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Abstract. For a number of di�usive processes involving heat and mass transfer, a convenient

and easy way to solve for penetration time or depth is to consider an averaged quantity called

mean action time. This approach was originally developed by Alex McNabb, in collaboration

with other researchers. It is possible to solve for mean action time without actually solving the

full di�usion problem, which may be nonlinear, and may have internal moving boundaries. Mean

action time satis�es a linear Poisson equation, and only works for �nite problems. We review

some nice properties of mean action time, and discuss some recent novel applications.
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1. Introduction

Di�usive processes occur in many contexts, including heat and mass transfer. Cer-

tainly a common question is how long does a process take? This question cannot

be answered simply, because di�usive processes take an in�nite amount of time to

come to equilibrium. Therefore other measures of process time need to be de�ned.

For example in a heat transfer process, we could consider a �xed position r and

determine the time taken for the temperature there to reach some �xed fraction of

the �nal equilibrium value. Alternatively, one could take a more averaged approach

and determine when the average temperature is a �xed fraction of �nal equilibrium

value.

An attractive alternative is to use mean action time. The mean action time is a

measure of the time taken for a disturbance introduced at the boundary to reach

an observation point, and hence is a function of position. It is especially useful

if the process is such that a steep front moves through the body, in which case it

measures the time at which the front passes through position r.
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The concept of mean action time has been fully developed by McNabb [6], [7], [9],

[8], [11] to quantify behaviour in non-linear di�usion problems in various geometries.

Here we will discuss the de�nition, and review some of the properties of the mean

action time. Recently, the mean action time has been used successfully to shed

light on some novel applications, which will be discussed here.

2. Linear and Nonlinear Di�usion Problems

We begin by considering a linear di�usion problem with a constant di�usivity D

{ this could represent a heat conduction problem or a mass transfer problem. We

let c denote the conserved quantity, and then the 
ux is given as �Drc. At this

stage we will consider an Eulerian co-ordinate scheme, and we do not specify the

number of spatial variables.

@c

@t
= Dr2c : (1)

We suppose that the system is initially uniform with c(r; t) = c0, of �nite extent.

The value of c at an outer boundary is changed at time zero, and the system

undergoes changes in c, tending towards some �nal uniform equilibrium value c1.

The mean action time is a measure of the time taken for a disturbance introduced

at the boundary to di�use past any observation point and hence is a function of

position denoted by T (r). It is de�ned in such a way that it is located in the

neighbourhood of extrema in @c(r; t)=@t, as illustrated in Figure (1).

As in [9], we de�ne the mean-action time for the linear problem to be

T (r) =

Z
1

0

t
@c

@t
dtZ

1

0

@c

@t
dt

; (2)

where the time derivative term in the integrand typically plays the role of a peaked

function which serves to concentrate t in the neighbourhood of extrema of @c(r)=@t.

When a steep front is present this formula acts to select the time T (r) as the time

of arrival of the front.

For the nonlinear problem, the di�usivity is a function of c, written as D(c), and

the di�usion equation takes the form

@c

@t
= r � (D(c)rc) : (3)
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Figure 1. A sketch of concentration and its partial time derivative versus time.

The de�nition of mean-action time for the nonlinear problem can be written as

T (r) =

Z
1

0

t
@

@t

 Z c(r;t)

c0

D(c) dc

!
dt

Z
1

0

@

@t

 Z
c(r;t)

c0

D(c) dc

!
dt

: (4)

It is clear that setting D to be a constant in (4) yields the de�nition for the linear

di�usion problem (2). Hence the de�nitions for the nonlinear case are a generali-

sation of the linear case.

For some mass transfer problems, for example in soil mechanics ([14], [15]), it is

more convenient to use Lagrangian co-ordinates. In this case the physical coordinate

may measure the total amount of the conserved quantity from r = 0 to some non-

zero r. Furthermore, some moving boundary problems can be reformulated into a

constant domain di�usion problem. For these cases, the mean action time can also

be de�ned as above. See section 3 for an application of this.

Internal moving boundaries associated with freezing and thawing problems are also

accommodated with the same nonlinear de�nition of mean action time [9].
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2.1. Simpler Form for T and Geometric Interpretation

Let us �rst consider the case of constant D, and T de�ned by (2). We integrate by

parts, being careful to avoid any divisions by zero.

T (r) =

Z
1

0

t
@(c� c1)

@t
dtZ

1

0

@c

@t
dt

(5)

=
1

(c1 � c0)

Z
1

0

(c1 � c) dt : (6)

Hence,

(c1 � c0)T =

Z
1

0

(c1 � c)dt : (7)

This can be interpreted geometrically using Figure (2). There we consider the c

pro�le as a function of t for a �xed position r. The areas shaded on either side of

the mean action time are equal using (7), showing how it corresponds to locating

a front in shock theory.

For the nonlinear problem it is convenient to introduce the Kircho� transformation

[2]

V (c) =

Z
c(r;t)

c0

D(c) dc : (8)

Then considering (4), we can integrate by parts, again avoiding any in�nities.

T (r) =

Z
1

0

t
@V

@t
dtZ

1

0

@V

@t
dt

(9)

=

Z
1

0

t
@(V � V (c1))

@t
dtZ

1

0

@V

@t
dt

(10)

=
1

V (c1)

Z
1

0

(V (c1)� V ) dt : (11)

Hence,

V (c1)T =

Z
1

0

(V (c1)� V ) dt : (12)
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Figure 2. A sketch illustrating the location of the mean action time T in a typical concentration

versus time plot, at some �xed value of r, with the two shaded areas being equal in value.

Noting that V (c0) = 0, this has the same geometric interpretation as in the linear

case for equation (7), if c is replaced by V (c). Hence in the nonlinear generalisation

of mean action time, there is the geometric interpretation that the mean action

time is placed in such a way as to give equal areas, in a plot of V (c) against time

at any point.

2.2. Poisson Equation for T (r)

For the linear problem, we can di�erentiate the simpli�cation (6) for mean action

time, and use (1) to give

r

2T (r) = �
1

(c1 � c0)

Z
1

0

r

2c dt = �
1

(c1 � c0)

1

D

Z
1

0

@c

@t
dt = �

1

D
: (13)

Hence, T satis�es a Poisson equation. The boundary conditions for T can be

obtained from the boundary conditions for c. This is relatively straightforward for

problems on bounded domains, and may also be used for some unbounded problems.
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To obtain an analogous expression for the nonlinear problem, we �rst rewrite the

partial di�erential equation (3) as

@c

@t
= r2V : (14)

Then, as before, we di�erentiate the mean action time expression (11), using (14),

to obtain

r

2T (r) = �

1

V (c1)

Z
1

0

r

2V (15)

= �

1

V (c1)

Z
1

0

@c

@t
dt (16)

= �

(c1 � c0)R
c1

c0
D(c) dc

: (17)

Again this is an appropriate generalisation of the linear problem. More importantly,

we see that two nonlinear systems with the same boundary and initial conditions

have identical mean action time if the quantityZ
c1

c0

D(c) dc (18)

is the same in both cases. This has been used to good e�ect in a �ltration problem

discussed below.

Moving internal boundaries associated for example with freezing and thawing prob-

lems are also amenable to this approach. Latent heat e�ects at the internal bound-

ary are accommodated by considering internal energy in the time derivative term,

which leads to a change in internal energy term on the right-hand side of the Poisson

equation, a generalisation of equation (17). See [9] for more details.

3. Application to Filtration

The modelling of pressure �ltration of 
occulated suspensions [4] using compres-

sional rheology and a knowledge of compressional yield stress and hydraulic resis-

tance leads to nonlinear di�usion-convection equations in the volume fraction of

solids (�), within a one-dimensional domain. This domain reduces in size as time

increases, and represents the distance between the �xed membrane which allows

water to �lter through and the piston position, where a constant pressure is ap-

plied. Using a Lagrangian approach, this problem is recast as a standard non-linear

di�usion equation

@e

@t
=

@

@w

�
�(e)

@e

@w

�
; (19)
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where the void ratio e = (1� �)=� is a function of the material co-ordinate w and

time t, and 0 < w < 1. The boundary conditions are e(0; t) = e1 and @e

@w
(1; t) = 0,

and the initial condition is e(w; 0) = w0. The di�usivity �(e) is illustrated in

�gure (3).

e
eg

e∞

∆(e)

Figure 3. A sketch of di�usivity as a function of void ratio, for the pressure �ltration problem.

In this process, it is desirable to estimate the dimensionless �ltration time Tf , here

de�ned to be the time when the average solids fraction is 95% of the equilibrium

value (maximum possible value) �1. The nonlinear problem can be numerically

solved for the pro�le e and hence �, but a more practical engineering estimate of

the �ltration time is required. The aim is to �nd a simpler non-linear di�usion

problem, which can be solved analytically to �nd expressions for Tf .

The choice of �ltration time Tf for our non-linear system is largely arbitrary, and a

choice that is more amenable to analysis is that of mean action time T (w). Such a

choice also has the attraction of providing insight into the behaviour of the �tration

system. We replace our non-linear system with another system (a system with a

di�erent �(e)) that is more amenable to solution, and we ensure that the two

systems have identical mean action time by requiring that, in the replacement, the

quantity Z e0

e1

�(e) de

is preserved (using an analagous result to (18) for �).

The use of mean action time as a measure of how long it takes for a di�usion process

to proceed to practical completion is discussed in previous sections, and will be seen
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here to give results that match very closely the �ltration times Tf obtained from

numerical solutions.

We wish to replace our non-linear di�usion problem by another di�usion problem

that can be solved analytically. This leads us to seek (piecewise) linear replacements

for �(e), with the desirable properties that �(e) = 0 for e > eg, and that �(e) !

�(e1). One such choice gave excellent comparisons with the solutions of the real

system, namely

�e� = �(e1)H(e� � e) ; (20)

where H is the unit step function. Equality of mean action times is assured by

requiring that

e� = e1 +

Z
e0

e1

�(e) de : (21)
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Figure 4. A comparison of the numerical and approximate analytical solutions for throughput

versus initial solid volume fraction, for the �ltration problem. Here th is the constant handling

time, D1 = D(�1) and �P=k is the �xed applied pressure. Choice 3 was the best of the three

choices discussed in [4].

For this choice of �e� , the linear di�usion problem can be solved exactly. At early

times there is a similarity solution with an internal moving boundary wc(t). The

similarity solution is valid until such time as wc(t) = 1. For longer times, the

di�usivity is a constant and the problem may be solved by separation of variables.

The Fourier coeÆcients are found by matching to the similarity solution, and an

explicit expression for the �ltration time can be determined [4].



MEAN ACTION TIME 133

See �gure (4) for a comparison of numerical solutions and the approximate ana-

lytic solutions obtained using �e� . Plotted on the vertical axis is dimensionless

maximum throughput, the total amount of solid processed in a batch operation,

and this quantity is inversely proportional to T
1=2

f
. On the horizontal axis is the

initial volume fraction of solids. The factor f is the fraction of the equilibrium

solids fraction at which the process is interrupted.

4. Application to Water Transport in Human Eye Lenses

Magnetic resonance microscopy (MRM) has been used to study the kinetics of water

transport in human eye lenses [13]. NMR signal intensity from the lenses decreases

with time corresponding to a decrease in concentration of H2O and replacement

by D2O within the lenses. A statistically signi�cant correlation has been found

between the rate of NMR signal loss from the lens nuclei and the age of the lenses.

The results show that as lenses age there is a reduction in the rate at which water

can enter the cells of the lens nucleus via the epithelium and cortex. A decrease in

the rate of transport of water, nutrients and anti-oxidant species would be expected

to lead to increased damage to lenses with age, and is a potential cause of presbyopia

and senile cataract.

In order to establish a theoretical basis for analysis of the changes in water proton

signal observed in the MR images, a simple model for the exchange process was

developed. In the following analysis, the exchange of H2O in the lens nucleus with

D2O in the surrounding arti�cial aqueous humour (AAH) is assumed to be governed

by an e�ective di�usion coeÆcient D, which itself is assumed to be isotropic and

uniform throughout the lens. As well as establishing appropriate equations for

�tting the experimental data, this modeling enables the characteristic parameters

to be objectively de�ned, facilitating a correlation of the exchange process with age.

For three-dimensional modelling of the D2O=H2O exchange in an ellipsoidal shaped

lens, modelled by a di�usion equation with a step change in the (initially constant

everywhere) concentration at the surface of the lens, it is possible to calculate

an analytical solution using separation of variables. However, the expressions are

complex and clumsy and it is convenient to use the mean action time to come to

some understanding of appropriate dimensional quantities.

We approximate the lens as an ellipsoid,

x2

L2
+

y2

M2
+

z2

N2
= 1 ; (22)

where 2L; 2M and 2N are the lengths of the principal axes. The mean action time

satis�es the Poisson equation (13) inside the ellipsoid, with T = 0 everywhere on
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the surface of the ellipsoid since the concentration of H2O there is c1. The solution

in a three dimensional ellipsoid is

T (x; y; z) =
1

2D
�

1
L2 +

1
M2 +

1
N2

� �1� (
x2

L2
+

y2

M2
+

z2

N2
)

�
: (23)

The largest mean action time, at the centre of the lens, is given by

T (0; 0; 0) =
1

2D
�

1
L2 +

1
M2 +

1
N2

� : (24)

Solving the original di�usion problem using separation of variables gives a solution

which decays exponentially in time. The slowest decay rate in this solution is related

to the mean action time. A generalised relationship between the decay constant b

and the mean action time at the lens nucleus takes the form

b = �2=(8T (0; 0; 0)) =
�2D

4

�
1

L2
+

1

M2
+

1

N2

�
(25)

This equation shows how the decay rate depends on the size and shape of the lens

as well as on the di�usivity of water in the lens. Since lens size (determined by the

values of L;M;N) certainly changes with age, a procedure is required for deciding

whether observed changes in decay rates are due to changes in lens size or to changes

in lens shape.

Equation (25) gives a method for correcting the observed signal decay rates for the

e�ects of di�erences in lens size. From (25), a plot of b=
�

1
L2 +

1
M2 +

1
N2

�
should be

independent of lens size | any signi�cant trends in this data will be due to changes

in lens morphology with age, and expressible as an e�ective di�usivity.

By simple mathematical modeling of the experimental results it was concluded that

the decrease in transport rates was due to two factors, a continuous increase in lens

size with age, and a change in lens morphology causing a decrease in apparent

di�usivity of water (and other low molecular weight species) either throughout the

lens nucleus or within in a region surrounding the nucleus. The results support the

hypothesis that such factors may contribute to a continual decrease in lens function

with age, resulting in the onset of presbyopia and in some cases, cataract formation.

5. Application to Water Uptake in a Cereal Grain

In trying to understand how to optimise the cooking of whole grains for the man-

ufacture of breakfast cereals, it is recognised that water and heat must enter the
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grain. Heat penetration is a relatively fast and simple di�usion process. Water

uptake by the whole grain can be modelled by a nonlinear di�usion equation, with

a steep wetting front penetrating the grain. Here we will show how the mean action

time has shed light on the tracking of the moisture front with time.

Moisture movement through whole corn kernels is considered in the paper by Syarief

et al [17] and for whole wheat grains by Stapley [16]. The moisture di�usivity is

determined to be strongly dependent on moisture content and can be �tted with

either a power law or an exponential function. We consider the exponential form

here.

Once the equations have been made dimensionless, we obtain (see [5]) the di�usion

equation for the scaled moisture content m,

@m

@�
= r � (e�mrm) : (26)

Here the time � is scaled by a representative length scale and by the di�usivity,

evaluated at the equilibrium value of the moisture content, corresponding to a wet

grain. The initial condition is m = �1 everywhere inside the grain (relatively dry

conditions) and the boundary condition at the grain surface is m = 0 (relatively

wet) for � > 0. The parameter � typically takes values about 4 ([17]).

Substituting the exponential form for the di�usivity into the simpli�ed form (11)

for the mean action time gives

T (r) =

R
1

0
(1� e�m)d�

1� e��
: (27)

We will now consider the maximum mean action time, that is, the time to wet the

centre of the grain. This is

T (0) =
1

Dwet

�
�

1� e��

� "
1

2
�

1
L2 +

1
M2 +

1
N2

�
#
: (28)

A signi�cant way to rewrite the maximum mean action time in dimensional terms

is as

T (0) =
1

Dequiv

"
1

2
�

1
L2 +

1
M2 +

1
N2

�
#
: (29)

where the equivalent di�usivity is the log mean of the extreme values taken by the

nonlinear di�usivity,

Dequiv �
Dwet �Ddry

ln(Dwet=Ddry)
; (30)
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where Ddry is the di�usivity of dry grain with m = �1 and Dwet is the di�usivity

of wet grain with m = 0.

Even though moisture penetration is a nonlinear di�usion problem, the de�nition

used for mean action time justi�es the treatment of the di�usion of moisture as

an equivalent linear di�usion problem, at least in terms of the times taken to wet

grains. That is, equation (29) is the same as the time to wet that would be obtained

from a linear di�usion equation with a di�usion equal to Dequiv.

Numerical solutions to equation (26), obtained using Fast
o [1], are plotted in

�gure (5) together with vertical lines indicating the location of a front associated

with the mean action time. Note that this plot shows moisture content versus

radius, not versus time. A plot showing moisture content versus time is in �gure (6),

for three di�erent radii, together with vertical lines indicating the mean action times

for those radii. The numerical solutions were for cylindrical geometry, and mean

action time is obtained for this geometry from the ellipsoidal case by taking say

N !1, L =M , and r2 = x2+y2. Note that due to the long tails on the moisture

content versus time the mean action time is placed a surprisingly long distance (or

time) behind the �rst rise of the moisture content. However, the placement of the

mean action time does appear reasonable, on the basis of making the appropriate

areas equal.
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Figure 5. A plot of numerical solutions for moisture content versus radius, in cylindrical geometry,

at times 0.1, 0.2, : : : 0.9 from right to left (moisture is penetrating from r = 1 to r = 0). Vertical

lines show the radii which correspond to mean action times that are equal to the numerical solution
times.
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Figure 6. A plot of numerical solutions for moisture content versus time, in cylindrical geometry,

at radii 0.7, 0.5 and 0.3 from left to right. Vertical lines show the mean action times for these
three radii, in the same order.

It is simple to adapt this work to a spherical grain of radius R, since then the

solution to the Poisson equation r2� = �1 is just � = (R2
� r2)=6. Such a

geometry may be more appropriate when dealing for example with milled grains.

5.1. Comparison with Asymptotic Solutions

An approximate solution of this nonlinear di�usion problem has been obtained by

assuming steady-state di�usion between the outer surface of the grain and a steep

wetting front that penetrates the grain [5]. This solution gives a wetting front that

moves as illustrated by the dashed line in �gure (7). For comparison purposes, the

location of the front implied by the mean action time is also shown.

Of interest in �gure (7) is the rapid initial penetration of the wetting front accord-

ing to the asymptotic analysis, compared with the much slower initial penetration

predicted by the mean action time analysis. The wetting front for the asymp-

totic solution is placed where the moisture content �rst rises from its initial value,

whereas the mean action time solution is an exact one, but gives a front that is a

signi�cant distance behind the �rst rise in moisture content.
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Figure 7. Wetting front locations for grain cooking, from the asymptotic solution (dashed line) and

from the mean action time (the middle, solid line). The uppermost and thickest solid line is the
front S(t) obtained by substituting the asymptotic solution into the mean action time de�nition.

To help reconcile these two results, it is possible to substitute the asymptotic solu-

tion directly into the de�ning formula for mean action time, to see if the di�erences

are due in any part to any inadequacies in the asymptotic approximation. We use

cylindrical geometry with a cylinder radius equal to one, to simplify the formulae.

The mean action time obtained by solving exactly places a sharp front at s(t),

where

s2 = 1�
4t(1� e��)

�
; (31)

whereas if the asymptotic solution is used to calculate the mean action time, the

following formula for wetting front location S(t) is obtained

S2 = exp

�
�4t(1� e��)

�

�
: (32)

The functions s(t) and S(t) are plotted as solid lines in �gure (7). S is the uppermost

and thickest solid line. Clearly, from the form of equations 31 and 32, noting the

usual expansion for the exponential function, S(t) matches s(t) for small t, and

deviates at larger t values, as illustrated in �gure (7).

It is reassuring that s and S match at small times. At larger times, the asymptotic

solution deviates from the exact solution, falling behind due to the assumption in

the asymptotics that no di�usion takes place in front of the wetting-front. This
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is also consistent with numerical solutions, which also progress faster than the

asymptotic solutions.

Hence we note that the location of the penetrating moisture front is (in the mean

action time approach) somewhat behind the initial steep rise in moisture content,

due to the long tails. The asymptotic solutions lead to apparently faster initial

penetration rates, because they track this �rst steep rise in moisture content. The

asymptotic solutions deviate at later times from both the mean action time and

the numerical results, due to an assumption in the asymptotics that the di�usivity

in front of the steep moisture shock is zero. Mean action time is a good way to

measure and solve for the penetration of moisture into cereal grains.

5.2. Surface Resistance

As discussed above, if the surface of the grain is at the external saturation level,

then m = 0 and hence T = 0 on the grain surface. Then it is easy to solve for T (r)

in simple geometries (sphere, ellipsoid, cylinder etc). The largest value of T gives

the time for moisture to hydrate the entire grain.

However, for the mass transfer boundary condition with a surface resistance �, the

analysis is more diÆcult and only lower and upper bounds on the mean action time

can be found ([10], [3]). Depending on the values of � and �, these bounds may

only be useful if the bounds are relatively tight.

6. Conclusions

Mean action time is a very useful approach if the details of a di�usive solution are

not required, or if the di�usion problem is so complicated or nonlinear that numer-

ical and analytical solutions are problematic. Some may consider the use of mean

action time somewhat cavalier in integrating out much of the detail of a solution.

However, di�usion problems never quite stabilise, taking in�nite time to reach equi-

librium, so that the alternative approaches to mean action time also involve making

decisions about how much is enough | 90% of the �nal concentration, or 95%, or

99% ? These decisions are rather more arbitrary than the idea of mean action time,

which has a nice geometric rationale, placing a penetration distance or an action

time at a place that corresponds to locating a shock front to give equal areas on an

appropriate time plot.

Mean action time is also remarkable in the range of problems it may be applied to,

and in the potential it has to simplify complicated problems, making it the method
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of choice for a range of nonlinear or moving internal boundary problems, freezing

and thawing problems [12], and for embedded problems like double-porosity models

in geothermal reservoir modelling or pasta drying or iron pellet reduction [10].
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