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Abstract. In the last few years new types of path-dependent options called corridor options
or range options have become well-known derivative instruments in European options markets.
Since the payout profiles of those options are based on occupation times of the underlying security
the purpose of this paper is to provide closed form pricing formulae of Black & Scholes type for
some significant representatives. Alternatively we demonstrate in this paper a relatively simple
derivation of the Black & Scholes price for a single corridor option – based on a static portfolio
representation – which does not make use of the distribution of occupation times (of Brownian
motion). However, knowledge of occupation times’ distributions is a more powerful tool.
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1. INTRODUCTION AND DESCRIPTION OF THE PROBLEM

Since 1973 when Black and Scholes presented their seminal paper concerning the
pricing of financial securities [see Black & Scholes (1973)], where the no- arbitrage
price-process X = (Xt; t ≥ 0) of the underlying security is described by geometric
Brownian motion, questions of option pricing have stimulated both, economics and
stochastic calculus [see Harrison & Pliska (1981 ), Karatzas & Shreve (1988), Duffie
(1988), et al.].

Recent results have been inspired by so-called Asian options or average options
and induced a rigorous study of random variables obtained by application of av-
erage functionals to the price-process. A famous problem in mathematical finance
has arisen from the application of arithmetic averages to X. To discover an analytic
representation of the corresponding distribution has turned out to be a resistant
problem for years and has been denoted jestingly “a minor holy grail in mathe-
matical finance” [see Hart & Ross (1994)] till Yor (1992) found a remarkable result
using Laplace transformation.

Another type of average options are quantile options first introduced by Miura
(1992). The α-quantile M (α, T ) (z) of a measurable function z on [0;T ] is defined
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by

M (α, T ) (z) = inf

{
k ∈ gR

∣∣∣∣∣
∫ T

t=0

1 [z(t) ≤ k] dt > αT

}
.

Questions concerning the distribution of M (α, T ) (X) are closely related to ques-
tions of distribution concerning occupation times of Brownian motion with drift

Z = (Zt, t ≥ 0), i.e. the random variable Γ+ (T, k) (Z) =
∫ T

t=0

1 [Zt > k] dt. The

distribution of M (α, T ) (Z) was studied successfully by Akahori (1995) and Das-
sios (1995). Though Lévy’s arc- sine law for occupation times of standard Brownian
motion is a classical probabilistic result [see Billingsley (1968)] it seems that explicit
formulae for the distributions of occupation times of Brownian motion with drift
have not been available since both, Akahori and Dassios, only provide formulae for
densities respectively integral versions for the options’ prices.

However, there is a practical need and interest in such explicit solutions if avail-
able, especially when dealing with path-dependent options, where established ap-
proximative methods, e.g. numerical integration, Monte Carlo simulation or lattice
approximation, often fail or – at least – consume enormous resources of computa-
tion time. Motivated by those practical needs we provide the explicit representation
for the distribution of Γ+ (T, k) (Z) [see Pechtl (1997), Theorem 1.1 and Theorem
3.1] which can be used not only for pricing quantile options, but also for some types
of corridor options.

While quantile options seem to be highly sophisticated financial products nearly
unknown to investors corridor options or range options were introduced to Eu-
ropean options markets in 1994 and have become familiar derivative instruments.
The payout profile of a traditional single corridor option is given by

Ψ1 (λ, T,K1,K2; z) = λ

∫ T

t=−T0

1 [K1 < z(t) ≤ K2] dt (1)

with T, T0 ≥ 0, λ > 0 and −∞ ≤ K1 < K2 ≤ ∞, whereas the more complex
structure of a dual corridor option is given by

Ψ2 (λ1, λ2, T,K1,K2; z) =

(
λ1

∫ T

t=−T0

1 [z(t) ∈ (K1;K2]] dt (2)

−λ2

∫ T

t=0

1 [z(t) /∈ (K1;K2]] dt

)+

with λ1, λ2 ∈ gR.
The aim of this paper is to provide a general pricing formula for dual switch

options, i.e. dual corridor options with K2 = ∞, and related derivative securities
in the well-known Black & Scholes model.

The paper is structured as follows. In Section 2 the Black & Scholes assumptions
and the notations used in the paper are introduced briefly. The main results are
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presented in Section 3, in particular the explicit version for the Black & Scholes
price of a dual switch option and its derivation as an application of the distribution
of occupation times of Brownian motion with drift. An alternative and in the con-
sidered special case of single corridor options rather elegant method of evaluation
of the option’s price based on static replication techniques is provided in Section 4.

2. PRELIMINARY REMARKS AND NOTATIONS

Throughout this paper we consider pricing of derivative securities in the Black &
Scholes model, where the risk-neutral price-process X = (Xt, t ≥ 0), i.e. the process
which has to be used for the calculation of the option’s price, can be represented
by

Xt = S0 exp {σWt + µBSt} , 0 ≤ t ≤ T, (3)

with a one-dimensional standard Brownian motion W = (Wt, t ≥ 0), the initial
price S0 of the underlying security, its volatility σ, r(> 1) defined by one plus the
risk-free interest rate and the drift

µBS = log r − 1
2
σ2

determined by the model.
As well known the payout profile of an option is described by a real-valued func-

tional Φ on the measurable space
(
C [0;T ] ; C[0;T ]

)
, the linear space of all continuous

functions on the time-interval [0;T ] endowed with the σ-algebra of Borel sets. Then
the Black & Scholes price πBS (Φ) is calculated by

πBS (Φ) = r−TEΦ(X). (4)

For the following explicit calculations we introduce the univariate and the bivariate
standard normal distribution functions by

N (x) =
1√
2π

∫ x

v=−∞
exp

{
−v

2

2

}
dv

for all x ∈ gR and by

N (x, y; ρ) =
1

2π
√

1− ρ2

∫ x

v=−∞

∫ y

w=−∞
exp

{
− 1

2 (1− ρ2)
(
v2 − 2ρvw + w2

)}
dwdv

for all x, y ∈ gR and all ρ ∈ (−1; 1).

3. THE PRICE OF A DUAL SWITCH OPTION

For our purposes we introduce the Brownian motion with drift Y = (Yt; t ≥ 0)
defined by

Yt = Wt +
µBS
σ

t.
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Furthermore let F the distribution function of the random variable Γ+ (T,K) (X)
with

Γ+ (T,K) (X) =
∫ T

t=0

1 [Xt > K] dt =
∫ T

t=0

1
[
Yt >

1
σ

log
K

S0

]
dt (5)

= Γ+

(
T,

1
σ

log
K

S0

)
(Y ),

i.e. F(t) = P

[
Γ+

(
T,

1
σ

log
K

S0

)
(Y ) ≤ t

]
. By Theorem 1.1 and Theorem 3.1 in

Pechtl (1997) F is explicitly known and can be represented in the following way,

P

[
Γ+

(
T,

1
σ

log
K

S0

)
(Y ) ≤ t

]
= F

(
T, t,

1
σ

log
K

S0
;
µBS
σ

)
, K ≤ S0;

P

[
Γ+

(
T,

1
σ

log
K

S0

)
(Y ) ≤ t

]
= 1− F

(
T, T − t, 1

σ
log

S0

K
;−µBS

σ

)
, K > S0,

(6)

where the function F (τ, θ, κ;µ) is defined for all κ < 0 and all 0 ≤ θ < τ by

F (τ, θ, κ;µ) =
{

3 + 2κµ+ 2µ2τ
}

exp {2κµ} ·

N

(
κ√
τ

+ µ
√
τ ,−µ

√
τ − θ;−

√
1− θ

τ

)
(7)

+N

(
κ√
τ
− µ
√
τ , µ
√
τ − θ;−

√
1− θ

τ

)

−
{

1 + 2κµ+ 2µ2θ
}

exp {2κµ}N
(
κ√
θ

+ µ
√
θ

)
N
(
−µ
√
τ − θ

)
+N

(
κ√
θ
− µ
√
θ

)
N
(
−µ
√
τ − θ

)
(8)

−2µ

√
θ

2π
exp

{
−1

2

(
κ√
θ
− µ
√
θ

)2
}
N
(
−µ
√
τ − θ

)
+2µ

√
τ

2π
exp

{
−1

2

(
κ√
τ
− µ
√
τ

)2
}
N

(
κ

√
1
θ
− 1
τ

)

−2µ

√
τ − θ

2π
exp

{
−1

2
µ2 (τ − θ)

}
exp {2κµ}N

(
κ√
θ

+ µ
√
θ

)
.

For θ < 0 let be F (τ, θ, κ;µ) ≡ 0 and for θ ≥ τ let be F (τ, θ, κ;µ) ≡ 1.
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Furthermore we define for κ < 0 the integral J (τ, θ, κ;µ) =
∫ θ

v=−∞
F (τ, v, κ;µ) dv

and calculate

J (τ, θ, κ;µ) =
{

3 + 2κµ+ 2µ2τ
}
θ exp {2κµ}N

(
κ√
τ

+ µ
√
τ ,−µ

√
τ − θ;−

√
1− θ

τ

)

+

{
1

2µ2
− µ2τ2 − 2τ + κ2

}
exp {2κµ}N

(
κ√
τ

+ µ
√
τ ,−µ

√
τ − θ;−

√
1− θ

τ

)

+

{
θ − 1

2µ2
− κ

µ

}
N

(
κ√
τ
− µ
√
τ , µ
√
τ − θ;−

√
1− θ

τ

)

−
{
µ2θ2 + 2κµθ + θ + κ2 − 1

2µ2

}
exp {2κµ}N

(
κ√
θ

+ µ
√
θ

)
N
(
−µ
√
τ − θ

)
+

{
θ − κ

µ
− 1

2µ2

}
N
(
κ√
θ
− µ
√
θ

)
N
(
−µ
√
τ − θ

)
(9)

−
{
µθ + κ+

1

µ

}√
θ

2π
exp

{
−1

2

(
κ√
θ
− µ
√
θ

)2
}
N
(
−µ
√
τ − θ

)
+

{
2µθ − µτ − 1

µ
+ κ

}√
τ

2π
exp

{
−1

2

(
κ√
τ
− µ
√
τ

)2
}
N

(
κ

√
1

θ
− 1

τ

)

+

{
µ (τ − θ) +

1

µ

}√
τ − θ

2π
exp {2κµ} exp

{
−µ

2

2
(τ − θ)

}
N
(
κ√
θ

+ µ
√
θ

)
+

√
θ (τ − θ)

2π
exp

{
−µ

2

2
(τ − θ)

}
exp

{
−1

2

(
κ√
θ
− µ
√
θ

)2
}
.

This formula can be verified immediately by differentiation with respect to θ which
is very tedious. An intuitive argument for the correctness of eq. (8) will be provided
in Section 4 where we demonstrate that it coincides in the special case of the
price of a single switch option with the result derived independently by using a
static replication argument. The reader interested in a direct proof of eq. (8) by
integration may be referred to the similar proof of Theorem 3.1 in Pechtl (1997).

In the following we consider the payout profile Φ2 = Φ2 (λ1, λ2, T,K;S) of a dual
switch option with a total lifetime T1 from t = −T0 to t = T , i.e. T1 = T0 + T ,
at time t = 0. In the time-interval [−T0; 0] the price-process S respectively the
no-arbitrage process X is described by its historical data. Then Φ2 (λ1, λ2, T,K;S)
is determined by

Φ2 (λ1, λ2, T,K;S) =

{
λ1

∫ T

t=−T0

1 [St > K] dt− λ2

∫ T

t=−T0

1 [St ≤ K] dt

}+

.

¿From this we immediately obtain

Φ2 (λ1, λ2, T,K;S) = {(λ1 + λ2) Γ+ (T1,K) (S)− λ2T1}+ . (10)
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For λ1 + λ2 = 0 and if λ2 > 0 we trivially have Φ2 (λ1, λ2, T,K;S) = 0, i.e.
πBS (Φ2 (λ1, λ2, T,K;S)) = 0, if λ2 ≤ 0 we have Φ2 (λ1, λ2, T,K;S) = −λ2T1, i.e.
πBS (Φ2 (λ1, λ2, T,K;S)) = −r−Tλ2T1, respectively. Thus for further discussion
we only take the case λ1 + λ2 6= 0 into consideration.

Let now be γ0 = Γ+ (T0,K) (S) =
∫ 0

t=−T0

1 [St > K] dt and τ0 =
λ2

λ1 + λ2
T1 − γ0.

Then we have for λ1 + λ2 > 0

Φ2 (λ1, λ2, T,K;S) = (λ1 + λ2) {Γ+ (T,K) (S)− τ0}1 [Γ+ (T,K) (S) > τ0] ,

respectively for λ1 + λ2 < 0

Φ2 (λ1, λ2, T,K;S) = (λ1 + λ2) {Γ+ (T,K) (S)− τ0}1 [Γ+ (T,K) (S) < τ0] .

We use those representations of Φ2 to calculate the corresponding prices in the
Black & Scholes model.

(i) For λ1 + λ2 > 0 we obtain using eqs. (6) to (8)

πBS (Φ2 (λ1, λ2, T,K;S)) =
r−TE (λ1 + λ2) {Γ+ (T,K) (X)− τ0}1 [Γ+ (T,K) (X) > τ0]

= r−T (λ1 + λ2)
∫
t∈(τ0;T ]

(t− τ0) dF(t)

= r−T (λ1 + λ2)
∫
t∈(τ0;T ]

(1− F(t)) dt

= r−T (λ1 + λ2)
∫
t∈(τ0;T ]

{
1− F

(
T, t,

1
σ

log
K

S0
;
µBS
σ

)}
dt 1 [K ≤ S0]

+r−T (λ1 + λ2)
∫
t∈[0;T−τ0)

F

(
T, t,

1
σ

log
S0

K
;−µBS

σ

)
dt1 [K > S0]

= r−T (λ1 + λ2)
[
t− J

(
T, t,

1
σ

log
K

S0
;
µBS
σ

)]T
t=τ0

1 [K ≤ S0]

+r−T (λ1 + λ2) J
(
T, T − τ0,

1
σ

log
S0

K
;−µBS

σ

)
1 [K > S0] .

(ii) For λ1 + λ2 < 0 we obtain analogously

πBS (Φ2 (λ1, λ2, T,K;S)) =
r−TE (λ1 + λ2) {Γ+ (T,K) (X)− τ0}1 [Γ+ (T,K) (X) < τ0]

= r−T (λ1 + λ2)
∫
t∈[0;τ0)

(t− τ0) dF(t)

= −r−T (λ1 + λ2)
∫
t∈[0;τ0)

F(t)dt

= −r−T (λ1 + λ2)
∫
t∈[0;τ0)

F

(
T, t,

1
σ

log
K

S0
;
µBS
σ

)
dt1 [K ≤ S0]
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−r−T (λ1 + λ2)
∫
t∈(T−τ0;T ]

{
1− F

(
T, t,

1
σ

log
S0

K
;−µBS

σ

)}
dt1 [K > S0]

= −r−T (λ1 + λ2) J
(
T, τ0,

1
σ

log
K

S0
;
µBS
σ

)
1 [K ≤ S0]

−r−T (λ1 + λ2)
[
t− J

(
T, t,

1
σ

log
S0

K
;−µBS

σ

)]T
t=T−τ0

1 [K > S0] .

Concluding we obtain the main result of this paper, the Black & Scholes formula
for dual switch options.

Theorem 3.1. Let be Φ2 (λ1, λ2, T,K;S) be the payout profile of a dual switch
option as defined by eq. (9). Furthermore let J (τ, θ, κ;µ) be defined by eq. (8).
Then for λ1 + λ2 6= 0 the Black & Scholes price of such an option is calculated by

πBS (Φ2 (λ1, λ2, T,K;S)) = r−T |λ1 + λ2| {J (T, θ (τ0,K;S0) , κ (K;S0) ;µ (K;S0))
−θ (τ0,K;S0) e (λ1, λ2;K,S0)
− (J (T, T, κ (K;S0) ;µ (K;S0))− T ) e (λ1, λ2,K;S0)} ,

where

τ0 =
λ2

λ1 + λ2
T1 − Γ+ (T0,K) (S),

θ (τ0,K;S0) = τ01 [K ≤ S0] + (T − τ0) 1 [K > S0],

κ (K;S0) =
1
σ

log
K

S0
{1 [K ≤ S0]− 1 [K > S0]},

µ (K;S0) =
µBS
σ
{ 1 [K ≤ S0]− 1 [K > S0]},

e (λ1, λ2,K;S0) = 1 [λ1 ≥ −λ2] 1 [K ≤ S0] + 1 [λ1 < −λ2] 1 [K > S0].

Remark 3.2. The formula for πBS (Φ2 (λ1, λ2, T,K;S)) remains valid even for
λ

(0)
1 + λ

(0)
2 = 0 if the option’s price is interpreted as limit of the pricing formula

given in Theorem 3.1 for λ1 + λ2 → 0 with λ1 + λ2 > 0.

4. APPLICATION OF THE RESULT TO SINGLE SWITCH OPTIONS

An immediate consequence of Theorem 3.1 is the explicit formula for the Black &
Scholes price of a single switch option, i.e. an option with payout profile

Φ1 (λ, T,K;S) = λ

∫ T

t=−T0

1 [St > K] dt (11)

with total lifetime from t = −T0 to t = T and λ > 0. Obviously this payout
profile can be interpreted by Φ2 (λ, 0, T,K;S) and we can easily provide the Black
& Scholes price. With the notations of section 3 we have τ0 = −γ0 and we obtain
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(i) for K ≤ S0

πBS (Φ1 (λ, T,K;S)) = r−Tλ

{
T + γ0 − J

(
T, T,

1
σ

log
K

S0
;
µBS
σ

)}
,

(ii) for K > S0

πBS (Φ1 (λ, T,K;S)) = r−TλJ

(
T, T + γ0,

1
σ

log
S0

K
;−µBS

σ

)
= r−Tλγ0 + r−TλJ

(
T, T,

1
σ

log
S0

K
;−µBS

σ

)
.

We conclude this result in the following corollary.

Corollary 4.1. The Black & Scholes price πBS (Φ1 (λ, T,K;S)) of a single
switch option with a total lifetime from t = −T0 to t = T and [−T0; 0] already
passed is calculated by

πBS (Φ1 (λ, T,K;S)) = r−Tλγ0 + r−TλTN

(
log S0

K

σ
√
T

+
µBS
σ

√
T

)

+r−Tλ · sign (S0 −K)

(
−

log S0
K

µBS
+

σ2

2µ2
BS

)
N

(
sign

(
−

log S0
K

σ
√
T
− µBS

σ

√
T

))

−r−Tλ · sign (S0 −K)
σ2

2µ2
BS

(
S0

K

)−2
µBS
σ2

N

(
sign

(
−

log S0
K

σ
√
T

+
µBS
σ

√
T

))

+r−Tλ
σ

µBS

√
T

2π
exp

−1
2

(
log S0

K

σ
√
T

+
µBS
σ

√
T

)2
 ,

where λγ0 is the amount of payout determined by the historical path of S in [−T0; 0].

Remark 4.2. The Black & Scholes price formula for a single switch option can
be also derived directly using the nice idea that the payout profile Φ1 (λ, T,K;S)
can be interpreted as a portfolio of simple digital options with increasing lifetimes
t and common strike K, where each of them pays out an amount of λdt or nothing
at time T . Then by application of Fubini’s theorem we obtain

πBS (Φ1 (λ, T,K;S)) = r−Tλγ0 + r−TλE

∫ T

t=0

1 [Xt > K] dt

= r−Tλγ0 + r−Tλ

∫ T

t=0

N

(
log S0

K

σ
√
t

+
µBS
σ

√
t

)
dt.

This elementary idea was presented without proof of the result in the framework of
a general approach to classify derivative securities by static replication of options
portfolios in Pechtl (1995).
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Now, the remaining integral can be calculated as follows. Integration by parts
yields ∫ T

t=0

N

(
log S0

K

σ
√
t

+
µBS
σ

√
t

)
dt = TN

(
log S0

K

σ
√
T

+
µBS
σ

√
T

)

+
1√
2π

∫ T

t=0

1
2

(
log S0

K

σ
√
t
− µBS

σ

√
t

)
exp

−1
2

(
log S0

K

σ
√
t

+
µBS
σ

√
t

)2
 dt.

For further evaluation of the integral we suggest the following helpful Lemma 4.3.

Lemma 4.3. For b, ν 6= 0 the following assertions hold.

I1 (b, ν, T ) : =
1√
2π

∫ T

t=0

1√
t3

exp

{
−1

2

(
ν
√
t− b√

t

)2
}
dt (12)

=
1
|b|

{
N
(

sign
(
ν
√
T − b√

T

))
+

exp {2νb}N
(

sign
(
−ν
√
T − b√

T

))}
.

I2 (b, ν, T ) : =
1√
2π

∫ T

t=0

1√
t

exp

{
−1

2

(
ν
√
t− b√

t

)2
}
dt (13)

=
sign(b)
ν

{
N
(

sign
(
ν
√
T − b√

T

))
− exp {2νb}N

(
sign

(
−ν
√
T − b√

T

))}
.

I3 (b, ν, T ) : =
1√
2π

∫ T

t=0

√
t exp

{
−1

2

(
ν
√
t− b√

t

)2
}
dt (14)

=
b · sign(b)

ν2

{
N
(

sign
(
ν
√
T − b√

T

))
+ exp {2νb}N

(
sign

(
−ν
√
T − b√

T

))}
+

sign(b)
ν3

{
N
(

sign
(
ν
√
T − b√

T

))
− exp {2νb}N

(
sign

(
−ν
√
T − b√

T

))}
− 2
ν2

√
T

2π
exp

{
−1

2

(
ν
√
T − b√

T

)2
}
.
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Proof. We consider the integrals K1 (b, ν, T ) and K2 (b, ν, T ) with

K1 (b, ν, T ) : = − 1√
2π

∫ T

t=0

1
2

(
ν√
t

+
b√
t3

)
exp

{
−1

2

(
ν
√
t− b√

t

)2
}
dt

=
[
N
(
b√
t
− ν
√
t

)]T
t=0

,

K2 (b, ν, T ) : =
1√
2π

∫ T

t=0

1
2

(
ν√
t
− b√

t3

)
exp

{
−1

2

(
ν
√
t− b√

t

)2
}
dt

=
[
exp {2νb}N

(
b√
t

+ ν
√
t

)]T
t=0

.

Now we obtain eqs. (11) and (12) by

I1 = −1
b

(K1 +K2) ,

I2 =
1
ν

(K2 −K1) .

Eq. (13) can be easily verified by

I3 =
1
ν

(
bI2 −

∂

∂ν
I2

)
.

Remark 4.4. Since the payout profile Ψ1 (λ, T,K;S) of a single corridor option

is defined by

Ψ1 (λ, T,K;S) = λ

∫ T

t=−T0

1 [K1 < St ≤ K2] dt

= Φ1 (λ, T,K1;S)− Φ1 (λ, T,K;S)

the Black & Scholes price of such an option can be immediately obtained by Corol-
lary 4.1.

5. CONCLUSION

In this paper an application of the distribution of occupation times of Brownian
motion with drift to a certain type of range options is considered, in particular an
explicit pricing formula for dual switch options is provided in the Black & Scholes
framework. Though the joint density of Brownian motion (with drift) at time T and
its occupation times up to T is a familiar result of stochastic calculus [see Billingsley
(1968)] it seems that an explicit version of the distribution of occupation times has
not been provided as far as the author knows. However, the explicit knowledge of
this distribution is helpful for the pricing of a large class of path-dependent options
such as range or quantile options, especially with respect to a practical point of
view.
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