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Automated public health records provide the necessary data for rapid outbreak detection. An
adaptive exponentially weighted moving average (EWMA) plan is developed for signalling
unusually high incidence when monitoring a time series of nonhomogeneous daily disease counts.
A Poisson transitional regression model is used to fit background/expected trend in counts and
provides “one-day-ahead” forecasts of the next day’s count. Departures of counts from their
forecasts are monitored. The paper outlines an approach for improving early outbreak data signals
by dynamically adjusting the exponential weights to be efficient at signalling local persistent high
side changes. We emphasise outbreak signals in steady-state situations; that is, changes that occur
after the EWMA statistic had run through several in-control counts.
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1. Introduction

Early detection of disease outbreaks is essential for the efficient control of acute public health
risks. For example, identifying the source of, and restricting exposure to, contaminated food
products can only proceed once there is enough information for an outbreak data signal.
Automated detection systems that accumulate sufficient information for earlier identification
of an outbreak data signal are common now days. Identifying unusual disease incidence is
normally carried out by monitoring data streams such as daily, weekly, or monthly counts or
rates.

Statistical process control (SPC) methods, including control charts, are increasingly
being applied to public health surveillance [1, 2]. Unusual incidence is automatically
signalled when the control chart of the disease time series exceeds a threshold “control
limit”. However, disease incidence time series can exhibit characteristics that increase the
complexity of detection of unusual incidences. Counts typically vary due to known influences
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such as school holidays, seasons, day of the week, and normal transitional (autocorrelation
or autoregressive) influences. Subtracting expected behaviour from the counts reduces
predictable variation effects in the time series, making it easier to detect unusual behaviour.
Traditional monitoring of standardised differences between observed and modelled counts
“standardised forecast errors” assumes normality of the forecast errors. However, Buckeridge
et al. [2] indicated that conventional process control methods applied to syndromic data
result in thresholds that produce unacceptably high false alarm rates when thresholds are
not adjusted for the violation of distributional and other assumptions. The focus of the paper
is detecting unexpected aberrations in heterogeneous time series of counts while trying to
control for false alarms.

Exponentially weighted moving average (EWMA) control charts have been useful
for monitoring industrial production processes (e.g., see Lucas and Saccucci [3]). More
recently they have been used in public health surveillance (see review article by Woodall
[1]) and for monitoring network counts (see Lambert and Liu [4]). Lambert and Liu used
an EWMA plan of pseudo residuals (see Zucchini and MacDonald [5]) to monitor network
counts (note that a surveillance methodology with all parameters specified is defined as a
plan in this paper). We propose an alternative approach that avoids conversion to pseudo
residuals. Lambert and Liu [4] used the EWMA to update means every minute, or on
hourly cycles, whereas we use transitional Poisson regression models to update one-day-
ahead forecast mean daily rates similar to that of Burr et al. [6]. We compared the CUSUM
rather than EWMA of pseudoforecast errors to our proposed plans, because CUSUM and
EWMA have similar performance in terms of early detection, but the CUSUM plan can be
optimised [7].

Grigg and Spiegelhalter [8] used generalised linear models to estimate expected
outcomes and correct counts by adjusting for risk factors. Their adjusted scores (called
pseudo-observations) facilitate the temporal comparisons to baseline values thus allowing
confounders to the comparison to be removed. Similarly we adjust for the influences of
known variation caused by day of the week influences, seasonal influences and usual
transitional influences, thus giving our plans a better chance of detecting unusual causes
of variation. Unlike Grigg and Spiegelhalter [8] a primary aim of our work is to improve the
early detection of outbreak data signals; a major goal of automated real-time public health
surveillance. We offer a practical way of dynamically changing the exponential weights,
giving the plan a better chance of detecting predictable (yet relatively small) (unusual)
epidemic footprints. The strategy used is similar to that applied by Capizzi and Masarotto
[9] and Nembhard and Kao [10]. The traditional method for overcoming the heterogeneity
in trend is to use one-step-ahead forecasts from regression models that conform to usual,
background disease count behaviour and then calculate control charts from the standardised
forecast residuals (e.g., see Parker [11], Miller et al. [12], Kleinschmidt et al. [13], Wang et al.
[14], Farrington et al. [15], Cowling et al. [16], Stoto et al. [17], and Kaninda et al. [18]). The
forecast residuals are the difference between new count observations and the forecast count
predicted by the regression model. In other words, regression models are used to define usual
or expected behaviour, and the forecast residuals to detect unusual variation. We included
explanatory variables that accounted for

(i) the annual seasonal influence,

(ii) day of the week influences,

(iii) usual transitional (day-to-day) carry over influences of the lag counts.
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EWMA plans are used to accumulate memory of local trends. The benefit of
accumulating memory is having sufficient power to signal a change. The exponential weights
λ control the amount of memory retained in the EWMA plan. Lower values retain a longer
memory.

Monitoring performance is measured in terms of out-of-control average time to signal.
We used the average number of days from the day of onset of outbreak to the day the outbreak
signal to define performance. The average time to signal for a step change of δ in mean
(denoted by ATSδ) is used to measure a plan s early detection performance. An in-control
ATS0 of 100 is used for monitoring daily counts, which translates to just over 3 false alarms
per annum.

Most of the work on control chart efficiency in the literature on surveillance has
been carried out for EWMA plans in their initial state where the out-of-control behaviour is
generated starting the EWMA at its in-control value. In practice, process changes seldom start
when EWMA statistics equals the in-control value. Therefore, all ATSδ values are found using
the more realistic steady-state situation, where the EWMA statistic has worked through some
in-control background data prior to the introduction of outbreak data. Steady-state situations
were simulated by running the EWMA plans through 25 days of in-control counts (denoted
the burn-in period) before introducing a change in the mean count representing outbreak
data.

Section 2 introduces the EWMA for homogeneous counts. Section 2.1 examines how
the EWMA plan can be improved when the in-control count follows a homogeneous Poisson
distribution. Section 3 extends the EWMA plan for nonhomogeneous background (in-
control) counts, and examines their improvement when parameters are known. We discuss
how the performance of EWMA plans can be improved when counts are nonhomogeneous
Poisson distributed. We consider early detection of both seasonal epidemic footprints, such
as the start of the influenza season, and unusual increases in counts. Seasonal epidemic
footprints are expected each year and therefore are not unusual. However, early detection
is important because seasonal epidemic footprints vary in size and timing. Early detection of
the start of the epidemic footprint defines when closer monitoring is required for informed
decision making, such as, increasing the use of agency staff to cope with increased patient
demand for hospital emergency department services. A simulated example is used to
demonstrate the efficiency of the recommended improvement strategy and demonstrate
that this plan is significantly better than using the “optimal” adaptive CUSUM of pseudo
residuals in terms of early signals for the same false alarm rate. Section 4 presents an example
of application that demonstrates the value of our improved plans relative to alternatives. The
paper concludes with a discussion in Section 5.

2. EWMA Plans for Homogeneous Counts

Let the daily count on day t of a certain disease be denoted by yt. The EWMA statistic for
these counts is given by EWMA0 = μ0 (in-control or background means are constant with
time therefore homogeneous counts have means that do not depend on t) and

EWMAt = λyt + (1 − λ)EWMAt−1, (2.1)

where λ (the exponential weight) is a suitable constant 0 < λ < 1. The λ value determines the
level of memory included in the EWMA plan. At time t, yt−� , the count for time t − � is given
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Table 1: Threshold values h(μ0,λ,100) for a range of μ0 and λ values.

μ0

λ 1 2 3 3.5 4 4.5 5 5.5 6 6.5 7

h(μ0, λ, 100)

0.05 1.232 2.336 3.410 3.939 4.466 4.991 5.515 6.038 6.562 7.085 7.608

0.07 1.319 2.450 3.547 4.088 4.625 5.159 5.692 6.224 6.756 7.287 7.818

0.10 1.435 2.602 3.732 4.288 4.839 5.387 5.932 6.476 7.018 7.560 8.100

0.15 1.604 2.827 4.005 4.583 5.154 5.720 6.283 6.843 7.401 7.957 8.511

0.20 1.758 3.033 4.254 4.849 5.438 6.020 6.597 7.171 7.741 8.309 8.875

0.25 1.905 3.229 4.489 5.101 5.705 6.301 6.891 7.477 8.058 8.637 9.213

0.30 2.039 3.412 4.710 5.339 5.957 6.566 7.168 7.765 8.357 8.946 9.532

0.35 2.142 3.565 4.904 5.549 6.182 6.805 7.419 8.027 8.631 9.230 9.827

a weight of (1 − λ)� , therefore a burn-in of 25 observations is adequate for the EWMA output
series to reduce to a steady-state for values of λ > 0.05, because (1 − λ)25 is close to zero.

Suppose outbreak data cause the mean to increase from μ0 to μ1. An important
consideration is the selection of a λ-value that detects this shift earliest.

For Poisson counts with mean μ, the EWMA plan signals a significant shift in mean
from the in-control mean of μ0 whenever

EWMAt > h
(
μ0, λ,ATS0

)
, (2.2)

where h(μ0, λ,ATS0) is a function of μ0, λ, and ATS0 (the in-control average run length).
Values for h(μ0, λ,ATS0 = 100) were found using simulation techniques (for more details
on how the control limits were found see Sparks et al. [19]). Table 1 provides values for
h(μ0, λ, 100) for a range of μ0 and λ values.

The EWMAt statistic is easy to interpret because it provides a local estimate of the
mean for daily counts (the average incidence expected per day). Improving EWMA charts
for early detection is now investigated in steady-state situations.

2.1. Improving EWMA Plans for Homogeneous Poisson Counts When
Parameters Are Known

Sparks [7] and Shu and Jiang [20] optimised adaptive CUSUM plans for detecting shifts
when data are approximately normally distributed. The same approach is followed here. Let
the λopt(μ0, μ1) value be the exponential weight that provides the earliest signal (the smallest
ATSδ) for the shift from μ0 to μ1 (i.e., δ = μ1 − μ0). An operating model for interpolating
λopt(μ0, μ1) values for values of 0.05 ≤ μ0 ≤ 30 is provided in (2.3). The operating model is
used for interpolating λopt(μ0, μ1) values for any given values for μ0 and μ1. When μ0 > 30
the normal approximation is adequate and standard EWMA plans can be applied.
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Table 2: “Optimal” λ values for a range of μ0 and μ1 values (λ̂opt(μ0, μ1)).

μ1 = η × μ0 μ0

η 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
1.3 0.05 0.06 0.07 0.07 0.08 0.08 0.09 0.09 0.10 0.10

1.4 0.05 0.06 0.07 0.08 0.09 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18

1.5 0.06 0.08 0.10 0.11 0.13 0.15 0.16 0.18 0.19 0.21 0.23 0.24 0.26

1.6 0.07 0.10 0.12 0.14 0.16 0.19 0.21 0.23 0.25 0.27 0.30 0.32 0.34

1.7 0.08 0.11 0.14 0.17 0.20 0.23 0.25 0.28 0.31 0.34

1.8 0.10 0.13 0.16 0.20 0.23 0.27 0.30 0.33

2.0 0.12 0.16 0.21 0.26 0.30 0.35

2.5 0.18 0.25 0.32

3.0 0.23 0.34

For disease counts that are Poisson distributed, a model for interpolating “optimal”
exponential weights (denoted by λopt(μ0, μ1)) that deliver approximately the smallest ATSδ

for ATS0 = 100 and 0.05 ≤ λ0 ≤ 0.35 is

λ̂opt
(
μ0, μ1

)
= 0.02130805 + 0.02945567μ1 − 0.03252782μ0 + 0.00659441zt

+ 0.00009397627μ0μ1 + 0.08497906ztμ1 − 0.1052998ztμ0 − 0.0001734491ztμ0μ1,

(2.3)

where zt is an indicator variable that takes on a value of 1 if (μ1 − μ0)/μ0 > 0.25 and zero
otherwise. For example, improving EWMA plans for detecting shifts from 1 to 2.25, 2 to 4, 3
to 5.25, and 4 to 6.5 would be achieved approximately by selecting λopt(μ0, μ1) equal 0.175,
0.2, 0.225, and 0.225, respectively. The restriction of the model (2.3) to λ ≤ 0.35 is not serious
because the ATSδ values for shifts that lead to λopt(μ0, μ1) ≥ 0.35 are generally 2 or less, and
therefore there is little opportunity to improve the EWMA performance for such large shifts.
Table 2 reports λ̂opt(μ0, μ1) for all combinations of μ0 = 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5,
or 7 and μ1 = cμ0 where c = 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 2, 2.5, or 3. The correlation between the
“true” values (derived from simulation) and the model fitted values (expected) using (2.3)
is 0.984 with the standard error for the regression model is given by 0.0188. The standard
error of 0.0188 is adequate because the EWMA plan with λ ∈ λopt(μ0, μ1) ± 2 × 0.0188 delivers
close to the lowest ATSδ value. The change in ATSδ is only slight within this range. In practice,
improving EWMA plans for shifts from μ0 to μ1 is achievable by selecting λ = λopt(μ0, μ1) only
when μ0 and μ1 are known or can be reliably estimated. The minimum value of λ̂opt(μ0, μ1)
is taken as 0.05. Placing this lower bound on λ̂opt(μ0, μ1) reduces the importance of early
detection of small shifts that may not be worth investigating.

3. Plans for Nonhomogeneous Counts

For nonhomogeneous counts yt, the EWMA statistic of (2.1) needs to be standardised in some
way to remove the influence of nonhomogeneity, that is, changing μ0 with time t, denoted by
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μ0(t). In addition, the optimisation process for the plan involves changing the exponential
weights dynamically for each day t to λt (/=λ). One possible standardisation is to divide
both sides of inequality (2.2) by h(μ0(t), λt,ATS0) to adjust for changing μ0(t) and λt with
time t. For known moving means μ0(t), this standardisation leads to the adaptive EWMA for
nonhomogeneous Poisson counts given by

AEWMAt =
λyt

h
(
μ0(t), λt,ATS0

) + (1 − λt)AEWMAt−1. (3.1)

Statistic (3.1) is similar to the adaptive control statistic used in Sparks [7] for normally
distributed data. Sparks developed a CUSUM plan, that is, nearly invariant to changes in
the reference value. Similarly AEWMAt’s control limit is nearly invariant to changes in μ0(t)
and λt. That is, the statistic AEWMAt signals whenever

AEWMAt > 1 (3.2)

with average time between false alarms close to ATS0. The invariant property of plans are
very useful, because plans do not need to be adjusted for changes in μ0(t) and λt. The
multiplicative adjustment a to the threshold of 1 for AEWMAt needed to achieve ATS0 = 100
is examined. The control limit of 1 is based on homogeneous Poisson count control limits
with known means, and these may need to be adjusted for nonhomogeneous Poisson counts
where means are unknown and are estimated from the data. The adjustments for specific
models are available for particular examples in Tables 3 and 4. Note that a values are very
close to 1 for all models considered, that is, almost no adjustment was required. In addition,
it will be demonstrated later that estimating λt to be temporally “optimal” makes the plan
perform better than fixing λ at 0.1.

A disadvantage with AEWMAt is that it has lost the simple interpretation of EWMAt

estimating the local mean. In addition, it is difficult to establish whether AEWMAt is trending
above or below what is expected. It is therefore helpful to draw the time series line of
the EWMA smoothed value of μ0(t)/h(μ0(t), λ,ATS0) on the time series plot of AEWMAt

(represented by a dashed line in all plots). If AEWMAt is trending above or below the dashed
line then counts are higher or lower than expected, respectively.

If future shifts are known in advance for homogeneous counts then the λ value can be
selected to minimise the EWMA plan’s out-of-control ATSδ as outlined in Section 2.

3.1. Efficient Plans for Nonhomogeneous Poisson Counts When
Means Are Unknown

An adaptive EWMA plan using λ = λopt(μ0, μ1) should work significantly better than
guessing in advance a value for λ and using it unchanged. In practice, efficient estimates
of μ0(t) and μ1(t) are required before an improvement is possible. In addition, we are less
interested in detecting small shifts in mean (δ = μ1 − μ0), for example, we may decide not to
respond to any increase in mean of δmin or less. Designing plans for μ1(t) ≥ μ0(t)+δmin has the
advantage of delaying signals of increases in means less than δmin. We achieve this by setting
the lower bound for min(μ1(t)) = μ0(t) + δmin, thus λ never fall below λopt(μ0,min(μ1(t))). In
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this paper, we arbitrarily set min(μ1(t)) = δmin = 0.35
√
μ0(t). Therefore, the application of the

methodology involves the following steps.

(1) Estimate μ0(t) or μ1(t) using one-day-ahead forecasts (details on how this is
achieved under different situations are given in the next two subsections).

(2) Use the estimates in step (1) to estimate λopt(μ0, μ1), and in turn calculate
h(μ0(t), λopt(μ0, μ1),ATS0).

(3) Calculate AEWMAt in (3.1) using the estimates of λ = λopt(μ0, μ1) and h(·) =
h(μ0(t), λopt(μ0, μ1),ATS0) obtained in step (2).

(4) Signal an unusual epidemic footprint whenever AEWMAt > a where a is the
adjustment value discussed earlier.

Let the one-day-ahead model forecast for mean made at time t − 1 be denoted by μ̂t/t−1.
The next two subsections describe the improved EWMA design procedure for different
purposes.

3.1.1. Detecting Unexpected Increases in Counts

The one-day-ahead forecast is used to remove the natural variation that comes from day of
the week, holidays, seasonal and transitional influences, that is, μ0(t) is estimated by μ̂t/t−1.
This process improves the detection of unusual outbreak data signals such as might be caused
by bioterrorism or an epidemic footprint. The smoothed day ahead model forecast error ewt,
constrained to be positive (since we are only interested in shifts on the high side) is defined by

ew0 = 0, ewt = max
(
0, θ

(
yt − μ̂t/t−1

)
+ (1 − θ)ewt−1

)
for t > 0, (3.3)

where 0 < θ < 1 is a suitable smoothing weight. Note that ewt estimates δt = μ1(t) − μ0(t).
The estimate of μ1(t) = μ0(t) + δt is therefore

μ̂1(t) = max
(
μ̂t/t−1 + 0.35

√
μ̂t/t−1, ewt−1 + μ̂t/t−1

)
. (3.4)

The estimates of μ0(t) and μ1(t) given by μ̂t/t−1 and μ̂1(t) above, respectively, are used in step
(2) to estimate λopt(·) from (2.3).

3.1.2. Detecting Seasonal Epidemics Early

Suppose the aim of surveillance is identifying the start of a seasonal epidemic as early as
possible, for example, the start of the annual influenza season. An epidemic footprint is
expected each year, but the start time varies from season to season and varies in magnitude.
Assume we have prior information that the seasonal epidemic event is rare in a certain period
of the year (e.g., summer for influenza). Let the average (nearly homogenous) mean during
the nonepidemic period be denoted by μne (used to estimate μ0(t)). Assume we are not

interested in the early detection of any epidemic with a mean less than μne + c
√
μne for some

fixed c > 0. An improved adaptive EWMA can be constructed by estimating μ0(t) by μne and
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μ1(t) by max(μne +c
√
μne, ewt−1 + μ̂t/t−1), and use these estimates in step (2) to estimate λopt(·)

from (2.3). The resulting plan should be close to the “optimal” plan for detecting shifts from
μne to μ1(t). The closeness depends on how well μ̂t/t−1 + ewt estimates μ1(t). In other words,
if μ̂t/t−1 + ewt, for all days t, are reasonable forecasts of the means during epidemics, then the
improved plan should be efficient at detecting the epidemic footprint early.

3.2. Efficiency of the Plans

A simulation study is used to evaluate the practical efficiency of the plans. Tables 3 and 4
evaluate the average time to signal for two types of outbreak data: step changes and parabolic
changes, respectively.

In-control background counts: were generated using means equal to μ0(t)(= μtT ) given
by

log
(
μtT

)
= α0κ(t)T + α1T cos(ωt) + α2T sin(ωt) + α3TsT +

p∑

j=1

βjT log
(
yt−j + 1

)
(3.5)

with the following models.

Model 1. α0iT = 0.14 for i = 1, 2, . . . , 5 (Monday to Friday), α06T = 0.2 (Saturday), α06T = 0.22
(Sunday), α1T = 0.09, α2T = −0.09, α3T = 0.

Model 2. α0iT = 0.4 for i = 1, 2, . . . , 5 (Monday to Friday), α06T = 0.7 (Saturday), α06T = 0.8
(Sunday), α1T = 0.4, α2T = −0.4, α3T = 0.

Model 3. α0iT = 0.7 for i = 1, 2, . . . , 5 (Monday to Friday), α06T = 1 (Saturday), α06T = 1.1
(Sunday), α1T = 0.45, α2T = −0.45, α3T = 0.

Model 4. α0iT = 0.9 for i = 1, 2, . . . , 5 (Monday to Friday), α06T = 1.8 (Saturday), α06T = 2.1
(Sunday), α1T = 0.6, α2T = −0.6, α3T = 0.

For Models 1–4, βjT = 0.1, 0.06, 0.02, 0.01 for j = 1, 2, 3, 4, respectively, (i.e., p = 4).
The value T in (3.5) relates to the moving window size in the model fitting process and
therefore T can be ignored in the data simulation process. After generating the counts, these
models are assumed hidden and refitted using the simulated data. The parameter estimates
are assumed to move slowly by estimating them using a moving window of T observations.
Therefore, no knowledge of the fixed regression parameters are assumed, and the parameters
are assumed to change slowly over time with (say) process improvements, for example,
improve data collection or slow drifts in population sizes. The moving window can be
thought of as allowing the monitoring plan to adapt to changes in the process in the same
way as control charts are updated as the process improves. The moving window relates more
to good practice in updating the plan and is unrelated to the simulated data.

Simulated examples of unusual outbreak data: in-control counts were generated as above
and used as training data to fit the model for the first day of the outbreak. An epidemic
footprint was generated by adding counts simulated from a Poisson distribution with mean δt
to the in-control generating counts on day t. The result is Poisson counts with means μ0(t)+δt.
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Table 3: Outbreak data signals involving a step change in means (a is the multiplicative adjustment needed
from the theoretical threshold).

Model number
2 3 4 2 3 4 2 3 4
Poisson adaptive EWMA Poisson adaptive EWMA Adaptive CUSUM

λ = 0.1 λ dynamic of pseudo residuals
θ (see (3.3)) 0.075 0.1 0.1

a 1.0075 1.0076 1.0144 1.0055 1.0050 1.0200 2.104 1.65 1.372
δ ATS (Average time to signal/detection in days)

0.0 102.38 100.96 97.23 100.21 104.70 99.50 102.90 100.09 100.11
0.5 25.22 29.21 35.11 24.75 29.89 35.32 44.31 47.89 52.95
1.0 12.59 15.34 19.85 12.44 15.40 20.49 26.33 28.99 33.71
1.5 7.79 9.72 13.21 7.73 9.73 13.41 17.71 19.71 24.01
2.0 5.50 6.99 9.83 5.40 6.90 9.35 12.87 14.19 17.83
2.5 4.25 5.46 6.98 4.20 5.34 6.69 9.85 11.11 13.66
3.0 3.46 4.40 5.26 3.37 4.31 5.16 7.80 8.61 10.95
3.5 2.88 3.65 4.38 2.84 3.58 4.19 6.61 7.21 9.07
4.0 2.49 3.06 3.73 2.47 3.05 3.60 5.70 6.15 7.57
5.0 2.03 2.46 2.89 2.01 2.45 2.68 4.46 4.72 5.60

Two outbreak data used for the results in Tables 3 and 4, respectively, are the
following.

(i) A step change of δt = δ in mean was simulated to mimic increasing disease counts
that result, for example, from health consequences to step changes in environmental
pollution. The simulated epidemic footprint was continued until all plans signalled.

(ii) A parabolic change in mean simulated to mimic say seasonal increases in say
influenza counts. Here the mean increases of

μ1(t + τ) − μ0(t + τ) = δτ = Δ(L − τ) × τ, (3.6)

where τ = 1, 2, . . . , L, were generated as an unusual epidemic starting from day
t + 1. The L indicates how long the epidemic lasts. L and Δ are selected to keep the
epidemics of the same size, that is, Δ is varied so that

∑L
τ=0 δτ is constant for all

selections of L making all outbreaks roughly equally important. We use

(L,Δ) = (8, 0.5), (15, 0.075), (22, 0.023715), (29, 0.010345), (36, 0.0054055), (43, 0.00317).
(3.7)

A signal could only be given for its epidemic footprint duration, and therefore,
it could be missed by the monitoring plans. Therefore the proportion of missed
detections is recorded (see Table 4).

The model in (3.5) was fitted using the first three years of simulated data to deliver
one-day-ahead forecast in-control (usual) behaviour (expected counts). Thereafter forecasts
were made using the fitted model for a moving window of T = 1095 days of data. The fitted
values were used to select λ values that delivered smaller ATSδ values for the “unknown”
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Table 4: Seasonal outbreak data involving a parabolic change in means (a is the multiplicative adjustment
needed from the theoretical threshold).

Model number
1 2 3 1 2 3

Dynamic Poisson adaptive EWMA Poisson adaptive EWMA
θ in (3.3) 0.075 0.1 0.1

a 1.0076 1.0075 1.0076 1.0056 1.0055 1.0050
(L, jΔ) j = 0.5 j = 0.5 j = 1.0 j = 0.5 j = 0.5 j = 1.0

Overall average number of extra victims in the outbreak data
∑

et = 1Lδet 42 42 84 42 42 84
ATS (Pr(no outbreak data signal))

(0,0) 102.38 (0.00) 100.96 (0.00) 97.23 (0.00) 99.50 (0.00) 100.19 (0.00) 103.03 (0.00)
(43, j × 0.00317) 22.05 (0.16) 14.73 (0.03) 16.11 (0.07) 18.56 (0.14) 15.31 (0.03) 17.00 (0.07)

(36, j × 0.0054055) 18.93 (0.14) 12.36 (0.02) 13.57 (0.06) 15.72 (0.14) 12.59 (0.02) 14.17 (0.06)
(29, j × 0.01035) 14.62 (0.12) 9.66 (0.01) 10.88 (0.03) 12.85 (0.13) 10.37 (0.01) 11.61 (0.03)
(22, j × 0.023715) 11.20 (0.11) 7.54 (0.00) 8.43 (0.03) 9.81 (0.11) 7.60 (0.00) 8.65 (0.03)
(15, j × 0.075) 7.44 (0.10) 4.75 (0.00) 5.03 (0.02) 6.66 (0.08) 4.93 (0.00) 5.69 (0.02)
(8, j × 0.5) 3.50 (0.04) 2.40 (0.00) 2.81 (0.00) 3.33 (0.05) 2.43 (0.00) 2.83 (0.00)

simulated epidemic footprints. In Table 3, new data were recursively simulated until the
outbreak footprint was signalled, and the time to signal (in days) was recorded. This same
process is repeated 10 000 times to give the average time to signal (i.e., ATSδ or ATS0). Tables
3 and 4 compare the improved adaptive EWMA to the adaptive EWMA with λ = 0.1 and
the adaptive CUSUM plan (Sparks [7] and Shu and Jiang [20]) applied to pseudo-residuals
given by

Φ−1

(
yt∑

i=0

exp(−ut)

(−μt

)(
μt

)i

i!

)

, where Φ(a) =
∫a

−∞

e−z
2/2

√
2π

dz. (3.8)

For each simulation run different three thousand Poisson counts were generated using the
above model. The first 1095 days (3 years) were used as training data to fit the model that
provides a forecast for day 1096, and thereafter a moving window of 1095 days of data fitted
the model to give the day ahead forecasts. Additional counts for the epidemic were added
to the counts starting from day 1096 onwards (going for L days for the parabolic increase in
means). The number of days from 1095 to the plan’s first out-of-control signal is taken as the
time to detection (in days). Repeat the process 10 000 times to estimate of ATSδ. The ATSδ

values are reported in Tables 3 and 4 for the step change and parabolic change, respectively.
The plans in Tables 3 and 4 all are designed to deliver in-control ATS0 of 100, so plans
are comparable. The CUSUM of the pseudoforecast errors has the multiplier adjustment
needed to deliver a plan with ATS0 ≈ 100, a, not close to one, thus indicating the normal
approximation of pseudo residuals is inadequate to use EWMA plans based on normality
without adjustment. However, more importantly a is not approximately constant across all
models, which means that

(1) if the conventional CUSUM is applied to the pseudoforecast errors (without
adjustment), the plan will deliver too many false alarms,

(2) the threshold needs an adjustment for each change in the mean distribution.
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On the other hand, the Poisson adaptive EWMA plans need very little adjustments for the
design control limit of one (a ranging from 1.0075 to 1.02). From the results in Table 3, we
conclude that the improved Poisson adaptive EWMA is always, on average, more efficient
than the Poisson adaptive EWMA with λ = 0.1 for step changes. For Models 2 in Table 3,
improved Poisson adaptive EWMA plans have smaller ATSδ values for all δ > 0. For Models
3 and 4 in Table 3, improved Poisson adaptive EWMA plans have smaller ATSδ values for all
δ ≥ 2. In Table 4, the improved Poisson adaptive EWMA’s advantage only holds for Models 2
and 3. In addition, for Models 2 and 3, the improved Poisson adaptive EWMA is likely to miss
fewer parabolic unusual changes (not evident from Table 4 because the gains are small). For
low counts (Model 1), there is generally insufficient information to improve the λ exponential
weights, and so we recommend using λ = 0.1 for low counts.

In summary, the dynamic adaptive Poisson EWMA plan signals, on average, earlier
than the adaptive Poisson EWMA plans with λ = 0.1 for most step changes in mean of 2
or more (Table 3), while for parabolic changes the results are mixed. This knowledge allows
users to revise the dynamic plan by setting λopt(μ0, μ1) = 0.1 when means trend lower.Notice
that the Poisson adaptive EWMA signals step changes on average earlier than the “optimal”
adaptive CUSUM of the pseudoforecast residuals. The similar results hold for parabolic
changes but these results are not reported. Therefore, the “optimal” adaptive CUSUM of the
pseudoforecast residuals plan is not recommended based on these simulation results.

4. An Application

The application involves influenza A daily counts in New South Wales (NSW), Australia
ranging from the end of 2003 to the end of 2005. Temporal trends in the daily disease counts
are found in the first plot of Figures 1 and 2. Figures 1 and 2 examine the detection of unusual
epidemic footprints and early detection of the start of the flu season, respectively. The second
plot in Figures 1and 2 is the “optimal” adaptive EWMA plan (AEWMAt), and the last plot is
a time series of the “optimal” CUSUM of the one-day-ahead pseudoforecast errors. These are
compared in terms of early detection.

The adaptive plan is designed to give a false alarm every 100 days under the
assumption that counts are Poisson distributed with the means given by their one-day-ahead
forecasts. We consider models of the form of (3.5) except that a school holiday factor was
included and the number of lags in Poisson transition regression model (3.5) was taken as 4
(the transitional model that gave the smallest AIC value). Model (3.5) is used to forecast the
mean for the day ahead. Similar approaches to modelling disease counts can be found in Burr
et al. [6], Bjornstad et al. [21], and Christensen et al. [22]. Moving windows of one, two, and
three years of data were tried. In addition, various discounting weights, for example, 0.996t,
giving more recent observations greater weight in determining regression parameters were
tried. The forecasting plan that produced the smallest forecast errors was (see [23])

(i) a moving window of 730 days of data (2 years),

(ii) discounted weights 0.996t as the number of days t moves away from the day being
forecasted (t = 1, . . . , 730).

The autocorrelations of standardised forecast errors for influenza were insignificant
(see Figure 3). Therefore applying standard control assuming independence is reasonable
provided that the normality assumption is not violated.
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Figure 1: EWMA plans optimised for detecting seasonal epidemic footprints applied to influenza A daily
counts in NSW.
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Figure 2: EWMA plans optimised for detecting unexpectedly high influenza A counts in NSW.
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Figure 3: Autocorrelation function of the model standardised residuals for influenza A daily counts in
NSW.

The forecasts, together with the smoothed forecast errors, are used to optimise the
adaptive EWMA plan as outlined previously. After each signal, EWMA plans reset the
EWMA statistic to its initial value, and therefore follow-up signals indicate that either the
epidemic footprint persisted, or that the counts continued to be higher than expected. The
“optimal” adaptive CUSUM plans for the one-day-ahead pseudoforecast errors zt used in
Tables 3 and 4 were compared to the dynamic adaptive Poisson EWMA plan.

4.1. Early Seasonal Epidemic Footprint Detection

The first plot in Figure 1 indicates daily counts for influenza A in NSW, Australia. We
assumed that a seasonal increase in influenza counts can start any time from beginning of
May to the end of October. The model is fitted using a moving window of two years (730
days). As such, control limits adjust, for example, as either disease control improves or the
population size changes. This adjustment is similar to revising the control limits as the process
improves in manufacturing. This process helps signal small epidemic footprints after counts
reduce due to improved policy or control.

The second plot in Figure 1 presents the Poisson adaptive plan with dynamic
exponential weights designed for earlier detection of epidemic footprints. The dashed line in
Figure 1 indicates the expected trend for the dynamic Poisson adaptive EWMA. The dynamic
Poisson adaptive EWMA line trends above the dashed line when the counts are trending
higher than expected.

Two epidemic footprints were detected in each of years 2004 and 2005 (see Figure 1
with time on the x-axis). Note that the Poisson adaptive EWMA flags the first epidemic
footprint in 2004 in mid-July 2004 (second plot in Figure 1), much earlier than the “optimal”
adaptive CUSUM of the pseudoforecast residuals plan (second plot in Figure 1). However,
the second epidemic footprint is signalled a few days earlier by the “optimal” adaptive
CUSUM. The major difficulty with the “optimal” adaptive CUSUM is what adjustment (a)
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to use for nonnormality. The value a = 2.104 (see Table 3) was selected because it was
appropriate for early detection of the first epidemic footprint, but it was not appropriate for
the second. This point highlights the difficulty with using the “optimal” adaptive CUSUM in
practical circumstances. The Poisson adaptive EWMA plan, on the other hand, is very robust
to changes in the process mean.

4.2. Detection of Unusual Counts

The second plot in Figure 2 presents the dynamic adaptive plans for early detection of
unusual high influenza A incidence after correcting for usual seasonal, day of the week,
school holiday, and transitional influences. The dynamic Poisson adaptive EWMA plan
signals unusual increase in counts many more times than the “optimal” adaptive CUSUM
plan independent of adjustment of normality (both a = 1.372 and a = 1.65 are recorded in
Figure 2). Again this highlights the difficulty with applying the adaptive CUSUM plan to
pseudo residuals because of the difficulty knowing what adjustment to use.

A laboratory diagnosing patients as having influenza A was found to produce many
false positives in early 2005. Poisson adaptive EWMA plan signalled these whereas the
“optimal” adaptive CUSUM plan fails to signal (see southern hemisphere summer of
2004/2005 in Figure 2).

Further analysis (not reported) demonstrated that the Poisson adaptive EWMA plan
for λ = 0.1 misses the first unusual increase in Figure 2, thereafter the performance of both
Poisson adaptive EWMA plans was almost identical. The dynamic Poisson adaptive EWMA
plan has an advantage over the Poisson adaptive EWMA plan with λ = 0.1 in this example.

5. Discussion

In summary, we offer a dynamic Poisson adaptive EWMA plan for early detection of
epidemic footprints when disease counts follow a Poisson regression model. Results
demonstrate that in the case of step changes in means, the dynamic Poisson adaptive EWMA
detects outbreaks earlier than the CUSUM plan of pseudoforecast errors. Results for parabolic
changes demonstrate the superiority of the dynamic Poisson adaptive EWMA over adaptive
EWMA with λ = 0.1 for only counts with means not too low. We recommend the adaptive
EWMA with λ = 0.1 when counts are low (e.g., average means less than 2).

If the in-control mean changes dramatically from season to season, then the adaptive
CUSUM of pseudo residuals plan threshold adjust would need revising from season to
season. This aspect makes the implementation of the adaptive CUSUM of pseudo residuals
plan more difficult.

Most of the effort has been placed on sequential hypothesis testing, but the
performance of plans is also influenced by recursive estimation of model parameters. More
effort in modelling would improve the performance of the Poisson adaptive EWMA plan.
There is also value in monitoring model lack of fit for each moving window of data (see
Zeileis [24, 25] and Zeileis and Kleiber [26]).
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