆
2

𝑁
𝑃Γ𝑄

−1

Γ
𝑇

𝑃 + 𝛾
−1

𝐶
𝑇

𝐶 𝑃𝐵

∗ −𝛾𝐼
] ,

𝜉 (𝑡) = [

𝑥 (𝑡)

𝑤 (𝑡)
] .

(28)

By Lemma 3, inequality (19) is equivalent to Θ < 0; thus, we
have

∫

∞

0

𝑧̂
𝑖
(𝑡)

𝑇

𝑧̂
𝑖
(𝑡) 𝑑𝑡 ≤ 𝛾

2

∫

∞

0

𝑤
𝑖
(𝑡)

𝑇

𝑤
𝑖
(𝑡) 𝑑𝑡 (29)

for𝑁 equations in the system (18), which completes the proof.
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3.2. Delay-Dependent Condition

Lemma 5 (see [29]). Consider the following time-delay sys-
tem:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝑑) + 𝐵𝑤 (𝑡) ,

𝑧̂ (𝑡) = 𝐶𝑥 (𝑡) ,

(30)

where 𝑑 ∈ [0, 𝑑
∗

] is the constant time delay. Given a scalar
𝛾 > 0, the system is asymptotically stable and with 𝐻

∞

perform-ance index 𝛾, if there exist symmetric positive-definite
matrices 𝑃

1
, 𝑆, 𝑅 = [

𝑅1 𝑅2

𝑅
𝑇

2
𝑅3

] and matrices 𝑃
2
, 𝑃

3
,𝑊 = [

𝑊1 𝑊2

𝑊3 𝑊4
]

such that

Ξ =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
11

Ξ
12

𝑃
𝑇

2
𝐵 𝑑

∗

(𝑊
𝑇

1
+ 𝑃

1
) 𝑑

∗

(𝑊
𝑇

3
+ 𝑃

𝑇

2
) −𝑊

𝑇

3
𝐴
𝑑

𝐶
𝑇

∗ Ξ
22

𝑃
𝑇

3
𝐵 𝑑

∗

𝑊
𝑇

2
𝑑
∗

(𝑊
𝑇

4
+ 𝑃

𝑇

3
) −𝑊

𝑇

4
𝐴
𝑑

0

∗ ∗ −𝛾
2

𝐼 0 0 0 0

∗ ∗ ∗ −𝑑
∗

𝑅
1

−𝑑
∗

𝑅
2

0 0

∗ ∗ ∗ ∗ −𝑑
∗

𝑅
3

−𝑆 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0

(31)

holds, where

Ξ
11

= (𝐴 + 𝐴
𝑑
)
𝑇

𝑃
2
+ 𝑃

𝑇

2
(𝐴 + 𝐴

𝑑
)

+ (𝑊
𝑇

3
𝐴
𝑑
+ 𝐴

𝑇

𝑑
𝑊
3
) + 𝑆,

Ξ
12

= 𝑃
1
− 𝑃

𝑇

2
+ (𝐴 + 𝐴

𝑑
)
𝑇

𝑃
2
+ 𝐴

𝑇

𝑑
𝑊
4

Ξ
22

= −𝑃
3
− 𝑃

𝑇

3
+ 𝑑

∗

𝐴
𝑇

𝑑
𝑅
3
𝐴
𝑑
.

(32)

Theorem 6. For a given index 𝛾 > 0, the error dynamical
system (13) is asymptotically stable and ‖𝑇

𝑧𝑤
(𝑠)‖

∞
< 𝛾 for

all 𝑑 ∈ [0, 𝑑
∗

]; that is, network synchronization is achieved
asymptotically with𝐻

∞
index 𝛾 under the pinning control (7)

if there exist symmetric positive-definite matrices 𝑃
1
, 𝑆, 𝑅 =

[

𝑅1 𝑅2

𝑅
𝑇

2
𝑅3

] and matrices 𝑃
2
, 𝑃

3
,𝑊 = [

𝑊1 𝑊2

𝑊3 𝑊4
] such that

Φ =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝜙
11

𝜙
12

𝑃
𝑇

2
𝐵 𝑑

∗

(𝑊
𝑇

1
+ 𝑃

1
) 𝑑

∗

(𝑊
𝑇

3
+ 𝑃

𝑇

2
) −𝑐𝜆

𝑖
𝑊

𝑇

3
Γ 𝐶

𝑇

∗ 𝜙
22

𝑃
𝑇

3
𝐵 𝑑

∗

𝑊
𝑇

2
𝑑
∗

(𝑊
𝑇

4
+ 𝑃

𝑇

3
) −𝑐𝜆

𝑖
𝑊

𝑇

4
Γ 0

∗ ∗ −𝛾
2

𝐼 0 0 0 0

∗ ∗ ∗ −𝑑
∗

𝑅
1

−𝑑
∗

𝑅
2

0 0

∗ ∗ ∗ ∗ −𝑑
∗

𝑅
3

−𝑆 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0

(33)

is satisfied for 𝑖 = 1, 2, . . . , 𝑁, where

𝜙
11

= (𝐽 (𝑡) + 𝑐𝜆
𝑖
Γ)

𝑇

𝑃
2
+ 𝑃

𝑇

2
(𝐽 (𝑡) + 𝑐𝜆

𝑖
Γ)

+ (𝑐𝜆
𝑖
𝑊

𝑇

3
Γ + 𝑐𝜆

𝑖
Γ
𝑇

𝑊
3
) + 𝑆,

𝜙
12

= 𝑃
1
− 𝑃

𝑇

2
+ (𝐽 (𝑡) + 𝑐𝜆

𝑖
Γ)

𝑇

𝑃
2
+ 𝑐𝜆

𝑖
Γ
𝑇

𝑊
4

𝜙
22

= −𝑃
3
− 𝑃

𝑇

3
+ 𝑑

∗

𝑐
2

𝜆
2

𝑖
Γ
𝑇

𝑅
3
Γ.

(34)

Proof. Due to Lemma 5, all 𝑁 equations in the system (18)
are asymptotically stable and satisfy the 𝐻

∞
performance

index 𝛾, which implies that the error dynamical system (13)
is asymptotically stable and ‖𝑇

𝑧𝑤
(𝑠)‖

∞
< 𝛾 for all 𝑑 ∈ [0,

𝑑
∗

].

Remark 7. Due to the convex property of LMIs, actually
only two LMIs associated with the largest and the smallest
eigenvalues 𝜆

1
and 𝜆

𝑁
need to be verified. This helps to

significantly reduce the computational burden caused by the
number of nodes in network, especially when the number𝑁
is very large.

Remark 8. According to Theorems 4 and 6, if the network
is given, the synchronization conditions are determined by
𝐽(𝑡), Γ, 𝐵, 𝐶, the eigenvalues of matrix 𝐵

1
, the coupling

strength 𝑐, and the disturbance attenuation index 𝛾. Hence,
the stabilization of such networks using feedback control is
determined by the dynamics of each uncoupled node, the
inner-coupling matrix, the coupling matrix, the disturbance
input matrix, the output matrix, and the feedback gain
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matrix of the network. Generally, the number of controllers
is preferred to be very small with the entire network size 𝑁.
According to Lemma 1, 𝐵

1
is symmetric and negative even if

𝐷 has only one nonzero element. So in such case, appropriate
𝑐, 𝛾, and 𝐷 may make Lemma 1 holds. It is concluded that
such a complex dynamical network can be pinned to its
equilibrium by using only one controller.

Remark 9. In fact, themultiagent systems are the special cases
of complex networks, so if we choose all the agents to be
pinned, the method developed in this paper can be extended
to the multi-agent systems in [30] and the corresponding
delay-independent and -dependent consensus criteria can be
derived.

4. Simulation Results

In this section, we give an example to demonstrate the
effectiveness of the proposed method.

We assume that the controlled network (1) consists of 10
identical Lorenz systems [31], which is described by

𝑥̇
𝑖
(𝑡) = 𝑓 (𝑥

𝑖
(𝑡)) + 𝑐

10

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑥

𝑗
(𝑡 − 𝑑)

+ 𝐵𝑤
𝑖
(𝑡) + 𝑢

𝑖
(𝑡) ,

𝑧
𝑖
(𝑡) = 𝐶𝑥

𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 10,

(35)

where the inner-coupling matrix is Γ = diag(1, 1, 1), the
coupling matrix is

𝐴 =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−4 1 0 0 1 1 1 0 0 0

1 −3 0 0 0 0 0 1 1 0

0 0 −1 0 0 0 0 1 0 0

0 0 0 −2 0 1 0 1 0 0

1 0 0 0 −2 0 0 0 1 0

1 0 0 1 0 −2 0 0 0 0

1 0 0 0 0 0 −3 0 1 1

0 1 1 1 0 0 0 −3 0 0

0 1 0 0 1 0 1 0 −4 1

0 0 0 0 0 0 1 0 1 −2

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

, (36)

𝐵 = [

0

1

1

], and 𝐶 = [1 0 0]. In order to clearly reflect
the effect of external disturbances to the synchronization
performance, the disturbance is assumed to be 𝑤

𝑖
(𝑡) =

7 sin(0.2𝑡). The node dynamics are then given by

𝑥̇
𝑖1
= 𝜎 (𝑥

𝑖2
− 𝑥

𝑖1
) ,

𝑥̇
𝑖2
= 𝑟𝑥

𝑖1
− 𝑥

𝑖2
− 𝑥

𝑖1
𝑥
𝑖3
,

𝑥̇
𝑖3
= 𝑥

𝑖1
𝑥
𝑖2
− 𝑏𝑥

𝑖3
,

(37)

where 𝜎 is called Prandtl number and assumed as 𝜎 > 1, 𝑟 >
1. There are three equilibriums which are the origin

𝑝 = [√𝑏 (𝑟 − 1) √𝑏 (𝑟 − 1) 𝑟 − 1]

𝑇

,

𝑞 = [−√𝑏 (𝑟 − 1) −√𝑏 (𝑟 − 1) 𝑟 − 1]

𝑇

.

(38)
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Figure 1: Lorenz chaos.

The Lorenz system is symmetrical with respect to the 𝑥
𝑖3
axis.

Denote 𝑟∗ = 𝜎(𝜎+𝑏+3)/(𝜎−𝑏−1). It is known that𝑝 and 𝑞 are
unstable and chaos occurs if 𝑟 > 𝑟

∗ Let 𝜎 = 10, 𝑟 = 28, and
𝑏 = 8/3, which means that 𝑝 and 𝑞 are unstable equilibria,
and chaos occurs at the same time. A typical behavior of a
Lorenz chaos system is the butterfly effect shown in Figure 1.
Now the objective here is to stabilize this network (30) onto
the unstable equilibrium 𝑝 with𝐻

∞
disturbance attenuation

index 𝛾 by applying the local linear feedback pinning control
(8).

Consider the network with a bounded coupling delay 0 ≤

𝑑 ≤ 𝑑
∗

= 0.02, and the coupling strength is chosen as 𝑐 = 3.
Take the initial condition as 𝑥

𝑖
(𝑠) = 0, 𝑠 ∈ [−0.02, 0]. Three

nodes are pinned and the feedback gains are designed as 𝑑
1
=

𝑑
7
= 𝑑

9
= 2; then a minimum value of 𝛾 = 0.82 is obtained

by applyingTheorem 6 with

𝑃
1
=
[

[

0.7590 −0.0697 0.0334

−0.0697 0.5061 −0.8253

0.0334 −0.8253 4.0335

]

]

,

𝑃
2
=
[

[

0.7902 0.4187 0.9993

−0.4681 1.0807 −1.3012

0.0072 −0.3312 1.3426

]

]

,

𝑃
3
=
[

[

1.2139 × 10
4

−7.4842 × 10
3

1.8941 × 10
4

1.6926 × 10
4

1.3199 × 10
4

−1.6672 × 10
4

−1.6925 × 10
4

−1.3198 × 10
4

1.6672 × 10
4

]

]

,

𝑆 =
[

[

2.8504 × 10
5

2.6204 × 10
5

2.6492 × 10
5

2.6204 × 10
5

1.3184 × 10
6

−2.0552 × 10
6

2.6492 × 10
5

−2.0552 × 10
6

7.4047 × 10
6

]

]

,

𝑅
3
=
[

[

3.9131 × 10
8

−3.9789 × 10
7

−4.0882 × 10
7

−3.9789 × 10
7

3.8412 × 10
8

−2.5207 × 10
7

−4.0882 × 10
7

−2.5207 × 10
7

4.1503 × 10
8

]

]

.

(39)

Figure 2 shows the control results when 𝑑 = 0.015. Figure 3
shows the control results when we select 5 nodes as the
controlled nodes. It can be seen that if we select more pinned
nodes, it will cost less time to reach stable state.

5. Conclusions

This paper addressed the pinning synchronization problem
for a group of complex dynamical networks with coupling
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Figure 2: Control results of the network when 𝑐 = 3, 𝑑
1
= 𝑑
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9
= 3, and 𝑑 = 0.015.
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Figure 3: Control results of the network when 𝑐 = 3, 𝑑
1
= 𝑑

2
=

𝑑
4
= 𝑑

7
= 𝑑

9
= 3, and 𝑑 = 0.015.

delays and external disturbances, by transforming it into a
normal𝐻

∞
control problem. Specifically, delay-independent

and delay-dependent conditions in terms of LMI were both
derived to ensure the synchronization of networks with a
prescribed 𝐻

∞
disturbance attenuation index. It deserves

pointing out that the obtained results can be extended to
complex dynamical network with coupling heterogeneous
delays or time-varying delays by the samemethod introduced
in this paper.
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