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For at least partially ordered three-way tables, it is well known how to arithmetically decompose
Pearson’s X2

P statistic into informative components that enable a close scrutiny of the data.
Similarly well-known are smooth models for two-way tables from which score tests for
homogeneity and independence can be derived. From these models, both the components of
Pearson’s X2

P and information about their distributions can be derived. Two advantages of
specifying models are first that the score tests have weak optimality properties and second that
identifying the appropriate model from within a class of possible models gives insights about
the data. Here, smooth models for higher-order tables are given explicitly, as are the partitions of
Pearson’sX2

P into components. The asymptotic distributions of statistics related to the components
are also addressed.
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1. Introduction

In [1, 2] it is shown how, for at least partially ordered three-way tables, to arithmetically
decompose Pearson’s X2

P statistic into informative components that enable a close scrutiny
of the data. They focus on three-way tables as being indicative of higher-order tables. Here,
we give models for arbitrary multiway tables that are at least partially ordered. We discuss
the arithmetic decomposition of X2

P into components, giving explicit formulae for these
components. This enables X2

P to be partitioned into meaningful X2-type statistics. Using
extensions of models for two-way tables discussed in [3], the asymptotic distribution of
statistics related to these components may be given.

At the onset, we should say what we mean by “ordered.” A random variable is a
mapping from the sample space to the real line. It is ordered if and only if the ordering of
the range is meaningful. So, for example, a range containing only zero and one, denoting
male and female, would not usually be considered meaningful. However, it would usually
be considered meaningful if the zero and one denoted low and high, respectively. A variable
is ordered if and only if it reflects a random variable that is ordered rather than not ordered,
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or nominal. A table is completely ordered if and only if all variables are ordered. It is partially
ordered if and only if at least one but not all variables are ordered.

To give precedence, we observe here that the arithmetic decomposition of Pearson’sX2
P

statistic for two- and three-way tables can be shown quite compactly using results from [3,
Chapter 4, Theorems 2.1 and 2.2, pages 90-91 and Theorem 5.2, page 101]. It is shown there
that for contingency tables Lancaster’s φ2 is equal to the sum of the squares of the elements of
a vector θ in the subsequent models. In a parallel manner, workingwith observed proportions
{Nij/n}, it can be shown that X2

P is equal to the sum of the squares of components. This
observation applies to verifying the results in [1, 2]. Moreover, precedence should be given
to the work in [3, Chapter 12] for material throughout this paper.

We also note that the work in [4] considered models for ordered two-way contingency
tables. In [4, Chapter 3], an extended hypergeometric model is used when both row and
column marginal totals are known. This is not a smooth model and here we will not discuss
either it or its extensions further. In [4, Chapter 8], doubly ordered models are considered,
and these will be generalised in Section 2 in what follows.

In treating a singly ordered table, the work in [4, Chapter 4] assumed the total count
for each treatment is known before sighting the data, and this leads to a smooth product
multinomial model. If the treatment totals are not known before sighting the data, the
resulting model is a single multinomial with cell probabilities modelled the same way as
when the treatment totals are known before sighting the data. The models in [1, 2] are
single multinomials, following the second approach. However, it is clear that, in general,
for partially ordered tables, there are a multitude of possible models, depending on which
marginal totals are assumed known before sighting the data. In all cases, the logarithms of the
likelihoods are, apart from unimportant constants, the same. Henceforth, we will consistently
work with product multinomials and note that the distributional results developed apply to
the multitude of models indicated.

The outline of this paper is as follows. In Section 2, the more routine case of completely
ordered multiway tables is discussed. The balance of the paper is about the more complicated
partially ordered tables. In Section 3, the work of [4] on partially ordered tables is reviewed.
In Section 4, the work in [1, 2] is reviewed and extended using smooth models. Section 5
gives the generalizations to arbitrary multiway partially ordered tables.

2. Completely Ordered Multiway Tables

For an m-way I1 × I2 × · · · × Im, completely ordered table of counts {Nv1···vm}, Pearson’s X2
P is

given by

X2
P =

I1∑

v1=1

· · ·
Im∑

vm=1

(Nv1···vm − E[Nv1···vm])
2

E[Nv1...vm]
. (2.1)

An extension of the approach in [1] demonstrates that X2
P has an arithmetic decomposition:

X2
P =

I1−1∑

u1=0

· · ·
Im−1∑

um=0

Z2
u1···um

, (2.2)
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in which the components Zu1···um , u1 = 0, . . . , I1 − 1, . . ., um = 0, . . . , Im − 1, are given by

Zu1···um =
√
n

I1∑

v1=1

· · ·
Im∑

vm=1

au1(v1) · · ·aum(vm)pv1···vm . (2.3)

Here n =
∑I1

ν1=1
· · ·∑Im

νm=1
Nν1···νm and for j = 1, . . . , m, {auj (•)} is orthonormal on {p•···• vj•···•}, in

which pv1···vm = Nv1···vm/n and p•···•vj•···• is obtained from pv1···vm by summing out all variables
other than vj . Furthermore, the orthonormal systems all have zeroth term identically one.
This work builds on the iconic work of Oliver Lancaster, for which see [3], and [3, Chapter
12] in particular.

It is routine to show that the components Zu1···umare asymptotically multivariate
normal, since an arbitrary linear combination of these variables is asymptotically normal by
the central limit theorem. Utilizing the orthonormality of the {auj (•)}, it can be shown that
all components have expectation zero, variance unity, and covariances zero. They are thus
asymptotically mutually independent and asymptotically standard normal.

One possible smooth model for {Nv1···vm} is the multinomial with count total n and cell
probabilities {pν1···νm} given by

pν1···νm =

{
I1−1∑

u1=0

· · ·
Im−1∑

um=0

θu1···umau1(v1) · · ·aum(vm)

}
pν1•···• · · · p•···•νm , (2.4)

in which θ0···0 = 1 and θ0···0uj0···0 = 0 for all uj ≥ 1. This model includes all genuine two, three,
and so forth m-way independence models. A routine extension of [4, Theorem 8.1] shows
that the score test statistic for testing, that the θu1···umare collectively zero against the negation
of this is, as before, the sum of the squares of the Zu1···um . Moreover, these components have
the distributional properties given in the previous paragraph. Generalising [4, Theorem 8.2],
this score test statistic is X2

P . The score test has the advantage of weak optimality: see, for
example, [5]. An additional advantage of this approach is that it can be shown that Z2

u1···um

is the score test statistic when testing θu1···um = 0 against θu1···um /= 0 in an appropriate model.
Thus, in an informal sense, every Zu1···um is a detector of the corresponding θu1···um .

The degrees of freedom associated with X2
P are the number of θu1···um (and hence

Zu1···um) in the model, excluding those that are by convention always zero or one. The degrees
of freedom are thus

∏

i<j

(Ii − 1)
(
Ij − 1

)
+
∏

i<j<k

(Ii − 1)
(
Ij − 1

)
(Ik − 1) · · · + (I1 − 1)(I2 − 1) · · · (Im − 1)

= I1 × I2 × · · · × Im − 1 − (I1 − 1) − (I2 − 1) − · · · − (Im − 1).

(2.5)

The left-hand side consists of the degrees of freedom associated with all genuine two-way,
three-way, and so forth m-way models, while the right-hand side is the number of cells
minus one for the constraint n =

∑I1
ν1=1

· · ·∑Im
νm=1

Nν1···νm (reflecting that the sample size is
known before sighting the data) minus the degrees of freedom associated with all one-way
(essentially goodness of fit) models. For the happiness example in [1] I1 = 3, I2 = 4, I3 = 5
and substituting in the aforementioned formulae, there are 50 degrees of freedom.
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3. Two-Way Singly Ordered Tables

In [4, Section 4.4] two-way tables are discussed. We report on that discussion using our
subsequent convention that ordered categories precede unordered categories. Tables {Nwz}
are modelled by product multinomials, with the zth column being multinomial with total
counts n•z and cell probabilities:

pwz =

{
1 +

I1∑

u=1

θuzau(w)/
√
n•z

}
pw•, (3.1)

for w = 1, . . . , I1−1. Note that the probabilities in the I1th row are found by difference:
pI1z = 1 − p1z − · · · − p(I1−1)z and z = 1, . . . , I2, where pw• =

∑
z Nwz/n in which n =∑

w

∑
z Nwz. The efficient score contains random variables Zuz =

√
(n/n•z)

∑I1
w=1 au(w)pwz

and the information matrix is found to be singular. In order to find a score test statistic in
[4, Section 4.4], the model is modified by removing the θs corresponding to the last column
because the model is overparameterised: in any row, given the probabilities in the first I2 − 1
columns and the marginal probability for that row (the average of all probabilities in that
row), the probability corresponding to the final column can be readily determined. A quicker
approach is now outlined.

WriteZu = (Zu1, . . . , ZuI2)
T andZT = (ZT

1 , . . . , Z
T
I1−1). The n×n identity matrix is written

as In; this will be clear from the context when this, and not the number of rows, and so
forth, is intended. From the information matrix for Z, the covariance matrix for Zu is II2 −
(
√
n•an•b)/n. This is idempotent of rank I2 − 1. There exists an I2 × (I2 − 1) matrix A such

that II2 − (
√
n•an•b)/n = AAT and ATA = II2−1. We now focus on a smooth model containing

just one value of u (the full model is similar). Since the information matrix in terms of θu =
(θu1, . . . , θuI2)

T = θ say is singular, define φ by Aφ = θ. Then using the results of the lemma in
[6, Section 3], the efficient score and information in terms of θ (Uθ and Iθ) and φ (Uφ and Iφ)
are related by Uφ = ATUθ and Iφ = ATIθA, respectively. It follows that since, in terms of φ,
the efficient score is ATZu = Yu say, and the information matrix is AT{II2 − (

√
n•an•b)/n}A =

II2−1, the score test statistic in terms of φ is YT
u Yu = ZT

u{II2 − (
√
n•an•b)/n}Zu. Since Yu is

asymptotically NI2−1(0, II2−1), the score test statistic has the χ2
I2−1 distribution, as is otherwise

well known.
The columns of A are eigenvectors corresponding to the nonzero eigenvalues of

{II2 − (
√
n•an•b)/n}. The eigenvector corresponding to the zero eigenvalue is (1, . . . , 1)T ,

so a typical eigenvector may be written 1⊥. The elements of Yu = ATZu are of the form
1T⊥Zu, that may fairly be called a contrast between the elements of Zu. They are mutually
independent and standard normal. While the Zui are immediately interpretable, they are
slightly less convenient than Yui that are orthogonal contrasts and are asymptotically
mutually independent and asymptotically standard normal. These contrasts correspond to
each order u, u = 1, . . . , I1 − 1, and reflect comparisons between the levels of the unordered
factor. They may, for example, compare the means of the first two levels, the mean of the first
two levels with that of the third level, the mean of the first three levels with that of the fourth
level, and so on. Such contrasts may be described as Helmertian, from the Helmert matrix.
In its simplest form, the Helmert matrix is an orthogonal (n + 1) × (n + 1) matrix with all the
elements of the first row 1/

√
(n + 1) and rth row 1/

√
[r(r + 1)] (r times), −r /

√
[r(r + 1)],

then all zeros.
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4. Three-Way Partially Ordered Tables

4.1. Singly Ordered Three-Way Tables

For singly ordered I1 × I2 × I3 tables, a product multinomial model is assumed, with the
counts corresponding to the z1th column and z2th layer, z1 = 1, . . . , I2 and z2 = 1, . . . , I3,
being multinomial with total counts n•z1z2 and cell probabilities:

pwz1z2 = pw••
I1−1∑

u=0

θuz1z2au(w), (4.1)

for w = 1, . . . , I1, in which θ0z1z2 = 1. Here and henceforth, the normalisation corresponding
to the

√
n•z factor in pwz in Section 3 is absorbed into the θuz1z2 . The components are random

variables:

Zuz1z2 =

√
n

p•z1•p••z2

I1∑

w=1

au(w)pwz1z2 , (4.2)

where p•z1• =
∑

w

∑
z2
Nwz1z2/n and p••z2 =

∑
w

∑
z1
Nwz1z2/n. The Zuz1z2 are immediately

interpretable [2]), and, by the multivariate central limit theorem, are asymptotically
multivariate normal. This does not depend on the smooth model. As in Section 3, for
each u, u = 1, . . . , I1 − 1, we may construct orthogonal contrasts that are asymptotically
mutually independent and asymptotically standard normal. These contrasts reflect uth
moment comparisons between the levels of the unordered factors.

In [2], without a model, it is shown that X2
P is the sum of the squares of the Zuz1z2 :

X2
P =

I1−1∑

u=0

I2∑

z1=1

I3∑

z2=1

Z2
uz1z2 . (4.3)

In X2
P , it is insightful to separate components corresponding to u = 0 and u/= 0. Thus

X2
P =

I2∑

z1=1

I3∑

z2=1

Z2
0z1z2 +

I1−1∑

u=1

I2∑

z1=1

I3∑

z2=1

Z2
uz1z2 . (4.4)

The first summand corresponds to a two-way completely unordered table obtained by
summing over rows and may reasonably be denoted by X2

Z1Z2
. The second summation

corresponds to a genuinely three-way singly ordered table and may reasonably be denoted
by X2

UZ1Z2
.

In [2] it is stated that the degrees of freedom associated withX2
P are I1I2I3−I1−I2−I3+2.

This follows because there are (I2 − 1)(I3 − 1) degrees of freedom associated with X2
Z1Z2

, and
(I1 − 1)(I2I3 − 1) degrees of freedom associated with X2

UZ1Z2
.

We can argue for these degrees of freedom by, when possible, counting the θuz1z2 or
the Zuz1z2 . The table corresponding to X2

Z1Z2
is completely unordered, so there are no θuz1z2 to

count. We propose no smooth model, and our components are not appropriate when there is
no order. However, the degrees of freedom are known independently to be (I2 − 1)(I3 − 1).
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The table corresponding to X2
UZ1Z2

has degrees of freedom (I1 − 1)(I2I3 − 1) since this is the
number of parameters θuz1z2 in the smooth model. There are I2I3 multinomials, each of which
has (I1 − 1) parameters θuz1z2 as the multinomials probabilities sum to one (so the final cell
probability is given by difference). In addition, one of the I2I3 multinomials is determined by
{pw••} and the remaining multinomials.

4.2. Doubly Ordered Three-Way Tables

For doubly ordered tables a product multinomial model is again assumed, with the counts
corresponding to the zth layer being multinomial with total counts n••z and cell probabilities:

pw1w2z = pw1w2•
I1−1∑

u1=0

I2−1∑

u2=0

θu1u2zau1(w1)au2(w2), (4.5)

for w1 = 1, . . . , I1, w2 = 1, . . . , I2, and z = 1, . . . , I3, in which θ00z = θu10z = θ0u2z = 1. The
components are random variables:

Zu1u2z =

√
n

p••z

I1∑

w1=1

I2∑

w2=1

au1(w1)au2(w2)pw1w2z (4.6)

for u1 = 0, . . . , I1 − 1, u2 = 0, . . . , I2 − 1, and z = 1, . . . , I3, where p••z =
∑

w1

∑
w2

Nw1w2z/n.
Again, by the multivariate central limit theorem, the Zu1u2z are asymptotically multivariate
normal. This does not depend on the smooth model. For each (u1, u2) pair, as in Section 3,
we may construct orthogonal contrasts that are asymptotically mutually independent and
asymptotically standard normal. These contrasts reflect bivariate moment comparisons
between the levels of the unordered factor. A typical contrast may be (1st, 2nd) moment
differences between the first two levels reflected by layers.

In [2], without a model, it is shown that X2
P is the sum of the squares of the Zu1u2z:

X2
P =

I1−1∑

u1=0

I2−1∑

u2=0

I3∑

z=1

Z2
u1u2z. (4.7)

Again in X2
P , it is insightful to separate components corresponding to ui = 0 and ui /= 0. Thus,

X2
P =

I3∑

z=1

Z2
00z +

I1−1∑

u1=1

I3∑

z=1

Z2
u10z +

I2−1∑

u2=1

I3∑

z=1

Z2
0u2z

+
I1−1∑

u1=1

I2−1∑

u2=1

I3∑

z=1

Z2
u1u2z. (4.8)

The first summand is identically zero. The second summand corresponds to a two-way
singly ordered table obtained by summing over columns and may reasonably be denoted by
X2

U1Z
. The third summation corresponds to another two-way singly ordered table obtained



Journal of Applied Mathematics and Decision Sciences 7

by summing over rows and may reasonably be denoted by X2
U2Z

. The final summation
corresponds to a genuine three-way doubly ordered table and may reasonably be denoted
by X2

U1U2Z2
.

In [2] it is incorrectly claimed that the associated degrees of freedom are, as in
Section 4.1, I1I2I3 − I1 − I2 − I3 + 2. The one-way table corresponding to the components with
u1 = u2 = 0 is uninformative, and should be ignored. The two-way tables corresponding to
precisely one of the u1 or u2 zero are single-ordered, and, as in Section 3, have degrees of
freedom (I1 − 1)(I3 − 1) and (I2 − 1)(I3 − 1), respectively. When neither u1 nor u2 is zero, the
corresponding table is a genuine doubly ordered three-way table. There are I3 multinomials,
each with (I1 − 1)(I2 − 1) parameters θu1u2z in their smooth model, but in fact the final of the
I3 multinomials is determined by the {p••z} and the remaining multinomials. So there are
(I1 − 1)(I2 − 1)(I3 − 1) degrees of freedom for this final table. In all, the degrees of freedom are

(I1 − 1)(I2 − 1)(I3 − 1) + (I1 − 1)(I2 − 1) + (I1 − 1)(I3 − 1) = (I1I2 − 1)(I3 − 1). (4.9)

We note that although the degrees of freedom in the Happiness Example of [2] are in
error, the P values and conclusions with the correct degrees of freedom are as given there.
We recommend the reader refer to this example, examined from two different perspectives in
[1, 2], to see the insight and interpretability the components give to data analysis.

5. m-Way Partially Ordered Tables

We consider now an m-way table that is at least partially ordered: without loss of generality
the first r (≥1) categorical variables are taken as ordered and the remaining s = m − r
(≥1) categorical variables are nominal. The notation reflects this convention; the subscripts
w reflect ordered categories while the subscripts z reflect nominal categories. Accordingly,
the table is denoted by {Nw1···wrz1···zs}. As in [2] and [4, Chapter 4], we define components of
the form

Zu1···urz1···zs =
√

n
{
p•···•z1•···• × · · · × p•···•zs

}
I1∑

w1=1

· · ·
Ir∑

wr=1

au1(w1) · · ·aur (wr)pw1···wrz1···zs ,

(5.1)

where pw1···wrz1···zs= Nw1···wrz1···zs/n and where {auj (•)}, p•···•zj•···• and pw1···wrz1···zs are defined
similarly to the above. Again, by the multivariate central limit theorem, the Zu1···urz1···zs are
asymptotically multivariate normal. This does not depend on the smooth model.

By manipulations similar to those for the three-way case, it is possible to argue that

X2
P =

I1−1∑

u1=0

· · ·
Ir−1∑

ur=0

Ir+1∑

z1=1

· · ·
Im∑

zs=1

Z2
u1···urz1···zs . (5.2)
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By separating components corresponding to ui = 0 and ui /= 0, X2
P can be partitioned as

follows:

X2
P =

Ir+1∑

z1=1

· · ·
Im∑

zs=1

Z2
0···0z1···zs +

r∑

i=1

Ii−1∑

ui=1

Ir+1∑

z1=1

· · ·
Im∑

zs=1

Z2
0···0ui0···0z1···zs

+
r∑

i,j=1
i /= j

Ii−1∑

ui=1

Ij−1∑

uj=1

Ir+1∑

z1=1

· · ·
Im∑

zs=1

Z2
0···0ui0···0uj0···0z1···zs + · · ·

+
I1−1∑

u1=1

· · ·
Ir−1∑

ur=1

Ir+1∑

z1=1

· · ·
Im∑

zs=1

Z2
u1···urz1···zs .

(5.3)

If s = 1, the first term corresponds to a noninformative one-way table and contributes zero to
the sum. The following term corresponds to all (s + 1)-way singly ordered tables obtained by
summing over r − 1 ordered marginals and may reasonably be denoted by

∑r
i=1 X

2
UiZ1···Zs

. The
following term corresponds to all (s + 2)-way doubly ordered tables obtained by summing
over r − 2 ordered marginals and may reasonably be denoted by

r∑

i,j=1
i /= j

X2
UiUjZ1···Zs

. (5.4)

The subsequent terms involve components with successively more ordered marginals and
correspond to tables that are of increasing size. The final term corresponds to a genuine m-
way r-fold ordered table and may reasonably be denoted by X2

U1···UrZ1···Zs
. Thus,

X2
P =

r∑

i=1

X2
UiZ1···Zs

+
r∑

i,j=1
i /= j

X2
UiUjZ1···Zs

+ · · · +X2
U1···UrZ1···Zs

. (5.5)

The smooth model envisaged here is product multinomial where for each (z1, . . . , zs),
the observations follow a multinomial distribution with total counts n•···•z1···zs and cell
probabilities {pw1···wrz1···zs} given by

pw1···wrz1···zs = pw1•···• × · · · × p•···•wr•···•

{
I1−1∑

u1=0

· · ·
Ir−1∑

ur=0

θu1···urz1···zsau1(w1) · · ·aur (wr)

}
. (5.6)

An extension of the approach in [4, Section 4.4] investigates testing if the θu1···urz1···zsare
collectively zero against the negation of this. Generalising the work in [4, Section 4.4], the
efficient score statistic is Zw1···wrz1···zs . The information matrix is block diagonal but each
block is singular. Nevertheless, the efficient score is asymptotically normal and appropriate
orthogonal contrasts are asymptotically mutually independent and standard normal.

The degrees of freedom may be deduced either by counting θu1···urz1···zs (or the
corresponding components), or by the arguments in [2]. Consider a genuine m-way table
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with the first r categories ordered and the remaining s = m − r categories not ordered.
This includes tables corresponding to X2

UiUjZ1···Zs
say, resulting from summing out several of

the ordered variables. This is now a doubly ordered (s+2)-way table. The degrees of freedom
forX2

U1···UrZ1···Zs
are (I1−1)(I2−1) · · · (Ir −1)(Ir+1×Ir+2×· · ·×Im−1). There are Ir+1×Ir+2×· · ·×Im

multinomials (corresponding to Z1 = z1, . . . , Zs = zs) each with (I1 − 1)(I2 − 1) · · · (Ir − 1)
degrees of freedom. However, one of these multinomials is determined by the marginals and
the other multinomial models.

We decline to write out the contrasts corresponding to the asymptotically mutually
independent standard normal variables that are linear combinations of the Zw1···wrz1···zs . The
approach is similar to that employed in Section 3.
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