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1. Introduction

Let (Ω,F,P) be a probability space hosting a Brownian motion W = {Wt : t ≥ 0} and an
independent Poisson process N = {Nt : t ≥ 0} with the constant arrival rate λ, both adapted
to some filtration F = {Ft}t≥0 satisfying usual conditions. Consider the Black-Scholes market.
That is, there is only one riskless bond B and a risky asset S. They satisfy, respectively,

dBt = rBtdt, t ≥ 0,

dSt = St−
[
μdt + σdWt − y0

(
dNt − λdt

)] (1.1)

for some constants μ ∈ R, r, σ > 0 and y0 ∈ (0, 1). Note that the absolute value of relative
jump sizes is equal to y0, and jumps are downwards. It can be comprehended as a downward
tendency of the risky asset price brought by bad news or default and so on. From Itô formula
we can obtain

St = S0 exp
{(

μ − 1
2
σ2 + λy0

)
t + σWt

}(
1 − y0

)Nt . (1.2)
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Suppose that X = {Xt : t ≤ T} and Y = {Yt : t ≤ T} be two continuous stochastic
processes defined on (Ω,F,F,P) such that for all 0 ≤ t ≤ T, Xt ≤ Yta.s.. The game option is
a contract between a holder and writer at time t = 0. It is a general American-type option
with the added property that the writer has the right to terminate the contract at any time
before expiry time T . If the holder exercises first, then he/she may obtain the value of X at
the exercise time and if the writer exercise first, then he/she is obliged to pay to the holder
the value of Y at the time of exercise. If neither has exercised at time T and T < ∞, then the
writer pays the holder the valueXT . If both decide to claim at the same time then the lesser of
the two claims is paid. In short, if the holder will exercise with strategy τ and the writer with
strategy γ , we can conclude that at any moment during the life of the contract, the holder can
expect to receive Z(τ, γ) � Xτ1(τ≤γ) + Yγ1(γ<τ). For a detailed description and the valuation
of game options, we refer the reader to Kifer [1], Kyprianou [2], Ekström [3], Baurdoux and
Kyprianou [4], Kühn et al. [5], and so on.

It is well known that in the no-arbitrage pricing framework, the value of a contract
contingent on the asset S is the maximum of the expectation of the total discounted payoff
of the contract under some equivalent martingale measure. Since the market is incomplete,
there are more than one equivalent martingale measure. Following Dayanik and Egami [6],
let the restriction to Ft of every equivalent martingale measure Pα in a large class admit a
Radon-Nikodym derivative in the form of

dPα

dP

∣∣∣∣
Ft

� ηt,

dηt = ηt−
[
βdWt + (α − 1)

(
dNt − λdt

)]
, t ≥ 0, η0 = 1

(1.3)

for some constants β ∈ R and α > 0. The constants β and α are known as the market price
of the diffusion risk and the market price of the jump risk, respectively, and satisfy the drift
condition

μ − r + σβ − λy0(α − 1) = 0. (1.4)

Then the discounted value process {e−rtSt : t ≥ 0} is a (Pα,F)-martingale. By the Girsanov
theorem, the process {Wα

t � Wt − βt : t ≥ 0} is a Brownian motion under the measure Pα, and
{Nt : t ≥ 0} is a homogeneous Poisson process with the intensity λα � λα independent of the
Brownian motion Wα under the same measure. The infinitesimal generator of the process S
under the probability measure Pα is given by

Aαf(x) �
(
r + λαy0

)
x
∂f

∂x
+
1
2
σ2x2 ∂

2f

∂x2
+ λα

[
f
(
x
(
1 − y0

)) − f(x)
]
, (1.5)

on the collection of twice-continuously differentiable functions f(·). It is easily checked that
(Aα − r)f(x) = 0 admits two solutions f(x) = xk1 and f(x) = xk2 , where k1 < 0 < 1 = k2
satisfy

1
2
σ2k(k − 1) +

(
r + λαy0

)
k − (

r + λα
)
+ λα

(
1 − y0

)k = 0. (1.6)
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Suppose that Pα
x is the equivalent martingale measure for S under the assumption that S0 = x

for a specified market price α(·) of the jump risk, and denote Eα
x to be expectation under Pα

x.
The following theorem is the Kifer pricing result.

Theorem 1.1. Suppose that for all x > 0

Eα
x

(
sup
0≤t≤T

e−rtYt

)
< ∞ (1.7)

and if T = ∞ that Pα
x(limt↑∞e−rtYt = 0) = 1. Let St,T be the class of F-stopping times valued in [t, T],

and S ≡ S0,∞, then the price of the game option is given by

V (x) = inf
γ∈S0,T

sup
τ∈S0,T

Eα
x

(
e−r(τ∧γ)Zτ,γ

)
= sup

τ∈S0,T

inf
γ∈S0,T

Eα
x

(
e−r(τ∧γ)Zτ,γ

)
. (1.8)

Further the optimal stopping strategies for the holder and writer, respectively, are

τ∗ = inf
{
t ≥ 0 : V

(
St

)
= Xt

} ∧ T, γ∗ = inf
{
t ≥ 0 : V

(
St

)
= Yt

} ∧ T. (1.9)

2. A Game Version of the American Put Option
(Perpetual Israeli δ-Penalty Put Option)

In this case, continuous stochastic processes are, respectively, given by

Xt =
(
K − St

)+
, Yt =

(
K − St

)+ + δ, (2.1)

where K > 0 is the strike-price of the option, δ > 0 is a constant and can be considered
as penalty for terminating contract by the writer. For the computation of the following, let
us first consider the case of the perpetual American put option with the same parameter K.
From Jin [7] we know that the price of the option is

VA(x) = sup
τ∈S

Eα
x

(
e−rτ

(
K − Sτ

)+) (2.2)

with the superscript A representing American. Through martingale method we have the
following.

Theorem 2.1. The price of the perpetual American option is given by

VA(x) =

⎧
⎪⎨

⎪⎩

K − x x ∈ (
0, x∗],

(
K − x∗)

(
x

x∗

)k1

x ∈ (
x∗,∞)

,
(2.3)

where x∗ = k1K/(k1 − 1), the optimal stopping strategy is

τ∗ = inf
{
t ≥ 0 : St ≤ x∗}. (2.4)
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Proposition 2.2. VA(x) is decreasing and convex on (0,∞), and under equivalent martingale
measure Pα

x, one has that {e−rtV A(St) : t ≥ 0} and {e−r(t∧τx∗ )VA(St∧τx∗ ) : t ≥ 0} are supermartingale
and martingale, respectively.

Now, let us consider this game option. It is obvious that for the holder, in order to
obtain the most profit, he will exercise when S becomes as small as possible. Meanwhile, he
must not wait too long for this to happen, otherwise he will be punished by the exponential
discounting. Then the compromise is to stop when S is smaller than a given constant. While
for the writer, a reasonable strategy is to terminate the contract when the value of the asset S
equals to K. Then only the burden of a payment of the form δe−rτ is left. For this case, if the
initial value of the risky asset is belowK then it would seem rational to terminate the contract
as soon as S hits K. On the other hand, if the initial value of the risky asset is above K, it is
not optimal to exercise at once although the burden of the payment at this time is only δ. A
rational strategy is to wait until the last moment that St ≥ K in order to prolong the payment.
However, it should be noted that the value of the δ must not be too large, otherwise it will be
never optimal for the writer to terminate the contract in advance.

Theorem 2.3. Let δ∗ � VA(K) = (K − x∗)(K/x∗)k1 , one has the following.
(1) If δ ≥ δ∗, then the price of this game option is equal to the price of the perpetual American

put option, that is, it is not optimal for the writer to terminate the contract in advance.
(2) If δ < δ∗, then the price of the game option is

V (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

K − x x ∈ (
0, k∗

]
,

Ax + Bxk1 x ∈ (
k∗, K

)
,

δ

(
x

K

)k1

x ∈ [K,∞)

(2.5)

with

A =
δkk1∗ − (

K − k∗
)
Kk1

Kkk1∗ − k∗Kk1
, B =

K
(
K − k∗

) − δk∗

Kkk1∗ − k∗Kk1
, (2.6)

and the optimal stopping strategies for the holder and writer, respectively, are

τ∗ = inf
{
t ≥ 0 : St ≤ k∗

}
, γ∗ = inf

{
t ≥ 0 : St = K

}
, (2.7)

where k∗ is the (unique) solution in (0, K) to the equation

(δ +K)
(
1 − k1

)
xk1 +K2k1x

k1−1 −K1+k1 = 0. (2.8)

Before the proof, we will first give two propositions.

Proposition 2.4. Equation (2.8) has and only has one root in (0, K).
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Remark 2.5. If we denote the root of (2.8) in (0, K) by k∗, then from Proposition 2.4 we know
that K(K − k∗) − δk∗ > 0, thus B > 0.

Proposition 2.6. V (x) defined by the right-hand sides of (2.5) is convex and decreasing on (0,∞).

Proof. From the expression of V (x) and Remark 2.5 we know that V (x) is convex on (0, K)
and (K,∞). Thus, we only need to prove the convexity of V (x) at the point K, that is,
V ′(K+) ≥ V ′(K−). Through elementary calculations we obtain

V ′(K−) = 1

Kkk1∗ − k∗Kk1

[
δkk1∗ − (

K − k∗
)
Kk1 +

(
K(K − k∗

) − δk∗
)
k1K

k1−1],

V ′(K+) =
δk1
K

.

(2.9)

Then if we can prove that

δkk1∗ − (
K − k∗

)
Kk1 ≤ 0, (2.10)

V ′(K+) ≥ V ′(K−) will hold. From (2.8) we can easily find that when δ = δ∗, k∗ = x∗. Further,
as δ decreases the solution k∗ increases. Especially, when δ = 0, k∗ = K. So if 0 < δ < δ∗, we
have x∗ < k∗ < K.

Now let us verify the correctness of (2.10). If not, that is, δ > (K − k∗)(K/k∗)
k1 , then

from (2.8)we obtain

K1+k1 −K2k1k
k1−1∗ −K

(
1 − k1

)
kk1∗ = δ

(
1 − k1

)
kk1∗ >

(
K − k∗

)(
1 − k1

)
Kk1 , (2.11)

rearranging it we have

(
k∗Kk1 −Kkk1∗

)(
1 − k1 +

k1K

k∗

)
> 0. (2.12)

Since k∗ > x∗, so 1−k1 +k1K/k∗ > 0, whereas k∗Kk1 −Kkk1∗ < 0, which contradicts with (2.12).
So the hypothesis is not true, that is, (2.10) holds, which also implies that A ≤ 0. So V (x) is
decreasing on (0,∞).

Proof of Theorem 2.3. (1) Suppose that δ ≥ δ∗. From the expression of VA(x)we can easily find
that

(K − x)+ ≤ VA(x) ≤ (K − x)+ + δ. (2.13)
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By means of Proposition 2.2 and the Doob Optional Stopping Theorem, we have

VA(x) = inf
γ∈S

Eα
x

[
e−r(τ∗∧γ)VA(Sτ∗∧γ

)]

≤ inf
γ∈S

Eα
x

{
e−rτ∗

(
K − Sτ∗

)+1(τ∗≤γ) + e−rγ
[(
K − Sγ

)+ + δ
]
1(γ<τ∗)

}

≤ inf
γ∈S

sup
τ∈S

Eα
x

{
e−rτ

(
K − Sτ

)+1(τ≤γ) + e−rγ
[(
K − Sγ

)+ + δ
]
1(γ<τ)

}

= sup
τ∈S

inf
γ∈S

Eα
x

{
e−rτ

(
K − Sτ

)+1(τ≤γ) + e−rγ
[(
K − Sγ

)+ + δ
]
1(γ<τ)

}

≤ sup
τ∈S

Eα
x

[
e−rτ

(
K − Sτ

)+]

= VA(x).

(2.14)

That is, the price of the game option is equal to the price of the perpetual American put
option.

(2) If δ < δ∗, according to the foregoing discussion and Theorem 1.1, there exists a
number k such that the continuation region is

C =
{
x : g1(x) < V (x) < g2(x)

}
= {x : k < x < ∞, x /=K} (2.15)

with g1(x) = (K − x)+, g2(x) = (K − x)+ + δ, k ∈ (0, K) a constant to be confirmed, while the
stopping area is

D = D1 ∪D2, (2.16)

where D1 = {x : V (x) = g1(x)} = {x : x ≤ k} is the stopping area of the holder, D2 = {x :
V (x) = g2(x)} = {x : x = K} is the stopping area of the writer. For search of the optimal k∗ and
the value of V (x), we consider the following Stefan(free boundary) problem with unknown
number k and V = V (x):

V (x) = K − x, x ∈ (0, k],
(Aα − r

)
V (x) = 0, x ∈ (k,K) ∪ (K,∞),

(2.17)

and additional conditions on the boundary k and K are given by

lim
x↓k

V (x) = K − k, lim
x→K

V (x) = δ, lim
x↓k

∂V (x)
∂x

= −1, lim
x↑∞

V (x) = 0. (2.18)

By computing Stefan problem we can easily obtain the expression of V (x) (denote
it by Ṽ (x)) defined by the right-hand sides of (2.5), while from (2.18) we can obtain (2.8).
Proposition 2.4 implies that this equation has and only has one root in (0, K), denote it by k∗.
Accordingly, we can obtain the expression (2.6) of A and B and optimal stopping strategy
τ∗ for the holder. Now we must prove that the solution of the Stefan problem gives, in fact,
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the solution to the optimal stopping problem, that is, V (x) = Ṽ (x). For that it is sufficient to
prove that

(a) ∀τ ∈ S, Eα
xe

−r(τ∧γ∗)Zτ,γ∗ ≤ Ṽ (x);

(b) ∀γ ∈ S, Eα
xe

−r(τ∗∧γ)Zτ∗,γ ≥ Ṽ (x);

(c) Eα
xe

−r(τ∗∧γ∗)Zτ∗,γ∗ = Ṽ (x).

First, from Proposition 2.6 we know that Ṽ (x) is a convex function on (0,∞) such that

(K − x)+ ≤ Ṽ (x) ≤ (K − x)+ + δ. (2.19)

Since Ṽ (x) ∈ C1(0, K)∩C2(0, K)\{k∗}, for x ∈ (0, K), we can apply Itô formula to the process
{e−r(t∧γ∗)Ṽ (St∧γ∗) : t ≥ 0} and have

e−r(t∧γ
∗)Ṽ

(
St∧γ∗

)
= Ṽ (x) +

∫ t∧γ∗

0
e−ru

(Aα − r
)
Ṽ
(
Su

)
du +

∫ t∧γ∗

0
e−ruσSuṼ

′(Su

)
dWα

u

+
∫ t∧γ∗

0
e−ru

[
Ṽ
(
Su−

(
1 − y0

)) − Ṽ
(
Su−

)](
dNu − λαdu

)
.

(2.20)

Note that in (0, K), AαṼ (x) − rṼ (x) ≤ 0, while the last two integrals of (2.20) are local
martingales, then by choosing localizing sequence and apply the Fatou lemma, we obtain

Eα
xe

−r(τ∧γ∗)Ṽ
(
Sτ∧γ∗

) ≤ Ṽ (x), (2.21)

whereas

Zτ,γ∗ =
(
K − Sτ

)+1τ≤γ∗ +
[(
K − Sγ∗

)+ + δ
]
1γ∗<τ

=
(
K − Sτ

)+1τ≤γ∗ + δ1γ∗<τ

≤ Ṽ
(
Sτ∧γ∗

)
.

(2.22)

For the inequality we have used (2.19), hence from (2.21)we have

Eα
xe

−r(τ∧γ∗)Zτ,γ∗ ≤ Ṽ (x). (2.23)

It is simple for the case that x ∈ (K,∞) and the method is the same as before. Thus, we obtain
(a).
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The proof of (b): apply Itô formula to the process {e−r(τ∗∧t)Ṽ (Sτ∗∧t) : t ≥ 0} and note
that Ṽ is only continuous at K, we have

e−r(τ
∗∧t)Ṽ

(
Sτ∗∧t

)
= Ṽ (x) +

∫ τ∗∧t

0
e−ru

(Aα − r
)
Ṽ
(
Su

)
du +

∫ τ∗∧t

0
e−ruσSuṼ

′(Su

)
dWα

u

+
∫ τ∗∧t

0
e−ru

[
Ṽ
(
Su−

(
1 − y0

)) − Ṽ
(
Su−

)](
dNu − λαdu

)

+ e−r(τ
∗∧t)[Ṽ ′(K+) − Ṽ ′(K−)]LK

τ∗∧t,

(2.24)

where LK is the local time atK of S. Since Ṽ (x) is convex on (0,∞), hence Ṽ ′(K+)− Ṽ ′(K−) ≥
0. While in (k∗,∞) \ {K}, (Aα − r)Ṽ (x) = 0, then using the same method as before we have

Eα
xe

−r(τ∗∧γ)Ṽ
(
Sτ∗∧γ

) ≥ Ṽ (x). (2.25)

Moreover, since

Ṽ
(
Sτ∗∧γ

)
= Ṽ

(
Sτ∗

)
1(τ∗≤γ) + Ṽ

(
Sγ

)
1(γ<τ∗)

≤ (
K − Sτ∗

)+1(τ∗≤γ) +
[(
K − Sγ

)+ + δ
]
1(γ<τ∗)

= Zτ∗,γ ,

(2.26)

we can obtain

Eα
xe

−r(τ∗∧γ)Zτ∗,γ ≥ Ṽ (x), ∀γ ∈ M. (2.27)

The proof of (c): taking τ = τ∗, γ = γ∗, it is sufficient to note that in (k∗, K), we have
AαV (x) − rV (x) = 0 and

Ṽ
(
Sτ∗∧γ∗

)
= Ṽ

(
Sτ∗

)
1(τ∗≤γ∗) + Ṽ

(
Sγ∗

)
1(γ∗<τ∗)

=
(
K − Sτ∗

)+1(τ∗≤γ∗) + δ1(γ∗<τ∗)
= Zτ∗,γ∗ .

(2.28)

The same result is true for the case that x ∈ (K,∞).

3. Game Option with Barrier

Karatzas and Wang [8] obtain closed-form expressions for the prices and optimal hedging
strategies of American put options in the presence of an up-and-out barrier by reducing this
problem to a variational inequality. Now we will consider the game option connected with
this barrier option. Following Karatzas and Wang, the holder may exercise to take the claim
of this barrier option

Xt =
(
K − St

)+1(t<τh), 0 ≤ t < ∞. (3.1)
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Here h > 0 is the barrier, whereas

τh = inf
{
t ≥ 0 : St > h

}
(3.2)

is the time when the option becomes “knocked-out”. The writer is punished by an amount δ
for terminating the contract early

Yt =
[(
K − St

)+ + δ
]
1(t<τh). (3.3)

First, let us consider this type of barrier option. The price is given by

VB(x) = sup
τ∈S

Exe
−rτ(K − Sτ

)+1(τ<τh) (3.4)

with the superscript B representing barrier. Similarly to Karatzas and Wang we can obtain
the following.

Theorem 3.1. The price of American put-option in the presence of an up-and-out barrier is

VB(x) =

⎧
⎪⎪⎨

⎪⎪⎩

K − x x ∈ (
0, p∗

]
,

Ax + Bxk1 x ∈ (
p∗, h

)
,

0 x ∈ [h,∞),

(3.5)

where A = (p∗ − K)hk1/(hpk1∗ − p∗hk1), B = (K − p∗)h/(hp
k1∗ − p∗hk1), and the optimal stopping

strategy is

τ∗ = inf
{
t ≥ 0 : St ≤ p∗

}
, (3.6)

where p∗ is the (unique) solution in (0, K) to the equation

h
(
1 − k1

)
xk1 +Khk1x

k1−1 −Khk1 = 0. (3.7)

The proof of the theorem mainly depends on the following propositions and the
process will be omitted.

Proposition 3.2. The expression of VB(x) defined by (3.5) is convex and decreasing on (0,∞), and
under risk-neutral measure Pα

x, one has that {e−rtV B(St) : t ≥ 0} and {e−r(t∧τ∗)VB(St∧τ∗) : t ≥ 0} are
supermartingale and martingale, respectively.

Proposition 3.3. Equation (3.7) has and only has one root in (0, K).

Now let us consider the game option with barrier h. The price is given by

V (x) = sup
τ∈S

inf
γ∈S

Ex

(
e−rτ

(
K − Sτ

)+1(τ≤γ) · 1(τ<τh) + e−rγ
[(
K − Sγ

)+ + δ
]
1(γ<τ) · 1(γ<τh)

)
. (3.8)



10 Journal of Applied Mathematics and Decision Sciences

For this game option, the logic of its solution is similar to the former, and based on this
consideration, we have the following theorem.

Theorem 3.4. Let δ∗ � VB(K) = (K − p∗)(hKk1 −Khk1)/(hpk1∗ − p∗hk1), one has the following.
(1) If δ ≥ δ∗, then the price of this game option is equal to the price of American put options in

the presence of an up-and-out barrier, that is, it is not optimal for the writer to exercise early.
(2) If δ < δ∗, then the price of the game option is given by

V (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

K − x x ∈ (
0, b∗

]
,

C1x + C2x
k1 x ∈ (

b∗, K
)
,

D1x +D2x
k1 x ∈ [K,h),

0 x ∈ [h,∞),

(3.9)

where

C1 =
δbk1∗ − (

K − b∗
)
Kk1

Kbk1∗ − b∗Kk1
, C2 =

K
(
K − b∗

) − δb∗

Kbk1∗ − b∗Kk1
,

D1 =
−δhk1

hKk1 −Khk1
, D2 =

δh

hKk1 −Khk1
,

(3.10)

and b∗ is the (unique) solution in (0, K) to the equation

(δ +K)
(
1 − k1

)
xk1 +K2k1x

k1−1 −K1+k1 = 0, (3.11)

and the optimal stopping strategies for the holder and writer, respectively, are

τ∗ = inf
{
t ≥ 0 : St ≤ b∗

}
, γ∗ = inf

{
t ≥ 0 : St = K

}
. (3.12)

Proposition 3.5. The function V (x) defined by (3.9) is convex and decreasing on (0,∞).

Proof. Similar to Proposition 2.6, we only need to prove the convexity of V (x) at the point K,
that is,

V ′(K+) − V ′(K−) = (
D2 − C2

)
k1K

k1−1 +
(
D1 − C1

) ≥ 0. (3.13)

Through lengthy calculations we know that it is sufficient to show that

δ
(
hbk1∗ − b∗hk1

) ≤ (
K − b∗

)(
hKk1 −Khk1

)
. (3.14)
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Suppose that (3.14) does not hold, that is, δ > (K−b∗)(hKk1 −Khk1)/(hbk1∗ −b∗hk1), then from
(3.11)we find that

K1+k1 −K2k1x
k1−1 −K

(
1 − k1

)
bk1∗ = δ

(
1 − k1

)
bk1∗

>
(
1 − k1

)
bk1∗

(
K − b∗

)(
hKk1 −Khk1

)

(
hbk1∗ − b∗hk1

) ,
(3.15)

rearranging it we have

h
(
1 − k1

)
bk1∗ +Khk1b

k1−1∗ −Khk1 < 0. (3.16)

From (3.11), through complex verification we get that when δ = δ∗, b∗ = p∗. Furthermore, as
δ decreases the solution b∗ increases, especially when δ = 0, b∗ = K. So if 0 < δ < δ∗, we have
p∗ < b∗ < K. Thus from the property of (3.7)we know that h(1−k1)bk1∗ +Khk1b

k1−1∗ −Khk1 > 0,
which contradicts with (3.16). So the hypothesis is not true, that is, (3.14) holds. It is evident
that V (x) is decreasing.

Remark 3.6. It is obvious that (2.8) is the same as (3.11), however, their roots not always be
equal to each other. Because of these two cases, the scope of δ is different. Penalty with barrier
is usually smaller than the other, that is, VB(K) < VA(K).

Proof of Theorem 3.4. (1) Suppose that δ ≥ δ∗. From Proposition 3.2 we know that

(K − x)+ ≤ VB(x) ≤ (K − x)+ + δ. (3.17)

By means of the Doob optional stopping theorem and (3.17), we have

VB(x) = inf
γ∈S

Eα
x

[
e−r(τ

∗∧γ∧τh)VB(Sτ∗∧γ∧τh
)]

≤ inf
γ∈S

Eα
x

{
e−rτ

∗(
K − Sτ∗

)+1(τ∗≤γ)1(τ∗<τh) + e−rγ
[(
K − Sγ

)+ + δ
]
1(γ<τ∗)1(γ<τh)

}

≤ inf
γ∈S

sup
τ∈S

Eα
x

{
e−rτ

(
K − Sτ

)+1(τ≤γ)1(τ<τh) + e−rγ
[(
K − Sγ

)+ + δ
]
1(γ<τ)1(γ<τh)

}

= sup
τ∈S

inf
γ∈S

Eα
x

{
e−rτ

(
K − Sτ

)+1(τ≤γ)1(τ<τh) + e−rγ
[(
K − Sγ

)+ + δ
]
1(γ<τ)1(γ<τh)

}

≤ sup
τ∈S

Eα
x

[
e−rτ

(
K − Sτ

)+1(τ<τh)
]

= VB(x).

(3.18)

That is, the price of the game option is equal to the price of American put-options in the
presence of an up-and-out barrier.

(2) Suppose that δ < δ∗. Then we may conclude that the holder should search optimal
stopping strategy in the class of the stopping times of the form τb = inf{t ≥ 0 : St ≤ b} with
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b ∈ (0, K) to be confirmed. While the optimal stopping strategy for the writer is γ∗ = inf{t ≥
0 : St = K}. Considering the following Stefan problem:

V (x) = K − x, x ∈ (0, b], (3.19)

(A − r)V (x) = 0, x ∈ (b,K) ∪ (K,h), (3.20)

V (x) = 0, x ∈ [h,∞), (3.21)

lim
x↓b

V (x) = K − b, lim
x→K

V (x) = δ, lim
x↑h

V (x) = 0, lim
x↓b

∂V (x)
∂x

= −1. (3.22)

Through straightforward calculations we can obtain the expression of V (x) (denote it by
Ṽ (x)) defined by the right-hand sides of (3.9). From condition (3.22) we can obtain (3.11).
Proposition 2.4 implies that the root of this equation is unique in (0, K), denote it by b∗ and
consequently τb∗ by τ∗. Now we only need to prove that V (x) = Ṽ (x). For that it is sufficient
to prove that

(a) ∀τ ∈ S, Eα
xe

−r(τ∧γ∗)Zτ,γ∗1(τ∧γ∗<τh) ≤ Ṽ (x); (3.23)

(b) ∀γ ∈ S, Eα
xe

−r(τ∗∧γ)Zτ∗,γ1(τ∗∧γ<τh) ≥ Ṽ (x). (3.24)

(c) Taking stopping time τ = τ∗, γ = γ∗, we have

Eα
xe

−r(τ∗∧γ∗)Zτ∗,γ∗1(τ∗∧γ∗<τh) = Ṽ (x). (3.25)

First, from Proposition 3.5 we know that Ṽ (x) is convex in (0,∞) and further

(K − x)+ ≤ Ṽ (x) ≤ (K − x)+ + δ. (3.26)

Applying Itô formula to the process {e−r(t∧γ∗∧τh)Ṽ (St∧γ∗∧τh) : t ≥ 0}, we have

e−r(t∧γ
∗∧τh)Ṽ

(
St∧γ∗∧τh

)
= Ṽ (x) +

∫ t∧γ∗∧τh

0
e−ru

(Aα − r
)
Ṽ
(
Su

)
du +

∫ t∧γ∗∧τh

0
e−ruσSuṼ

′(Su

)
dWα

u

+
∫ t∧γ∗∧τh

0
e−ru

[
Ṽ
(
Su−

(
1 − y0

)) − Ṽ
(
Su−

)](
dNu − λαdu

)
.

(3.27)

It is obvious that when x ∈ (0, K)∪ (K,h), we have (A− r)Ṽ (x) ≤ 0. Since the second and the
third integrals of the right-hand sides of (3.27) are local martingales, so

Eα
xe

−r(τ∧γ∗∧τh)Ṽ
(
Sτ∧γ∗∧τh

) ≤ Ṽ (x), (3.28)
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while

Eα
xe

−r(τ∧γ∗∧τh)Ṽ
(
Sτ∧γ∗∧τh

)
= Eα

xe
−r(τ∧γ∗)Ṽ

(
Sτ∧γ∗

)
1(τ∧γ∗<τh) ≥ Eα

xe
−r(τ∧γ∗)Zτ,γ∗1(τ∧γ∗<τh). (3.29)

The inequality is obtained from (3.26), and combining (3.28) we obtain (3.23), that is, (a)
holds.

Applying Itô formula to the process {e−r(τ∗∧t∧τh)Ṽ (Sτ∗∧t∧τh) : t ≥ 0}, we have

e−r(τ
∗∧t∧τh)Ṽ

(
Sτ∗∧t∧τh

)
= Ṽ (x) +

∫ τ∗∧t∧τh

0
e−ru(A − r)Ṽ

(
Su

)
du +

∫ τ∗∧t∧τh

0
e−ruσ

(
Su

)
Ṽ ′(Su

)
dWα

u

+ e−r(τ
∗∧t∧τh)[Ṽ ′(K+) − Ṽ ′(K−)]LK

τ∗∧t∧τh

+
∫ τ∗∧t∧τh

0
e−ru

[
Ṽ
(
Su−

(
1 − y0

)) − Ṽ
(
Su−

)](
dNu − λαdu

)
.

(3.30)

The definition of LK is the same as Theorem 2.3. From the convexity of Ṽ (x) we know that
Ṽ ′(K+) − Ṽ ′(K−) ≥ 0. Since when x ∈ (b∗, K) ∪ (K,h), (A − r)Ṽ (x) = 0, so from above
expression we have

Eα
xe

−r(τ∗∧γ∧τh)Ṽ
(
Sτ∗∧γ∧τh

) ≥ Ṽ (x). (3.31)

Similarly we have

Eα
xe

−r(τ∗∧γ∧τh)Ṽ
(
Sτ∗∧γ∧τh

)
= Eα

xe
−r(τ∗∧γ)Ṽ

(
Sτ∗∧γ

)
1(τ∗∧γ<τh) ≤ Eα

xe
−r(τ∗∧γ)Zτ∗,γ1(τ∗∧γ<τh). (3.32)

From (3.31) and (3.32) we know that (b) holds. Combining (a) and (b) we can easily obtain
(c).

4. A Simple Example: Application to Convertible Bonds

To raise capital on financial markets, companies may choose among three major asset classes:
equity, bonds, and hybrid instruments, such as convertible bonds. As hybrid instruments,
convertible bonds has been investigated rather extensively during the recent years. It entitles
its owner to receive coupons plus the return of the principle at maturity. However, the holder
can convert it into a preset number of shares of stock prior to maturity. Then the price of the
bond is dependent on the price of the firm stock. Finally, prior to maturity, the firm may call
the bond, forcing the bondholder to either surrender it to the firm for a previously agreed
price or else convert it for stock as above. Therefore, the pricing problem has also a game-
theoretic aspect. For more detailed information and research about convertible bonds, one is
referred to Gapeev and Kühn [9], Sı̂rbu et al. [10, 11], and so on.
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Now, we will give a simple example of pricing convertible bonds, as the application
of pricing game options. Consider the stock process which pays dividends at a certain fixed
rate d ∈ (0, r), that is,

dSt = St−
[
(μ − d)dt + σdWt − y0

(
dNt − λdt

)]
. (4.1)

Then the infinitesimal generator of S becomes

Aαf(x) �
(
r − d + λαy0

)
x
∂f

∂x
+
1
2
σ2x2 ∂

2f

∂x2
+ λα

[
f
(
x
(
1 − y0

)) − f(x)
]
, (4.2)

and (Aα − r)f(x) = 0 admits two solutions f(x) = xk1 and f(x) = xk2 with k1 < 0 < 1 < k2
satisfying

1
2
σ2k(k − 1) +

(
r − d + λαy0

)
k − (

r + λα
)
+ λα

(
1 − y0

)k = 0. (4.3)

At any time, the bondholder can convert it into a predetermined number η > 0 of
stocks, or continue to hold the bond and collecting coupons at the fixed rate c > 0. On the
other hand, at any time the firm can call the bond, which requires the bondholder to either
immediately surrender it for the fixed conversion price K > 0 or else immediately convert
it as described above. In short, the firm can terminate the contract by paying the amount
max{K, ηS} to the holder. Then, if the holder terminates the contract first by converting the
bond into η stocks, he/she can expect to (discounted) receive

Lt =
∫ t

0
c · e−rudu + e−rtηSt, (4.4)

while if the firm terminate the contract first, he/she will pay the holder

Ut =
∫ t

0
c · e−rudu + e−rt

(
K ∨ ηSt

)
. (4.5)

Then, according to Theorem 1.1, the price of the convertible bonds is given by

V CB(x) = inf
γ∈S

sup
τ∈S

Eα
x

(
Lτ1(τ≤γ) +Uγ1(γ<τ)

)
= sup

τ∈S
inf
γ∈S

Eα
x

(
Lτ1(τ≤γ) +Uγ1(γ<τ)

)
. (4.6)

Note that when c ≥ rK, the solution of (4.6) is trivial and the firm should call the bond
immediately. This implies that the bigger the coupon rate c, the more the payoff of the issuer,
then they will choose to terminate the contract immediately. So we will assume that c < rK
in the following.

Now, let us first consider the logic of solving this problem. It is obvious that ηx ≤
V CB(x) ≤ K ∨ ηx for all x > 0 (choose τ = 0 and γ = 0, resp.). Note when St ≥ K/η, Lt = Ut,



Journal of Applied Mathematics and Decision Sciences 15

then V CB(x) = ηx for all x ≥ K/η. Hence the issuer and the holder should search optimal
stopping in the class of stopping times of the form

γa = inf
{
t ≥ 0 : St ≥ a

}
, τb = inf

{
t ≥ 0 : St ≥ b

}
, (4.7)

respectively, with numbers 0 < a, b ≤ K/η to be determined. Note when the process S
fluctuates in the interval (0, K/η), it is not optimal to terminate the contract simultaneously
by both issuer and holder. For example, if the issuer chooses to terminate the contract at the
first time that S exceeds some point a ∈ (0, K/η), then ηa < K, and the holder will choose
the payoff of coupon rather than converting the bond into the stock, which is a contradiction.
Similarly, one can explain another case. Then only the following situation can occur: either
a < b = K/η, b < a = K/η, or b = a = K/η.

For search of the optimal a∗, b∗ and the value of V CB(x), we consider an auxiliary
Stefan problem with unknown numbers a, b, and V (x)

(Aα − r
)
V (x) = −c, 0 < x < a ∧ b,

ηx < V (x) < ηx ∨K, 0 < x < a ∧ b
(4.8)

with continuous fit boundary conditions

V (b−) = ηb, V (x) = ηx (4.9)

for all x > b, b ≤ a = K/η, and

V (a−) = K, V (x) = ηx ∨K (4.10)

for all x > a, a ≤ b = K/η, and smooth fit boundary conditions

V ′(b−) = η if b < a =
K

η
, V ′(a−) = 0 if a < b =

K

η
. (4.11)

By computing the Stefan problem we can obtain that if

K >
k2

k2 − 1
c

r
, (4.12)

then b∗ < a∗ = K/η, and the expression of V (x) is given by

V (x) =
ηb∗
k2

(
x

b∗

)k2

+
c

r
(4.13)
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for all 0 < x < b∗, with

b∗ =
k2

η
(
k2 − 1

)
c

r
, (4.14)

and if

c

r
< K ≤ k2

k2 − 1
c

r
, (4.15)

then a∗ = b∗ = K/η, and the value of V (x) is

V (x) =
(
K − c

r

)(
ηx

K

)k2

+
c

r
(4.16)

for all 0 < x < K/η.
From the result we can observe that there are only two regions forK, and the situation

a∗ < b∗ = K/η fails to hold. This implies that in this case, when S fluctuates in the interval
(0, K/η), the issuer will never recall the bond. Now, we only need to prove that V (x) =
V CB(x), and the stopping times γ∗ and τ∗ defined by (4.7) with boundaries a∗ and b∗ are
optimal.

Applying Itô formula to the process {e−rtV (St) : t ≥ 0}, we have

e−rtV
(
St

)
= V (x) +

∫ t

0
e−ru

(Aα − r
)
V
(
Su

)
1(Su /=a∗,Su /= b∗,Su /=K/η)du

+
∫ t

0
e−ruσSuV

′(Su

)
1(Su /=a∗,Su /= b∗,Su /=K/η)dW

α
u

+
∫ t

0
e−ru

[
V
(
Su−

(
1 − y0

)) − V
(
Su−

)](
dNu − λαdu

)

+ e−rt
[
V ′

(
K

η
+
)
− V ′

(
K

η
−
)]

L
K/η
t .

(4.17)

Let

Mt =
∫ t

0
e−ruσSuV

′(Su

)
1(Su /=a∗,Su /= b∗,Su /=K/η)dW

α
u

+
∫ t

0
e−ru

[
V
(
Su−

(
1 − y0

)) − V
(
Su−

)](
dNu − λαdu

)
.

(4.18)



Journal of Applied Mathematics and Decision Sciences 17

Note for all 0 < x < a∗, (A − r)V (x) ≤ −c, while for all 0 < x < b∗, (A − r)V (x) = −c. Since
ηx ≤ V (x) ≤ ηx ∨K, so for 0 < a∗ ≤ K/η, 0 < b∗ ≤ K/η, we have

Lτ∧γ∗ =
∫ τ∧γ∗

0
c · e−rudu + e−r(τ∧γ

∗)ηSτ∧γ∗

≤
∫ τ∧γ∗

0
c · e−rudu + e−r(τ∧γ

∗)V
(
Sτ∧γ∗

)

≤ V (x) +Mτ∧γ∗ ,

Uτ∗∧γ =
∫ τ∗∧γ

0
c · e−rudu + e−r(τ

∗∧γ)(ηSτ∗∧γ ∨K
)

≥
∫ τ∗∧γ

0
c · e−rudu + e−r(τ

∗∧γ)V
(
Sτ∗∧γ

)

= V (x) +Mτ∗∧γ .

(4.19)

Because V (Sγ∗) = K ∨ ηSγ∗ , V (Sτ∗) = ηSτ∗ , then by choosing localizing sequence and apply
the Fatou lemma, we obtain

Eα
x

[
Lτ1(τ≤γ∗) +Uγ∗1(γ∗<τ)

] ≤ V (x) ≤ Eα
x

[
Lτ∗1(τ∗≤γ) +Uγ1(γ<τ∗)

]
. (4.20)

Taking supremum and infimum for τ and γ of both sides, respectively, we can obtain the
result. While for (4.20), taking τ = τ∗, γ = γ∗, we have

V (x) = Eα
x

[
Lτ∗1(τ∗≤γ∗) +Uγ∗1(γ∗<τ∗)

]
. (4.21)
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