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1. Introduction

For the last two decades there have been numerous papers (see [1]) on valuing American-
style options with finite lived maturity. The valuation of such American-style options may
often be able to be formulated as optimal stopping or free boundary problems which provide
us partial differential equations with specific conditions. One of the difficult problems with
pricing such options is finding a closed form solution of the option price. However, there
are shortcuts that make it easy to calculate the closed form solution to that option (see [2–
4]). Perpetuities can provide us such a shortcut because free boundaries of optimal exercise
policies no longer depend on the time.

In this paper, we consider the pricing of Russian options with call provision where the
issuer (seller) has the right to call back the option as well as the investor (buyer) has the right
to exercise it. The incorporation of call provision provides the issuer with option to retire
the obligation whenever the investor exercises his/her option. In their pioneering theoretical
studies on Russian options, Shepp and Shiryaev [5, 6] gave an analytical formula for pricing
the noncallable Russian option which is one of perpetual American lookback options. The
result of this paper is to provide the closed formed solution and optimal boundaries of
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the callable Russian option with continuous dividend, which is different from the pioneering
theoretical paper Kyprianou [2] in the sense that our model has dividend payment.

The paper is organized as follows. In Section 2, we introduce a pricing model of
callable Russian options by means of a coupled optimal stopping problem given by Kifer [7].
Section 3 represents the value function of callable Russian options with dividend. Section 4
presents numerical examples to verify analytical results. We end the paper with some
concluding remarks and future work.

2. Model

We consider the Black-Scholes economy consisting of two securities, that is, the riskless bond
and the stock. Let Bt be the bond price at time t which is given by

dBt = rBtdt, B0 > 0, r > 0, (2.1)

where r is the riskless interest rate. Let St be the stock price at time t which satisfies the
stochastic differential equation

dSt = (r − d)Stdt + κStd˜Wt, S0 = x, (2.2)

where d and κ > 0 are constants, d is dividend rate, and ˜Wt is a standard Brownian motion
on a probability space (Ω,F, ˜P). Solving (2.2) with the initial condition S0 = x gives

St = x exp
{(

r − d − 1
2
κ2
)

t + κ˜Wt

}

. (2.3)

Define another probability measure ̂P by

d ̂P

d ˜P
= exp

(

κ˜Wt −
1
2
κ2t

)

. (2.4)

Let

̂Wt = ˜Wt − κt, (2.5)

where ̂Wt is a standard Brownian motion with respect to ̂P . Substituting (2.5) into (2.2), we
get

dSt =
(

r − d + κ2)Stdt + κStd̂Wt. (2.6)

Solving the above equation, we obtain

St(x) = x exp
{(

r − d +
1
2
κ2
)

t + κ̂Wt

}

. (2.7)
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Russian option was introduced by Shepp and Shiryaev [5, 6] and is the contract that
only the buyer has the right to exercise it. On the other hand, a callable Russian option is the
contract that the seller and the buyer have both the rights to cancel and to exercise it at any
time, respectively. Let σ be a cancel time for the seller and τ be an exercise time for the buyer.
We set

Ψt(ψ) ≡
max

(

ψx, sup0≤u≤t Su
)

St
, ψ ≥ 1. (2.8)

When the buyer exercises the contract, the seller pay Ψτ(ψ) to the buyer. When the seller
cancels it, the buyer receives Ψσ(ψ) + δ. We assume that seller’s right precedes buyer’s one
when σ = τ . The payoff function of the callable Russian option is given by

R(σ, τ) =
(

Ψσ(ψ) + δ
)

1{σ<τ} + Ψτ(ψ)1{τ≤σ}, (2.9)

where δ is the penalty cost for the cancel and a positive constant.
Let T0,∞ be the set of stopping times with respect to filtration F defined on the

nonnegative interval. Letting α and ψ be some given parameters satisfying α > 0 and ψ ≥ 1,
the value function of the callable Russian option V (ψ) is defined by

V (ψ) = inf
σ∈T0,∞

sup
τ∈T0,∞

̂E
[

e−α(σ∧τ)R(σ, τ)
]

, α > 0. (2.10)

The infimum and supremum are taken over all stopping times σ and τ , respectively.
We define two sets A and B as

A =
{

ψ ∈ R+ | V (ψ) = ψ + δ
}

,

B =
{

ψ ∈ R+ | V (ψ) = ψ
}

.
(2.11)

A and B are called the seller’s cancel region and the buyer’s exercise region, respectively. Let
σ
ψ

A and τ
ψ

B be the first hitting times that the process Ψt(ψ) is in the region A and B, that is,

σ
ψ

A = inf
{

t > 0 | Ψt(ψ) ∈ A
}

,

τ
ψ

B = inf
{

t > 0 | Ψt(ψ) ∈ B
}

.
(2.12)

Lemma 2.1. Assume that d − (1/2)κ2 − 2r < 0. Then, one has

lim
t→∞

e−rtΨt(ψ) = 0. (2.13)

Proof. First, suppose that max(ψx, supSu) = ψx. Then, it holds

lim
t→∞

e−rtS−1
t = lim

t→∞
exp
{

− κ˜Wt +
(

d +
1
2
κ2 − 2r

)

t

}

= 0. (2.14)
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Next, suppose that max(ψx, supSu) = supSu. By the same argument as Karatzas and Shreve
[1, page 65], we obtain

lim
t→∞

supSu = x exp
{

κ · sup
0<u<∞

(

˜Wu +
r − d
κ
− 1

2
κ2
)}

= x exp
{

κW∗},

(2.15)

where W∗ is the standard Brownian motion which attains the supremum in (2.15). Therefore,
it follows that

lim
t→∞

e−rt
supSu
St

= 0. (2.16)

The proof is complete.

By this lemma, we may apply Proposition 3.3 in Kifer [7]. Therefore, we can see that
the stopping times σ̂ψ = σ

ψ

A and τ̂ψ = τ
ψ

B attain the infimum and the supremum in (2.10).
Then, we have

V (ψ) = ̂E
[

e−α(σ̂
ψ∧τ̂ψ)R

(

σ̂ψ , τ̂ψ
)]

. (2.17)

And V (ψ) satisfies the inequalities

ψ ≤ V (ψ) ≤ ψ + δ, (2.18)

which provides the lower and the upper bounds for the value function of the callable Russian
option. Let VR(ψ) be the value function of Russian option. And we know V (ψ) ≤ VR(ψ)
because the seller as a minimizer has the right to cancel the option. Moreover, it is clear that
V (ψ) is increasing in ψ and x.

Should the penalty cost δ be large enough, it is optimal for the seller not to cancel the
option. This raises a question how large such a penalty cost should be. The following lemma
is to answer the question.

Lemma 2.2. Set δ∗ = V (1)− 1. If δ ≥ δ∗, the seller never cancels. Therefore, callable Russian options
are reduced to Russian options.

Proof. We set h(ψ) = V (ψ)−ψ−δ. h′(ψ) = V ′(ψ)−1 < 0. Because we know h(1) = V (1)−1−δ =
δ∗ − δ < 0 by the condition δ ≥ δ∗, we have h(ψ) < 0, that is, V (ψ) < ψ + δ holds. By using
the relation V (ψ) ≤ VR(ψ), we obtain V (ψ) < ψ + δ, that is, it is optimal for the seller not to
cancel. Therefore, the seller never cancels the contract for δ ≥ δ∗.

Lemma 2.3. Suppose r > d. Then, the function V (ψ) is Lipschitz continuous in ψ. And it holds

0 ≤
dV (ψ)
dψ

≤ 1. (2.19)
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Proof. Set

Jψ
(

σ̂ψ , τ̂φ
)

= ̂E
[

e−α(σ̂
ψ∧τ̂ψ)R

(

σ̂ψ , τ̂ψ
)]

. (2.20)

Replacing the optimal stopping times σ̂φ and τ̂ψ from the nonoptimal stopping times σ̂ψ and
τ̂φ, we have

V (ψ) ≥ Jψ
(

σ̂ψ , τ̂φ
)

,

V (φ) ≤ Jφ
(

σ̂ψ , τ̂φ
)

,
(2.21)

respectively. Note that z+1 − z
+
2 ≤ (z1 − z2)

+. For any φ > ψ, we have

0 ≤ V (φ) − V (ψ)

≤ Jφ
(

σ̂ψ , τ̂φ
)

− Jψ
(

σ̂ψ , τ̂φ
)

= ̂E
[

e−α(σ̂
ψ∧τ̂φ)(Ψσ̂ψ∧τ̂φ(φ) −Ψσ̂ψ∧τ̂φ(ψ)

)]

= ̂E
[

e−α(σ̂
ψ∧τ̂φ)H−1

σ̂ψ∧τ̂φ

(

(

φ − supHu

)+ −
(

ψ − supHu

)+
)]

≤ (φ − ψ) ̂E
[

e−α(σ̂
ψ∧τ̂φ)H−1

σ̂ψ∧τ̂φ
]

,

(2.22)

where Ht = exp{(r −d + (1/2)κ2)t+κ̂Wt}. Since the above expectation is less than 1, we have

0 ≤ V (φ) − V (ψ) ≤ φ − ψ. (2.23)

This means that V is Lipschitz continuous in ψ, and (2.19) holds.

By regarding callable Russian options as a perpetual double barrier option, the optimal
stopping problem can be transformed into a constant boundary problem with lower and
upper boundaries. Let ˜B = {ψ ∈ R+ | VR(ψ) = ψ} be the exercise region of Russian option. By
the inequality V (ψ) ≤ VR(ψ), it holds B ⊃ ˜B /=∅. Consequently, we can see that the exercise
region B is the interval [l∗,∞). On the other hand, the seller minimizes R(σ, τ) and it holds
Ψt(ψ) ≥ Ψ0(ψ) = ψ ≥ 1. From this, it follows that the seller’s optimal boundary A is a point
{1}. The function V (ψ) is represented by

V (ψ) =

{

Vψ
(

l∗
)

, 1 ≤ ψ ≤ l∗,
ψ, ψ ≥ l∗,

(2.24)

where

Vψ
(

l∗
)

= (1 + δ) ̂E
[

e−ασ
ψ

1 1{σψ1 <τ
ψ

[l∗ ,∞)}

]

+ l ̂E
[

e−ατ
ψ

[l∗ ,∞)1{τψ[l∗ ,∞)≤σ
ψ

1 }

]

. (2.25)

In order to calculate (2.25), we prepare the following lemma.
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Lemma 2.4. Let σxa and τxb be the first hitting times of the process St(x) to the points {a} and {b}.
Set ν = (r − d)/κ − (1/2)κ, η1 = (1/κ)(

√
ν2 + 2α + ν), and η2 = (1/κ)(

√
ν2 + 2α − ν). Then for

a < x < b, one has

˜E
[

e−ασ
x
a 1{σxa<τxb }

]

=
(b/x)η1 − (x/b)η2

(b/a)η1 − (a/b)η2
, (2.26)

˜E
[

e−ατ
x
b 1{τx

b
<σxa }
]

=
(a/x)η1 − (x/a)η2

(a/b)η1 − (b/a)η2
. (2.27)

Proof. First, we prove (2.26). Define

Lt = exp
(

− 1
2
ν2t − ν˜Wt

)

. (2.28)

We define ̂P as d ̂P = LTd ˜P . By Girsanov’s theorem, ̂Wt ≡ ˜Wt + νt is a standard Brownian
motion under the probability measure ̂P . Let Tρ1 and Tρ2 be the first time that the process ̂Wt

hits ρ1 or ρ2, respectively, that is,

Tρ1 = inf
{

t > 0 | ̂Wt = ρ1
}

,

Tρ2 = inf
{

t > 0 | ̂Wt = ρ2
}

.
(2.29)

Since we obtain logSt(x) = logx + κ̂Wt from St(x) = x exp(κ̂Wt), we have

σxa = Tρ1 , a.s., ρ1 =
1
κ

log
a

x
,

τxb = Tρ2 , a.s., ρ2 =
1
κ

log
b

x
,

L−1
Tρ1

= exp
(

1
2
ν2Tρ1 + ν˜WTρ1

)

= exp
(

− 1
2
ν2Tρ1 + ν̂WTρ1

)

= exp
(

− 1
2
ν2Tρ1 + νρ1

)

.

(2.30)

Therefore, we have

˜E
[

e−ασ
x
a 1{σxa<τxb }

]

= ˜E
[

e−αTρ1 1{Tρ1<Tρ2}
]

= ̂E
[

exp
(

− 1
2
ν2Tρ1 + νρ1

)

e−αTρ1 1{Tρ1<Tρ2}

]

= eνρ1
̂E

[

exp
{

−
(

α +
1
2
ν2
)

Tρ1

}

1{Tρ1<Tρ2}

]

.

(2.31)
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From Karatzas and Shreve [8, Exercise 8.11, page 100], we can see that

̂E

[

exp
{

−
(

α +
1
2
ν2
)

Tρ1

}

1{Tρ1<Tρ2}

]

=
sinh ρ2

√
ν2 + 2α

sinh(ρ2 − ρ1)
√
ν2 + 2α

. (2.32)

Therefore, we obtain

˜E
[

e−ασ
x
a 1{σxa<τxb }

]

=
sinh ρ2

√
ν2 + 2α

sinh(ρ2 − ρ1)
√
ν2 + 2α

eνρ2

eν(ρ2−ρ1)
=

eκρ2γ1 − e−κρ2γ2

eκ(ρ2−ρ1)γ1 − e−κ(ρ2−ρ1)γ2
=

(b/x)γ1 − (x/b)γ2

(b/a)γ1 − (a/b)γ2
.

(2.33)

We omit the proof of (2.27) since it is similar to that of (2.26).

We study the boundary point l∗ of the exercise region for the buyer. For 1 < ψ < l <∞,
we consider the function V (ψ, l). It is represented by

V (ψ, l) =

⎧

⎨

⎩

Vψ(l), 1 ≤ ψ ≤ l,
ψ, ψ ≥ l.

(2.34)

The family of the functions {V (ψ, l), 1 < ψ < l} satisfies

V (ψ) = V
(

ψ, l∗
)

= sup
1<ψ<l

V (ψ, l). (2.35)

To get an optimal boundary point l∗, we compute the partial derivative of V (ψ, l) with respect
to l, which is given by the following lemma.

Lemma 2.5. For any 1 < ψ < l, one has

∂V

∂l
(ψ, l) =

ψη2 − ψ−η1

l(lη1 − l−η2)2
lη1 l−η2

{(

1 − η2
)

lη1+1 −
(

1 + η1
)

l−η2+1 + (1 + δ)
(

η1 + η2
)}

. (2.36)

Proof. First, the derivative of the first term is

∂

∂l

(

(l/ψ)η1 − (ψ/l)η2

lη1 − l−η2

)

=
1

(lη1 − l−η2)2

{(

η1

(

l

ψ

)η1−1 1
ψ

+ η2

(

ψ

l

)η2 1
l

)

(

lη1 − l−η2
)

−
((

l

ψ

)η1

−
(

ψ

l

)η2
)

(

η1l
η1−1 + η2l

−η2−1)
}

=
1

l(lη1 − l−η2)2

(

η1 + η2
)

{

lη1

(

ψ

l

)η2

− l−η2

(

l

ψ

)η1
}

=
1

l(lη1 − l−η2)2

(

η1 + η2
)

lη1 l−η2
(

ψη2 − ψ−η1
)

.

(2.37)
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Next, the derivative of the second term is

∂

∂l

(

l

lη2 − l−η1

)

=
(1 − η2)lη2 − (1 + η1)l−η1

(lη2 − l−η1)2

=
(1 − η2)lη1 − (1 + η1)l−η2

(lη1 − l−η2)2
lη1−η2 ,

(2.38)

where the last equality follows from the relation

(

lη2 − l−η1
)

lη1−1l−η2+1 = lη1 − l−η2 . (2.39)

After multiplying (2.37) by (1 + δ) and (2.38) by ψη2 − ψ−η1 , we obtain (2.36).

We set

f(l) =
(

1 − η2
)

lη1+1 −
(

1 + η1
)

l−η2+1 + (1 + δ)
(

η1 + η2
)

. (2.40)

Since f(1) = δ(η1 + η2) > 0 and f(∞) = −∞, the equation f(l) = 0 has at least one solution in
the interval (1,∞). We label all real solutions as 1 < ln < ln−1 < · · · < l1 <∞. Then, we have

∂V

∂l
(ψ, l)

∣

∣

l=li
= 0, i = 1, . . . , n ∀ψ. (2.41)

Then l∗ = l1 attains the supremum of V (ψ, l). In the following, we will show that the function
V (ψ) is convex and satisfies smooth-pasting condition.

Lemma 2.6. V (ψ) is a convex function in ψ.

Proof. From (2.50), V satisfies

1
2
κ2ψ2d

2V

dψ2
= −(r − d)ψdV

dψ
+ αV (ψ). (2.42)

If r ≤ d, we get d2V/dψ2 > 0. Next assume that r > d. We consider function ˜V (ψ) = V (−ψ)
for ψ < 0. Then,

1
2
κ2ψ2d

2
˜V

dψ2
− (r − d)ψd

˜V

dψ
− r ˜V =

1
2
κ2ψ2d

2V

dψ2
+ (r − d)ψdV

dψ
− rV = 0. (2.43)

Since we find that d2
˜V/dψ2 > 0 from the above equation, ˜V is a convex function. It follows

from this the fact that V is a convex function.
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Lemma 2.7. V (ψ) satisfies

dV

dψ

(

l−∗
)

=
dV

dψ

(

l+∗
)

= 1. (2.44)

Proof. Since V (ψ) = ψ for ψ > l∗, it holds (dV/dψ)(l+∗ ) = 1. For 1 ≤ ψ < l∗, we derivative (2.47):

dV

dψ
=

l

lη2 − l−η1

(

η2ψ
η2−1 + η1l

−η1−1) +
1 + δ

lη1 − l−η2

(

− η1

(

l

ψ

)η1 1
ψ
− η2

(

ψ

l

)η2 1
ψ

)

=
1

ψ(lη1 − l−η2)

{

lη1−η2+1(η2ψ
η2 + η1ψ

−η1
)

− (1 + δ)

(

η1

(

l

ψ

)η1

+ η2

(

ψ

l

)η2
)}

=
1

ψ(lη1 − l−η2)

{

η2

(

ψ

l

)η2

lη1+1 + η1

(

l

ψ

)η1

l−η2+1 − (1 + δ)

(

η1

(

l

ψ

)η1

+ η2

(

ψ

l

)η2
)}

.

(2.45)

Therefore, we get

dV

dψ

(

l∗
)

− 1 =
1

(

l
η1+1
∗ − l1−η2

∗
)

{

η2l
η1+1
∗ + η1l

−η2+1
∗ − (1 + δ)

(

η1 + η2
)

−
(

l
η1+1
∗ − l−η2+1

∗
)}

=
1

(

l
η1
∗ − l

−η2
∗
)

{(

η2 − 1
)

l
η1+1
∗ +

(

η1 + 1
)

l
−η2+1
∗ − (1 + δ)

(

η1 + η2
)}

=
1

(

l
η1
∗ − l

−η2
∗
)
f
(

l∗
)

= 0.

(2.46)

This completes the proof.

Therefore, we obtain the following theorem.

Theorem 2.8. The value function of callable Russian option V (ψ) is given by

V (ψ) =

⎧

⎪

⎨

⎪

⎩

(1 + δ)

(

l∗/ψ
)η1 −

(

ψ/l∗
)η2

l
η1
∗ − l

−η2
∗

+ l∗
ψη2 − ψ−η1

l
η2
∗ − l

−η1
∗

, 1 ≤ ψ ≤ l∗,

ψ, ψ ≥ l∗.
(2.47)

And the optimal stopping times are

σ̂ψ = inf
{

t > 0 | Ψt(ψ) = 1
}

,

τ̂ψ = inf
{

t > 0 | Ψt(ψ) ≥ l∗
}

.
(2.48)
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The optimal boundary for the buyer l∗ is the solution in (1,∞) to f(l) = 0, where

f(l) =
(

1 − η2
)

lη1+1 −
(

1 + η1
)

l−η2+1 + (1 + δ)
(

η1 + η2
)

. (2.49)

We can get (2.47) by another method. For 1 < ψ < l, the function V (ψ) satisfies the
differential equation

1
2
κ2ψ2d

2V

dψ2
+ (r − d)ψdV

dψ
− αV (ψ) = 0. (2.50)

Also, we have the boundary conditions as follows:

V (1) = C1 + C2 = 1 + δ, (2.51)

V (l) = C1l
λ1 + C2l

λ2 = l, (2.52)

V ′(l) = C1λ1l
λ1−1 + C2λ2l

λ2−1 = 1. (2.53)

The general solution to (2.50) is represented by

V (ψ) = C1ψ
λ1 + C2ψ

λ2 , (2.54)

where C1 and C2 are constants. Here, λ1 and λ2 are the roots of

1
2
κ2λ2 +

(

r − d − 1
2
κ2
)

λ − α = 0. (2.55)

Therefore, λ1, λ2 are

λ1,2 =
±
√
ν2 + 2α − ν

κ
. (2.56)

From conditions (2.51) and (2.52), we get

C1 =
l − (δ + 1)lλ2

lλ1 − lλ2
, C2 =

(δ + 1)lλ1 − l
lλ1 − lλ2

. (2.57)

And from (2.57) and (2.53), we have

(

1 − η2
)

lη1+1 −
(

1 + η1
)

l−η2+1 + (1 + δ)
(

η1 + η2
)

= 0. (2.58)

Substituting (2.57) into (2.54), we can obtain (2.47).
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Figure 1: Optimal boundary for the buyer.
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Figure 2: The value functionV (ψ) (δ = 0.03).

3. Numerical Examples

In this section, we present some numerical examples which show that theoretical results are
varied and some effects of the parameters on the price of the callable Russian option. We use
the values of the parameters as follows: α = 0.5, r = 0.1, d = 0.09, κ = 0.3, δ = 0.03.

Figure 1 shows an optimal boundary for the buyer as a function of penalty costs δ,
which is increasing in δ. Figures 2 and 3 show that the price of the callable Russian option
has the low and upper bounds and is increasing and convex in ψ. Furthermore, we know that
V (ψ) is increasing in δ. Figure 4 demonstrates that the price of the callable Russian option
with dividend is equal to or less than the one without dividend. Table 1 presents the values
of the optimal boundaries for several combinations of the parameters.
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Figure 3: The value functionV (ψ) (δ = 0.01, 0.02, 0.03).
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Figure 4: Real line with dividend; dash line without dividend.

4. Concluding Remarks

In this paper, we considered the pricing model of callable Russian options, where the stock
pays continuously dividend. We derived the closed-form solution of such a Russian option as
well as the optimal boundaries for the seller and the buyer, respectively. It is of interest to note
that the price of the callable Russian option with dividend is not equal to the one as dividend
value d goes to zero. This implicitly insist that the price of the callable Russian option without
dividend is not merely the limit value of the one as if dividend vanishes as d goes to zero. We
leave the rigorous proof for this question to future research. Further research is left for future
work. For example, can the price of callable Russian options be decomposed into the sum of
the prices of the noncallable Russian option and the callable discount? If the callable Russian
option is finite lived, it is an interesting problem to evaluate the price of callable Russian
option as the difference between the existing price formula and the premium value of the call
provision.
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Table 1: Penalty δ, interest rate r, dividend rate d, volatility κ, discount factor α, and the optimal boundary
for the buyer l∗.

δ r d κ α l∗

0.01 0.1 0.09 0.3 0.5 1.04337
0.02 0.1 0.09 0.3 0.5 1.0616
0.03 0.1 0.09 0.3 0.5 1.07568
0.03 0.2 0.09 0.3 0.5 1.08246
0.03 0.3 0.09 0.3 0.5 1.09228
0.03 0.4 0.09 0.3 0.5 1.10842
0.03 0.5 0.09 0.3 0.5 1.14367
0.03 0.1 0.01 0.3 0.5 1.08092
0.03 0.1 0.05 0.3 0.5 1.07813
0.03 0.1 0.1 0.3 0.5 1.07511
0.03 0.1 0.3 0.3 0.5 1.06633
0.03 0.1 0.5 0.3 0.5 1.06061
0.03 0.1 0.09 0.1 0.5 1.02468
0.03 0.1 0.09 0.2 0.5 1.04997
0.03 0.1 0.09 0.4 0.5 1.1018
0.03 0.1 0.09 0.5 0.5 1.12833
0.03 0.1 0.09 0.3 0.1 1.18166
0.03 0.1 0.09 0.3 0.2 1.12312
0.03 0.1 0.09 0.3 0.3 1.09901
0.03 0.1 0.09 0.3 0.4 1.08505
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